
Chapter 7 
Control 

Part 3 
7.3 Optimal and Model Predictive  
Control 

Mobile Robotics - Prof Alonzo Kelly, CMU RI 1 



Prediction and Optimality 
• Prediction enables search 

– creates the capacity to elaborate alternatives. 

• Optimality  
– creates the capacity to decide what to do. 
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Optimal Control 
• Mobile robots are intelligent (=perceptive 

and deliberative): 
– perceive the environment around them. 
– predict environmental interactions for 

candidate motions. 
– rank alternative actions. 
– execute a chosen action.  

• The intelligent control of mobile robots is an 
optimal control problem 
 Mobile Robotics - Prof Alonzo Kelly, CMU RI 3 
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Receding Horizon MPC 
• Perceptive horizon is intrinsically limited. 
• So, new information arrives all the time. 
• Have to keep changing the plan. 
• Need models to do adequate prediction for 

planning. 
• The intelligent control of mobile robots is a 

receding horizon MPC problem 
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Oskar Bolza 
• Attended U Berlin 1875. 

– Taught by Helmholtz and Kirchoff. 
– Felt he had no talent for research. 

• Attended Weierstrass's 1879 lecture 
on Calculus of Variations. 

• Switch to Klein as advisor. Received 
his doctorate in 1886 after many 
course corrections. 

• 1914: Wrote the optimal control 
paper on what is now called  'the 
problem of Bolza’. 

• Thereafter left public life for 15 years 
in response to World War I. 
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Felix Klein on 
American professors of 
math of the time 

“I doubt one half of 
them could tell what a 
determinant is.” 



Carl Jacobi 
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Carl Gustav 
Jacob Jacobi 
1804-1851 

• Initially educated by an uncle 
– Who did a good job! 

• Moved from first to last grade of high school in 
one year. 
– Qualified to enter university at age 12. 
– Had to stay in high school 4 more years til 16. 

• Entered Berlin U in 1821. Joined Neumann and 
Bessel in 1826. 

• Reputation as excellent teacher. 
• Clarified the nature of the Jacobian. 
• Honored in naming the Hamilton-Jacobi-Bellman 

equation. 
• Died of smallpox around 1842. 

 



Lev Pontryagin 
• Too poor to go to good schools. 
• Blinded by an accident at age 14. 

– His mother was his devoted secretary for the 
rest of his life. 

• Entered University of Moscow in 1925. 
– Took no notes!  
– Remembers derivations in his head! 

• Appointed to Faculty of Mathematics 
1934. 

• Best known for the Pontryagin Maximum 
Principle  one of the most general 
theorems in all of optimization. 
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Lev Semenovich 
Pontryagin  
1908-1988 
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7.3.1 Calculus of Variations 
(Variational Optimization) 

• A mathematical formulation of a quest for an 
unknown function. 

• Replace 
– dx (a differential) with 
– δx(t) a function of time (called a variation). 
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7.3.1 Calculus of Variations 
• Consider this optimization problem. 

 
 
 

• E.g. shortest path between two points. 
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7.3.1 Calculus of Variations 
• Consider this optimization problem. 

 
 
 

• J[x,tf] is a functional – a function of a function. 
– Square brackets notation J[x] 
– J[sin(t)] = 6.2 
– J[at+b] = 12.9 
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7.3.1.1 Euler Lagrange Equations 
(Necessary Conditions) 
• Suppose a solution            has been found… 
• Consider adding a small variation                  to the 

solution.  
• What happens to J? Substitute: 

 
 

• Boundary conditions: 
 

• Approximate L by its Taylor series: 
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7.3.1.1 Euler Lagrange Equations 
(Necessary Conditions) 
• Now, the perturbed objective is: 

 
 

• Third term inside can be integrated by parts: 
 
 

• Based on the boundary conditions the first part 
vanishes. 
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7.3.1.1 Euler Lagrange Equations 
(Necessary Conditions) 
• The perturbed objective is now: 

 
 

• This is the same as: 
 
 

• The integrand must vanish to first order for a local 
minimum. 

