Chapter 7
Control

Part 4
7.4 Intelligent Control
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Hierarchy

We are here now ...

Deliberative Autonomy

Responsible for
responding to the
immediate environment.

Perceptive Autonomy

Motive Autonomy

Requires feedback of the
state of the environment
(e.g. perception).

May only need relative
position estimates.

Carnegie Mellon
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7.4.1.1 Intelligent Predictive Control

(Perceptive)
By assumption: Environment is

partially unknown and must be
measured.

Don’t know beforehand where the
obstacles are - or you would have
planned around them already.

“Intelligent” means understanding
your surroundings. Hence:

— |C must be perceptive.

Perception is discussed later.

— Here, we will use an environmental
model that was produced by
perception.
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7.4.1.1 Intelligent Predictive Control
(Predictive)

Latencies and robot
dynamics mean it takes
time for actions to take
effect.

Robot may also be
under-actuated.

Elements in the scene
may be dynamic.

Hence IC must be
predictive.
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7.4.1.1 Intelligent Predictive Control

(Reactive)

However, perception must be
done continuously because
effective sensor range is
limited by:

— Missing parts (occlusion,

limited sensor range)

— Uncertainty
Also, prediction of dynamic
obstacles is only valid for short
periods of time.

Must:
— perceive continuously
— react to what you can see.

— do it all over again high
frequency.
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7.4.1.1.1 Generic Intelligent Control Loop

10

1: Consider “all” options for
proceeding through space.

Check each for problems.

Eliminate those options which
are definitely (or probably)
problems.

If any options remain, pick the
best from the perspective of
mission execution. Goto 1:

If none remain, do something
which reduces your losses

If you survive that, ask for
help, or execute other
recovery mechanisms.
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7.4.1.1.1 Generic Intelligent Control Loop

(Elements of Effective IPC)
A model of your capacity to move

— Motion prediction

e A model of the state of the environment

— Representation

e A capacity to evaluate alternatives for

— Trajectory evaluation

e A capacity to search through the space of possible
motions

— Optimal control

Carnegie Mellon
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7.4.1.2 Formulation as Optimal Control

(Objectives and Constraints)
 Motions can be ranked based on cost/utility and

satisfaction of hard constraints:

e Simple case:
— Score each motion (utility)
— Do not hit obstacles (constraint)
e However, obstacles can also be encoded as cost of

traversal and there are motions which do not
satisfy feasibility constraints.

Carnegie Mellon

12 Mobile Robotics - Prof Alonzo Kelly, CMU RI THE ROBOTICS INST“.UTE



7.4.1.2.1 Optimal Control Formulation

(Objectives and Constraints)
e Objectives to Minimize

— Risk level

— Path following error
— Path length to goal
— Integral speed error.

* Constraints
— Dynamics (“feasible”) X=fxut)y ; ueU
— Don’t hit obstacles (“admissible”) X(t) ¢ O
— Don’t tip over (“stability”)

Carnegie Mellon
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7.4.1.2.1 Optimal Control Formulation
(Equations)

 Over Time (Trajectory)
'y
Jx 1] = 0(x(tp) + [ L(x, 3. 1)

: t
x=fxut)y ; ueU

X(%) € < X(tr) € G Line }
e Over Space (Path) S Integral

Jzﬁﬂ=¢@o+fu&uﬁms

X(S0)e S X(5) e G
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7.4.1.2.2 Encoding the Mission in the Objective

The objective may impart differing levels of More
Responsibility
A

responsibility to intelligent control.

1) Fixed, detailed path - keep going or stop.
AGVs do this in factories.

2) Fixed path with speed modulation.
Following behavior is a special case of this.

3) Follow default path with deviation to
avoid obstacles permitted.

4) Sparse waypoints to hit with complete
authority to plan the paths between them.

5) Cover an entire area (e.g. mow the
grass).

6) Search for something, run from
something, or pursue something.
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7.4.2 Evaluation

e Methods to compute feasible trajectories were
covered earlier in motion prediction (dynamics).

e This section is about how to evaluate trajectories.

arnegie Mellon
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7.4.2.1 Cost of a Configuration

* In this view, a cost can be assignhed to every
configuration.