Mobile Robotics - Prof Alonzo Kelly, CMU RI 14 

Ignoring 
H.O.T. 



7.3.1.1 Euler Lagrange Equations 
(Necessary Conditions) 
• This must be zero: 

 
• But            is arbitrary, so the stuff in (  ) must be 

zero. 
 
 
 

• These are the Euler-Lagrange Equations 
• Second order differential equations. 

– Solves a lot of important problems in physics. 
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7.3.1.2 Transversality Conditions 
• Recall 

 
 
 

• When tf is free, J must be stationary with respect 
to it. Thus: 
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7.3.2 Optimal Control 
• Consider this optimization problem. 

 
 
 
 

• Similar to calculus of variations but with x  (n-
vector) replaced by u (m-vector).  

• Now, you are in charge…. 
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Boltza 
Form 



7.3.2 Optimal Control 
(View as Constrained Optimization over Functionals) 

• Problem has two main components: 
– UTILITY: doing something useful (probably to get 

somewhere, maybe in some best fashion). 
– CONSTRAINT: while respecting some constraints. 
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7.3.2 Optimal Control 
(Utility) 

• In Bolza form, want to optimize some functional 
representing “cost” or “utility”: 
 

• Where:                    
–                    (endpoint cost function) may be used to 

represent the desire to reach some particular terminal 
state. 

– the integral term can be used to, for example, express 
the cost of driving at high curvature. 
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J φ x tf( )[ ] L x u t, ,( ) td
t0

tf

∫+=



7.3.2.1 “The” Minimum Principle 
• To solve the optimal control problem, 

define the Hamiltonian. 
 

• Time varying          is known as the co-state 
vector. Analogous to Lagrange multipliers. 

• Maximum principle states u must minimize 
H. 
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Or  “the” 
Maximum 
Principle 



7.3.2.1 “The” Minimum Principle 
(First Order Conditions) 

• Derived just like Euler Lagrange Equations: 
 
 
 
 
 
 
 

• This 2-point boundary value problem is also 
known as the Euler-Lagrange equations. 
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H is stationary wrt u 

x satisfies system dynamics 

co-state ODE  

boundary conditions 

transversality condition 



7.3.2.2 Dynamic Programming 
• A different view of optimal control… 
• Define the value function V (aka optimal return 

function or optimal cost to go) as the cost of the 
optimal path. 
 
 

• Given J*, the optimal control can be computed 
from it. 
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7.3.2.5 Example LQR Control  
• Control a linear system to optimize a quadratic 

objective. 
• System: 
• Objective: 

 
• The Hamiltonian is:  
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7.3.2.5 Example LQR Control  
• Kalman proved that the optimal control is: 

 
 

• Where S satisfies the Ricatti equation: 
 

• S is easy to get by integrating backward in 
time from the terminal constraint 
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7.3.3.1 Receding Horizon Control 
• Solve the following problem for 

some finite prediction horizon 
tf : 
 
 

• Execute the optimal control 
u*(t) for a control horizon tc. 

• Do it all over again for t0+ tc and 
tf+ tc 
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J φ x tf( )[ ] L x u t, ,( ) td
t0

tf

∫+=

t 

t0 

t0+ tc 

tf 

tf + tc 



Issues 
• Stability: 

–Hard to maintain stability with finite 
horizon. 

• Feasibility: 
–Terminal state constraint x(tf) may not be 

satisfied. 
–Have no terminal state constraints (e.g. 

OA) 
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7.3.3.2.1 Example: Pure Pursuit 
• Simplest objective is a single point tf 
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7.3.3.2.1 Example: Pure Pursuit 
• Controller: 

 

• Inverse lookahead (1/L) distance acts like a 
proportional gain. 

• Issues: 
– Stability depends critically on lookahead. 
– Misbehaves for infeasible paths. 
– Commands themselves are infeasible (instantaneous 

curvature change). 
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7.3.3.3 Example: Model Predictive 
• Model steering response in terms of latency and 

max rates. 
• Sample alternatives, simulate,  and pick best. 
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7.3.3.3 Example: Model Predictive 
• Same crosstrack objective: 

 
 

• Issues: 
– Like pure pursuit, does not acquire path at correct 

heading or curvature. 
• Guarantees errors beyond lookahead. 
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7.3.3.4 Example: Trajectory Gen 
• Case 2: Minimize an endpoint cost based on total 

pose error. 
 