— L[x,u,t] = L[x]
e This is different from cost of a point in the world
— Vehicle occupies volume

— Volume depends on orientation

 Can be computed efficiently in some
representations and some scenarios.

Carnegie Mellon
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7.4.2.1 Cost of a Configuration

(Volume Cost)
* |ntegrate cost over the volume

occupied. Lx(s)] = J.U(*’"ﬂ v, 2)dV
V
* Or intersect vehicle and obstacles. CZ:
L[x(s)] = ~ fo(x,v,z) N v(x, v, 2)} obstacle
* This can be pre-computed in static,
known worlds.
. . . An area or a
— Can also be expressed in configuration volume property ]

space as L(x)

XV = BLX(to), X(t] + [{ LIx(Hydt

Carnegie Mellon
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7.4.2.1 Cost of a Configuration

(Precision Intersection Calculations)
e Obstacles may place different constraints on parts

of the vehicle.
— Point hazards:

e no part of the vehicle can drive over a 20 foot tall tree.

— Wheel hazards:

 wheels cannot drive over a hole - but the undercarriage can.

e Other conditions may depend on orientation.

— Pose hazards:

e a slope may be a problem in one orientation but not in
another.

Carnegie Mellon
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7.4.2.1 Cost of a Configuration

(Volume of a Vehicle)

* A real vehicle is not a point.

— A bad point in task space often
corresponds to a bad region in state
space (or configuration space).

— Must account for the width and
length of the vehicle.

e A real vehicle is not a pancake.

— Overhanging obstacles occur in
factories, warehouses, forests,
buildings (tables).

— Must account for the height of the
space underneath them.
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7.4.2.2 Cost of a State

(State Dependence)
 There are many situations to be avoided

— They depend on more than pose (e.g. V)

— They are more properly expressed as a field over state
space.

e Examples
— Rollover relates to lateral acceleration, gravity.
— Obstacle impact force depends on speed.

Carnegie Mellon
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7.4.2.2.1 Types of State Dependent

Hazards
e Hazards include:

— loss of control:
e Yaw instability (skidding); Steep slopes (braking)

— loss of contact:

e Rollover, high centering

— loss of traction:

* |ce, mud, entrapment hazards

— collisions: application of damaging forces.
e Will depend on speed (higher V often worse)

— risks: uncertain situations to be avoided

Carnegie Mellon
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7.4.2.2.2 Hazard Space

 Hazardous states form clusters in state space corresponding
to different types of interactions.

* As the vehicle moves in task space, the tip of some kind of
hazard vector sweeps through hazard space.

e Comparing options requires the reduction of all hazard
attributes for each time on a trajectory to a single scalar

cost.
A

high centerin/g/
7

/ \s_—/

/ Hazard
Vector

'
X | h 4 wheel
Zar . .
519 daza collision
Carnegie Mellon
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7.4.2.2.3 Consistent Hazard Units

e Must reduce all hazards
to some consistent units.
This may include any or

all of: A
— Severity: 20 degrees is higf) centering:
twice as bad as 107 L7~
. /
— Distance: to go around / H
: ) / azard
versus effective distance Vector

over. -
_ heel
Energy c.:onsumed Wrd \C'\glﬁzon
— Uncertainty

e Then the length of the
vector is meaningful.

Carnegie Mellon
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7.4.2.3 Cost of a Path

* In optimal control terms, this is our old friend:

f

J = o[X(t)]+ [L(x, u, tydt
t

0

e Maybe just add up the hazard score along the
path?

 Probably makes sense to weight less as distance
increases?