Mobile Robotics - Prof Alonzo Kelly, CMU RI 33 



7.3.3.4 Example: Trajectory Gen 
• Case 1: Invert dynamics in an exact trajectory 

generator . 
• Issue: Lookahead point may not be feasible. 
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Approaches 
• Dynamic programming 

– Construct V and follow its gradient 
– Later: Most of motion planning is based on this. 

• Direct methods 
– Minimize the objective 

• Indirect methods 
– Satisfy the necessary conditions 

• Parameterization 
– Next Section 
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7.3.4.1.1 Hilbert Space 

• An arbitrary function can be thought of as a point 
in R∞. 

• Hence, unknown functions are like infinite 
parameter vectors. 
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7.3.4.1.2 Convexity and Sampling 

• Convexity is an issue for functional 
objectives too. 
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7.3.4.1.3 Continuum vs Sampled Methods 
• Continuum 

– (+) Solutions are arbitrarily dense. 
– (+) Gradient information exploited for efficiency. 
– (-) Local minima / need good initial guess. 

• Sampled 
– (+) immune to local minima. 
– (-) less efficient 
– (-) performs poorly in high spatial frequency cost 

fields. 
• Both 

– best of both worlds. 
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Solution Methods 
• Dynamic programming 

– Derives a control that is valid for all initial conditions. 
– Often intractible. 

• Calculus of Variations 
– Poses a boundary value problem 
– Derives control for one initial condition. 

• Finite Parameterization 
– Converts problem to nonlinear programming. 
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7.3.4.2 Direct Methods: Finite Differences 
• Discretize the dynamic model: 

 
• Discretize the objective: 

 
• This is a constrained optimization problem 

with linear constraints.  
• There are Nm unknowns in u( ) and Nn dof 

in x( ) so there are N(n-m) dof left for 
optimization. 
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J φ x n( )( ) L x k( ) u k( ) k, ,( )∆t
k 0=

N 1–

∑+=



7.3.4.2 Direct Methods: Finite Differences 
• Process: 

– Start with a guess of the inputs u( ) for every k. 
– Integrate the system model to determine x( ) 

for every k. 
– Compute J(x,u). 
– Compute its gradient w.r.t. u. 
– Line search the descent direction. 
– Repeat until convergence. 
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7.3.4.3 Indirect Methods: Shooting Method 

• Necessary conditions are a 2 point BVP. 
• Shooting: Analogous to aiming a canon by 

trial and error. 
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7.3.4.4 Penalty Function Approach 
• An approach that converts a cost to a constraints: 

– (+) reduces order of problem 
– (+) simpler formulation 
– (+) great for constraints that cannot be satisfied. 
– (-) constraints no longer satisfied exactly. 

• In optimal control, this means use f(xf,tf) rather 
than a terminal boundary condition. 
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7.3.5.1 Conversion to Constrained Optimization 

• Ancient technique: 
– “method of undetermined coefficients”. 

• Assume inputs of parameterized form: 
 

• Parameters determine inputs … 
• Inputs determine state … 
• So we can write … 

Mobile Robotics - Prof Alonzo Kelly, CMU RI 46 

Any x or u (or both) 
can now be replaced 
by p. 

u t( ) ũ p t,( )→

x· t( ) f x p t,( ) u p t,( ) t,,[ ] f̃ p t,( )= =



7.3.5.1 Conversion to Constrained Optimization 

• The boundary conditions become: 
 
 

• This is conventionally written as: 
 

• The performance index is now: 
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Integrals are 
suppressed 
notationally – but 
they are still there. 

g p t0 tf, ,( ) x t0( ) f̃ p t,( ) td
t0

tf

∫+ xb= =

c p t0 tf, ,( ) g p t0 tf, ,( ) xb– 0= =

J̃ p tf,( ) φ̃ p tf,( ) L̃ p t,( ) td
t0

tf

∫+=



7.3.5.1 Conversion to Constrained Optimization 

• Minimize: 
 
 
 

• Subject to: 
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tf      freeJ̃ p tf,( ) φ̃ p tf,( ) L̃ p t,( ) td
t 0

tf

∫+=

c p t0 tf, ,( ) 0=



7.3.5.2 First Order Response to Parameter Variation 

• Practical solutions to most nonlinear problems 
involve linearization. 