Carnegie Mellon
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7.4.2.4 Models Used in Objectives and

Constraints
* Models may be used in the computation of any or all of:

— Motion Generation

— Constraints

— Objective functions

Attribute Used to
generate a motion

Attribute Used in a
Constraint

Attribute Used in
Objective Function

Vehicle Model

State (for motion
prediction)

volume of vehicle (for
collision constraints)

power consumption
wheel slip

maneuver
aggressiveness

Environment Model

Terrain shape or

mechanical properties.

volume of obstacles
(for collision
constraints)

Proximity to obstacles
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7.4.3 Representation

(Trajectory Evaluation)
e Methods to compute feasible trajectories were

covered earlier in motion prediction (dynamics).
e This section is about how to evaluate trajectories.

e Before we can cost a path, we must cost a point
on a path. That means we must model:

— The path
— The vehicle
— The environment

Carnegie Mellon
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7.4.3.1.1 Motion Constraints

 Dynamic constraints:
X =1(x,4,1)

e |nput/actuation constraints l_J e U

i (5] < Kmax ‘K(S)‘ < Kmax

Carnegie Mellon
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7.4.3.1.2 Representation of Paths and

| Trajectories
Two options at least are:

— Input history: U(t)

— State history: X(t)

u =2 X is easy K| I
X =2 uis hard (but we know >
hOW)
Sampled versions of these are E:J J
common:

— Sequence of curvatures is a Command
sampled L_J(t) --------- Response

— Ordered sequences of cells or
points is a sampled Xx(t)

Carnegie Mellon
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7.4.3.1.3 Compactness and Completeness

of Motion Representations

e Compact representations
can streamline
communications to low
level control.
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k(1)

Planner [¢ 1Controller
Versus...

Planner [¢ *IController
K(P)

Commanding an entire trajectory
(rather than instantaneous curvature)
means you only have to do so
occasionally.

It also gives lower levels the
opportunity to do predictive control.
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Motivation: Offline Representations

Trajectories sometimes
must be stored in some off-
line representation.

For AGVs, clothoids, lines,
and arcs are a common
library of trajectory shapes.

Complex shapes can always
be approximated by a
sequence of simpler ones.

Its a good thing if the
representation is both
complete and compact
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Dropoff

&

AGV guidepaths can be represented
as a sequence of trajectories rather
than a large set of points or poses..
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7.4.3.2 Representing Configurations

e State space is good for
— predicting motion.
— assessing certain hazards.

* Configuration space is good for encoding
— Articulation
— Occupied Volume

Carnegie Mellon
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7.4.3.2 Representing Configurations

(C Space Definitions)
e A configuration of an object is a

specification of the position of every
point on the object (with respect to a
fixed frame of reference).

* A Configuration Space is the space
(i.e. set) of all configurations of the
object.

* |Informally, this is a set of generalized
coordinates which completely
determine the position of every point | |
on the object.

Carnegie Mellon
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7.4.3.2.2 C-Space Dimension

e The number of generalized
coordinates required is the
dimension of the C Space.

— Articulations add to the C space ] ]
dimension. 5
>
— Constraints reduce it. S

Carnegie Mellon
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7.4.3.2.2 C-Space Dimension

(Computing C Space Dimension)
e Start by adding the number of

spatial dof of each rigid body
comprising the object.

* Then, impose the constraints of

articulation [l [l
— kneebone connected to the.... Top view
— =2 including terrain following
arnegie Mellon
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7.4.3.2.2 C-Space Dimension

(Symmetry)
e Some dof (e.g. wheels) do not change the occupied

volume when they articulate.
e Hence, irrelevant to collision detection.

e Usually, we remove them from the representation.
— More efficient for Planning

— Formally however, these dof are still dimensions of C space

Side view

Carnegie Mellon
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Computation

e Computational complexity of
search is directly related to:

— the dimension of C Space

— the complexity of the obstacles P ~.
. o A E3 /e
* At times, it is valuable to
approximate a robot shape by a { | Topview |}
symmetric one (say, by a circle
2 (say, by ) ‘=
in order to reduce the . .

~ ”
________

dimension of C space.

Carnegie Mellon
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How Many DOF Should We Represent?