• How do we linearize an integral of a differential 
equation with respect to some parameters in the 
inputs? 
– Use Leibnitz’ rule: 

• Recall first, a property of partial derivatives: 
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∂
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 
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= =

Parameter Jacobian 
Of Time Derivative = = Time Derivative Of 

Parameter Jacobian 



7.3.5.2 First Order Response to 
Parameter Variation 
• Use last result to linearize the dynamics: 

 
 
• Hence, Jacobian of the dynamics wrt the 

parameters can be had by integrating an auxiliary 
differential equation. 
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p∂

∂u + td
t0

tf

∫= Was that progress? 
Replace one DE with 
two? 



7.3.5.2 First Order Response 
to Parameter Variation 
• Finally the performance index can be 

differentiated to enable parameter search. 
 
 
 

• These results are different forms of Leibnitz rule - 
the derivative of the integral is the integral of the 
derivative (unless the two variables involved are 
the same). 
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Parametric Optimal Control – For Steering 
• Change to distance with:  
• Minimize: 

 
 

• Subject to: 
 
 

• This is now a problem in nonlinear programming, also 
called constrained optimization. 

• Such problems can be solved using the technique of 
Lagrange Multipliers  next. 
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q pT sf,[ ]
T
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7.3.5.3 Necessary Conditions 
• Define the Hamiltonian (aka Lagrangian): 

 
• The necessary conditions for a constrained 

optimum are: 
 
 
 

• A set of n+p+1 equations in as many unknowns. 
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p + 1 equations 

n  equations 

H q λ,( ) J q( ) λT c q( )+=

q∂
∂ H q λ,( )

q∂
∂ J q( ) λT

q∂
∂ c q( )+ 0T= =

λ∂
∂ H q( ) c q( ) 0= =



7.3.5.3 Necessary Conditions 
(Newton’s Method) 

• Three steps: 
– Transpose first set of equations.  
– Linearize about a point where they are not satisfied. 
– Insist on satisfaction to first order after perturbation. 

 
 
 
 
 
 

• Each iteration produces a descent direction for line search. 
Iterate and update q and λ until convergence.  

• No constraints  use only 1st set  
• No performance index  use only 2nd set. 
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7.3.5.4 Parametric Optimal Control 
• Use full state error along the entire path: 

 
 
 

• Solve for parameters of best fit. 
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J x u tf, ,[ ] δxf
TSδxf δxT t( )Aδx t( ) td
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tf

∫+=

δx t( ) x t( ) xpath t( )–=
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7.3.5.4 Parametric Optimal Control 

• It is straightforward to add predictive velocity 
control too. 
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7.3.5.5 Example: Adaptive Horizon 
• Terminal time tf is free. 
• Objective includes both control effort and 

crosstrack error.  
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J x u t f, ,[ ] δxf
T Sδxf δxT t( )Aδx t( ) uT t( )Bu t( )+( ) td

t0

tf

∫+= tf free=

δx t( ) x t( ) xpath t( )–=



7.3.5.5 Example: Adaptive Horizon 
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Video 
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7.3.5.6 Intricate Path Following 
• Plan right through the velocity reversals. 
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7.3.5.6 Intricate Path Following 
• Receding Horizon Model Predictive Control 

(RHMPC) controller here. 
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Summary 
• Optimal Control is a generalization of the Calculus 

of Variations which expresses the mobile robot 
control problem well.  

• Trajectory generation fits very nicely into the 
standard form of an optimal control problem. 

• Curvature polynomials of arbitrary order are a 
convenient representation of trajectories. 
– Cubic ones have just enough degrees of freedom to 

achieve an arbitrary terminal posture.  
– There is a pretty painless way to compute these. 
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