Rl —l —
Top view [l [l
Top view
—l —
Side view
| ]
Side view
o o o

Carnegie Mellon
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7.4.3.3 Representing the Environment

(Environmental Attributes for Costing)
e This section is about

— Encoding spatial properties of the environment for
trajectory evaluation purposes.
* This section is not about representing elevation
for purposes predicting motion.

— However, both can sometimes be stored in the same
data structure.

Carnegie Mellon
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7.4.3.3 Representing the Environment

(Discriminators for Representation)
Dynamic range (discrete / continuous / mixture)

Memory requirements

Efficiency of intersection calculations

— Affects collision detection efficiency

Gradient information available ?

43

— Affects search efficiency
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7.4.3.3 Representing the Environment

(Obstacles” and Costs)
e Literally “obstacles” are impediments to motion.

— You cannot drive through them

 Robotics thinks of them as places you should not
drive
— Even if you can drive through them

e Assigning a cost or “relative obstacle severity” is
also common.

Carnegie Mellon
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7.4.3.3.1 Set and Field Representations

e Sets =2 map an object index onto a region
of space

— Typically cost is uniform in the region and
binary (meaning obstacle or not)

— Represent obstacles as objects (which happen
to occupy space)

— Represent position, and perhaps shape as Set of Binary Obstacles
volume or boundary. 13 AR
— Can be memory efficient but computationally
expensive.
e Fields = map a point in space onto a cost

— Represent large spatial region as a raster or
array.

— Associate a utility or cost with every pointin Cost Field
the workspace.

— Can be memory inefficient but
computationally cheaper than sets.

Carnegie Mellon
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7.4.3.3.2 Shape Representations.

(Boundary Representations [for Sets])
e Collision checking involves

checking for boundary

Intersections. o

— Num_robot_edges * *
num_obstacle _edges

computations without bounding 6 4
boxes. > 14 f
: 9
e Hence, the planning 8 1%2 10

computational complexity
depends on the number of
obstacle edges.

 Bounding shapes can be used to
qguickly eliminate unnecessary
intersection checks.

Obstacle Robot Obstacle

Carnegie Mellon
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7.4.3.3.3 Obstacles Versus Free Space

* [t may be better to represent free space rather
than obstacles.

\ 4

\ 4

| | ie Mellon
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7.4.3.3.4 Sampled Versus Continuum

e Sampled may be best
alternative in complex
environments

— i.e. whose continuous Goal
representation would be

large. |r::l
* |ntersection calculation is an

AND of two rasters.

* Planning computational Robot
complexity tends to depend
on the resolution of the
representation.

[T TTT]

Carnegie Mellon
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7.4.3.3.5 Hierarchy and Quadtrees

* A popular approach to
reducing memory is a kind

of hierarchical grid called a I
quadtree (octree in 3D). &

JAN
X

Robot

Carnegie Mellon
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7.4.3.3.5 Hierarchy and Quadtrees

e A tree of nodes that are:

— filled,
— unfilled 112

. . 314
— partially filled

. . Legend
 Only the partially filled Multiresolution Gri

ones at each level are m
elaborated.

Carnegie Mellon
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7.4.3.4 Derived Spatial Representations

A

 Representations derived from
the basic geometric or cost
information can be useful.

 May make collision checking
more efficient.

Carnegie Mellon
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7.4.3.4.1 Potential (& Proximity) Fields

e Proximity (minimum distance to a
collision) is a special derived field.

e [ndividual potentials can simply be
added or perhaps combined in more Goal

.......

principled ways.
— For example, a proximity field can be

formed as the min distance to any
collision.

e Controls, policies, inputs etc. are
derived from the field at the present
position (e.g follow the gradient).

— Such representations have a well
defined gradient and they can be used in

relaxation based search as well as
sequential search.

Carnegie Mellon
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7.4.3.4.2 VVoronoi Diagrams

Subspaces of the original

space.

Can be generated from a
field representation.

Set of all points which are
equidistant from at least
two obstacle boundaries.

Local maxima in the
proximity field.

53
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7.4.3.4.3 C-Space Obstacles
(Mapping Volumes to C Space)

C Space obstacle = set of configurations
where a collision in the workspace takes -
place

— Compute it with boundaries

— Compute it with volume intersection Workspace

Precomputes the intersection calculation

— So its only done once.

Can also be done as a volume integral for e
continuous costs o ‘
Not worth it "

— When the environment is dynamic or sensed .
with noise T

— When only a small region of the workspace Cspace
will need to be tested

Carnegie Mellon
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7.4.3.4.3 C-Space Obstacles

Boundaries of

obstacles in the

Slice of C space for one
heading.
\

environment can be R&Sot

converted to

equivalent obstacles
Ebstacle

For every point on

in C Space.

the boundary of an Task Space

obstacle, compute Robot Robot Robot
every configuration e |
of the robot which A7 | e

can be in contact 15 1k ( Al
with that point. = | T
Its a property of both Obsiadle Obstacle Obstacle

the robot shape and C Space (T a”/sucht

Rabot I%/
3 g

[ j

Obstacle Obstaclsg

the obstacle shape.
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7.4.3.4.3 C-Space Obstacles

* Now, collisions can be detected cheaply:

— ask if the point robot is inside a C space obstacle.

Robot Robot
Collision Free —V Collision Free =—»

In Collision —97 In Collision

Task Space C Space

Carnegie Mellon
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7.4.3.4.3 C-Space Obstacles

(Dimension = 3)
e C Space obstacles can sometimes be hard to

compute explicitly. ‘ ®

10 T T T T T T

400 —

350

300

25() -

200 -

150

2 100 —

50 -
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C Space and Precomputation

e Cost precomputation—=> when the
environment is static and known

e Cell precomputation—> can be )
done even if costs are changing.

Carnegie Mellon
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State Space = Workspace Mapping

e Just like

— obstacles in the workspace can be mapped to regions
In C space

— Regions and hazards in workspace can be mapped to
state space

Carnegie Mellon
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7.4.3.4.4 Partitions of State Space and Work Space

(Committed Motion)
e Can segment space in a limited horizon reachable

region.

— Reachable = some point on the vehicle can reach it for
some motion.

— Committed = some point on the vehicle will reach it
for every motion.

— Avoidable = Reachable — committed.

Carnegie Mellon
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7.4.3.4.4 Partitions of State Space and Work Space
(Committed Motion)

[Committed region :\

x a) grows quickly
with speed
b) Bends with
initial

curvature /

reachable committed avoidable

(Such a figure can also A
Farther Farther ble drawnfftor_dn;ferent
forward backward ¢ ?sses_ 0 trajef: ory
Close to Far from \(S opping, turning) )
centerline centerline

Carnegie Mellon
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7.4.3.4.4 Partitions of State Space and Work Space

(Regions of Inevitable Collision)
e State space obstacles.

e RIC = set of all initial states
from which entry into an
obstacle must eventually
occur.

— Pick a state in Xobs

— Solve DE backwards for all
possible controls to get
there.

— All states occupied for
some Xobs and all controls
are in Xric

Xric

Carnegie Mellon
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7.4.3.4.5 Incorporating Risk and Uncertainty
(Sources of Uncertainty)
* Interpretation: Assessments of hazards are not

accurate.

e Sensing: Localization error implies obstacles may
be incorrectly located relative to the vehicle.

 Motion: There is no guarantee that motion
prediction/control will do what was planned or
predicted.

Carnegie Mellon
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7.4.3.4.5 Incorporating Risk and Uncertainty
(Techniques for Coping)

 Margin: Use a deliberately oversized vehicle when
assessing collisions.

— This means you won’t be able to squeeze through tight
Spaces.
e Oversize the Obstacles. Filter the environmental
representation to cause high cost to bleed into
adjacent areas.

e Explicitly compute motion uncertainty and map
uncertainty and do both of the above.

Carnegie Mellon
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7.4.4.1 Sampling, Discretization, and Relaxation
(Input Discretization and Parameterization)

e |n full generality, thereis a
function space u(t) to search.

e Discretization and
parameterization are two
options.

curvature

e For 10 signal levels and 40 time
samples, there are 10%°
alternatives.

— Not feasible to search at 10 Hz.

speed

Carnegie Mellon
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7.4.4.1 Sampling, Discretization, and Relaxation
(Continuum vs Sampling)

e Sampling
— Avoids local minima
— Inefficient/impossible in dense obstacles

e Relaxation (Continuum)
— Finds only local minima
— Very efficient in dense obstacles
— Requires gradient information.

Carnegie Mellon
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7.4.4.2 Constraint Ordering

(Ordering Feasibility and Admissability Constraints)
* Option 1:

— Find good places
— See if you can go there

* Option 2:
— Find places you can go
— See if they are good.

 Imposing the most limiting constraint first is often
most efficient.

Carnegie Mellon
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7.4.4.2 Constraint Ordering

(Constraint Ordering Dilemma)

In which space should we conduct
search ( = express alternatives)?
Easy in Input/Control/Action Space:
— Dynamic feasibility.

— Actuation limits (e.g turn radius).
Easy in Work/State/C Space:

— Obstacle Intersection

— Following Global Guidance

— Enforcing workspace constraints.

— Ensuring good separation.

What'’s easy in one is hard in the
other.
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Goal
Pose\ ﬂ

Forward:x = f(x,u,t)

—
,u, t)dt

?Uf(& }—g

Inverse: u =7 (x)

A
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7.4.4.2.1 Search Coordinates

e There is value in artificially limiting mobility.
e Almost any vehicle can be driven by considering only arcs.

e A differentially steered vehicle can be driven by considering
compositions of point turns and line segments

! d
| ) -\\/ﬂ

-------

Carnegie Mellon
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7.4.4.2.2 Environmental Constraints and

Guidance
e Sometimes there is value in

limiting maneuverability
artificially to respect and exploit
environmental structure.

— Admissability first.

 This focuses the search and
eliminates wasted computation.

Carnegie Mellon
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7.4.4.2.2 Environmental Constraints and Guidance

(Global Guidance)
e Need to hit the terminal

state fairly precisely to make
the tight maneuver.

Carnegie Mellon
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7.4.4.2.2 Environmental Constraints and Guidance
(Workspace Constraints with Obstacles)

e Here workspace
constraints and
admissibility leave only a
small region in trajectory
space.

— feasible The problem of avoiding the
d . bl obstacle and staying on the road is
— ddmissanie solveable - but solution is not in the

space of arcs. Only a compound turn
(left, then right) will work.

arnegie Mellon
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7.4.4.3 Efficient Search

e Above section tries to conduct the search in a
space that satisfies the constraints intrinsically.

e This section looks at how to accelerate the search
itself.

Carnegie Mellon
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7.4.4.3.1 Mitigating Effects

Distinct inputs do not
necessarily generate very
distinct outputs.

The environmental
representation is not of infinite
resolution.

— So a continuum search is not
necessary.

Often there are many solutions
and any one is good enough.

Sometimes can search in priority
order (e.g. straight first) in
sparse obstacles.
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7.4.4.3.2 Reusing Computations

When the environment is
cluttered, search efficiency
matters more.

Can exploit tree structure to reuse
the component path evaluations.

Total length opposite is:
(3+32+\’33):S—3 = (1+3+3%)s =|13s

Whereas 27 paths require:

335 =|27s

Carnegie Mellon
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7.4.4.3.3 Exploiting Committed Motion

e Makes no sense to
search for obstacles in
committed region.

 Makes a big difference
at high speeds.

avoidable

Carnegie Mellon
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Trajectory Caching

* Invert the input-to-state mapping in a lookup

table:

— Assumes fixed terrain shape

— May be more efficient to visit each map cell rather
than each possible input.

4 5

6 1711
8

A

\|///
\11/ /" «

2 TS

I/ —

11 7

e This gives “In

out space obstacles” (c.f. C space).

Carnegie Mellon
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7.4.4.4 Search Space Design

 Tradeoffs and desirable characteristics of the
search space itself.

Carnegie Mellon
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7.4.4.4.1 Mutual Separation

 Not all search spaces
are created equal.

— More “separated” is
statistically better.

e What’s more...

— Relaxation of a finite
set of alternatives can
Improve matters
dramtaically.

L | | | |
0 20 40 60 80 100 120
Number of trajectories selected

Carnegie Mellon
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Feasibility Versus Separation

e Would like to:

— Span the space of feasible
motions (arcs do not!)

— While sampling as uniformly
as possible.

Feasible, Not Well Separated

* Problem:

— First is easy to do in input
space.

— Second is easy to do in state

Space.
Well Separated,. Not Feasible

Carnegie Mellon
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7.4.4.4.2 Completeness

e The natural assumption that:

— any set of reasonable
trajectories ...

— ... searched often enough ...
— ... can generate any path is ...

* WRONG

e Solutions must be safe as far
as the stopping distance even
if only a small amount will be
executed.

— Because you may not have the
option to change your mind.

Carnegie Mellon
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7.4.4.4.3 Robustness to Control Uncertainty
via Persistence
* Plan instability can cause a rare

solution to be lost. Two
solutions:

e Persistence:

— Make sure the next search includes
the last solution in case it’s the
only one.

t=0.3

e Relaxation

— Deform the search space to
regenerate the old solution.

t 0.1
arnegie Mellon
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7.4.4.4.3 Robustness to Control Uncertainty
(Search Space Persistence)
e Simple technique is to start

next iteration from
intended pose rather than
actual pose.

e Special case:

— Execute one segment at
right and then replan from
the fork point.

Carnegie Mellon
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7.4.4.4.3 Robustness to Control Uncertainty

(Search Space Persistence)
e Search spaces fixed to e Search spaces fixed to

robot (RHMPC)...

— are not stable

— hard to reuse
computation

— BUT robot is always on
an edge and node.
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ground....
— are stable

— easy to reuse
computation

— BUT robot may not be
near an edge or node.
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Ultimate OA System

* Feasible: Generates feasible motions only.
 Admissible: Exploits global guidance and satisfies
global constraints.

o Efficient: Samples feasible set uniformly in the
workspace.

Carnegie Mellon
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...... .. Terminal Positions (33)
"""" x = [7.47m, 7.46m, ... 6.79m]
i %, y=1[0.65m, 0.73m, 3.17m]
., ©=[-5.0° -5.625° ... 25.0°]
Resulting ., Ternlm?l Hoeadzngso(3)
) ., @ =[-15°15°,45°]
Search Space\ ¥

..... a <«

,,,,, é Terminal State Parameters
o 8, = 15° : [ii]1 = [33,3]

‘ j . (8 @maxs 8p] = [-10°,10°,15°]
........................................... >: ["”mm W, wU] = [-30°,30°,15°]

Terminal Position : [r] = [7.5m]
Initial Vehicle State ~ Radius (r) =7.5m :

e Shape of feasible set in workspace is computed off-line
and stored in lookup tables.

* |Impose workspace constraints on that.

e Sample regularly in state space with trajectory
generation.
Carnegie Mellon
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Outline

e 7.4 Intelligent Control
— 7.4.1 Introduction
— 7.4.2 Evaluation
— 7.4.3 Representation
— 7.4.4 Search
— Summary

Carnegie Mellon
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Summary

Avoiding obstacles is a kind of planning problem.

— Motion prediction.
— Trajectory Evaluation
— Search

Its a real-time problem.

Dynamics matter in many ways.

— If the choice is between smart and fast, semi-dumb

robots rule here.

Cleverness of several kinds are possible.
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Summary

e Alternative courses of action are evaluated based
on models of environmental interaction.
e A constrained optimization formulation applies.

— Obstacles and dynamics are constraints
— Feasible paths evaluated for utility.

* Alarge number of options exist for the
representations used in planning models.

— Each has its own issues and advantages from the
perspective of computational complexity.

Carnegie Mellon

91 Mobile Robotics - Prof Alonzo Kelly, CMU RI THE ROBOTICS INSTn.UTE



