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Introduction 
• Nonlinear dynamical systems are the closest thing 

to the engineering “theory of everything.” 
• Applies to: 

– growth of bacteria 
– chemical reactions 
– financial markets 
– motion of the planets 

• Most important and general model of a mobile 
robot. 
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Linear Time Invariant ODE s 
• These are of the form: 

 
 
 

• Establishes a relationship between system state 
x(t) and its derivatives. 
– Implies that such a system will move (even when u(t) 

is not present) 
– Called a dynamical system 
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“Forcing Function” 
“Input” 

“Control” 



First Order System 
• Behavior governed by: 

 
 

• Consider the discrete time equivalent: 
 
 

• Hence output changes by an amount proportional 
to the distance-to-go.  
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“Time Constant” 



Step Response 
• Useful to describe behavior of a 

few special inputs. 
• Step response is response to 

constant input applied for t >= 0. 
• Unforced response. Assume 
• Substitute into ODE: 
• Characteristic equation: 
• The roots of this equation play a 

crucial role in determining 
system behavior.  
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Solution 
• Unforced solution: 
• Forced solution: 
• Complete solution: 
•  For                    we must have 
• Total Solution: 
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Solution 

• When t=τ, the system has moved … 
 

• … of the total distance to the goal.  
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Laplace Transform 
• Extraordinarily powerful for manipulating 

compounded ODEs intuitively. 
• Definition: 

 
• s is a “complex frequency” 

 
• The kernel is a damped sinusoid: 
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Laplace Transform 
• For a particular value of s: 

 
 

• is a (function) dot product with a damped 
sinusoid. 

• y(s) encodes the projections for every value of s. 
• Its just like a Fourier transform but for complex 

frequency s. 
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Derivatives 
• Most important property for our purpose: 

 
• Good news! 

– Differentiation in the time domain is equivalent to 
multiplication by s. 

• Bad news! 
– This is why differentiation amplifies noise. 
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Transforming ODEs 
• Recall the first order system ODE 

 
 
 

• Transform the ODE itself: 
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ODEs in the time 
domain become 

algebraic eqns in the 
Laplace domain 



Transfer Function 
• Defined as the ratio of output to input: 

 
 

• The roots of the characteristic polynomial always 
appear in the denominator of the transfer 
function. 

• Known as the poles of the system. 
• An n-th order ODE has n poles. 
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Characteristic 
polynomial! 



Block Diagrams 
• ODEs can be represented 

graphically as block diagrams. 
 
 
 
 
 
 

• Top is time domain, bottom is 
Laplace domain. 
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Special Block Diagram 
• This diagram: 

 
• Is equivalent to this diagram 
• Derivation: 

 
• So… 

 
• For the 1st order system: 
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Frequency Response 
• Expresses the gain of the transfer function as 

function of frequency: 
• Substitute into T(s): 

 
• For 1st order system: 
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Frequency Response 

• Huh? Decibels? 
– dB = 20 log10(amplitude) = 10 log10(power) 
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Second Order System 
• One physical manifestation 

is a damped oscillator: 
 
 

• Newton’s second law: 
 

• Rewrite: 
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Physicists form 

Mathematicians form 
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Simulation 
• Simulate with: 

 
 
 
 

• Truthoid: You can teach yourself controls if you 
can write a dynamic simulator like the above. 
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2nd Order Step Response 
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2nd Order Step Response 
• Take Laplace transform of 2nd order ODE: 

 
 

• Transfer function: 
 
 

• Behavior depends on the roots of the 
characteristic equation.  
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General 1st Order  Solution 
• For the more general 1st order time-varying 

system: 
• The following integrating function exists: 

 
 

• The general solution therefore is: 
 
• When f(t) is constant: 
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State Space 
• Remember the special representation used for 

Runge Kutta? 
 
 

• State space = a minimal set of variables which can 
be used to predict future state given inputs: 
– Number of initial conditions in a differential equation. 
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Conversion of an LTI ODE 
• Consider the second order LTI ODE: 

 
 

• Choose the state variables to be: 
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Conversion of an LTI ODE 
• Rewrite the second and the original ODE as: 

 
 

• This is of the form: 
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Example: Damped Oscillator 
• By inspection: 

 
 

• Hence, the system is of the form: 
 
 
 

• Where x1 is the position and x2 is the velocity. 
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General Linear Dynamical Systems 
• State Equations: 

 
 

• Visualize with: 
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Vector Case – Constant Coefficient 
• When the system dynamics matrix F(t) is constant 

wrt time: 
 
 

• Recall: by definition (for any matrix A): 
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Φ t τ,( ) eF t τ–( )=
Matrix 

Exponential 

eA A( )exp I A A 2

2!
------ A3

3!
------ …+ + + += =



Solution – Vector Case 
• Knowing the transition matrix is equivalent to 

knowing the solution because: 
 
 
 
 

• This is the general solution to: 
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x t( ) Φ t t0,( )x t0( ) Φ t τ,( )G τ( )u τ( ) τd
t0

t

∫+=

x· t( ) F t( )x t( ) G t( )u t( )+=

Vector 
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Nonlinear Dynamical System 
• Takes the form: 
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x· t( ) f x t( ) u t( ) t, ,( )=

z t( ) h x t( ) u t( ) t, ,( )=

Nonlinear 
differential 
equation 

Nonlinear 
algebraic 
equation 

State Equations 
System Model 
Process Model 

State 
Inputs 

Forcing Function 

Measurement Model 
Observer 



Solutions 
• Closed form solutions need not exist at all for 

nonlinear equations. 
• With computers though, we can always integrate 

like so: 
 
 
 

• This case subsumes the linear case so anything 
true of nonlinear systems is true of a linear one. 
– Including the next few slides….. 
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x t( ) x 0( ) f x τ( ) u τ( ) τ, ,( ) τd
0

t

∫+=



Relevant Properties 
• Homogeneity (for some constant k): 

 
 

• We say system is “homogeneous to degree n wrt 
u(t)”. 

• u(t) must occur in f() as a factor like so: 
 
 

• As a result, all terms of the Taylor series of f()  
over u(t) of order less than n vanish. 
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f x t( ) k u× t( ),[ ] kn f x t( ) u t( ),[ ]×=

f x t( ) u t( ),[ ] un t( )g x t( )( )=



Drift Free 
• All homogeneous systems are drift free.Their zero 

input response is zero. 
 
 

• Such systems can be stopped instantly by nulling 
the inputs. 
 

• Similar to “drift-free” designation in control 
theory. 
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u t( ) 0 x· t( )⇒ 0= =



Reversibility & Monotonicity 
• Odd degree homogeneity implies a reversible 

system. 
 
 
 

• Even degree homogeneity implies monotonicity. 
Sign of derivative irrelevant to sign of u(). 
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u2 t( ) u1 τ t–( )–=  f2 t( )⇒  f1 τ t–( )–=

u2 t( ) u1 t( )–=  f2 t( )⇒  f1 t( )=
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Linearizing a Nonlinear Diff Eq 
• Consider again: 

 
• Suppose some u(t) generates some solution x(t). This is 

the “reference trajectory”. 
• Suppose we want a solution for: 

 
• The solution can be written as: 

 
• Defines the state perturbation dx(t) as the difference in 

solutions. 
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x· t( ) f x t( ) u t( ) t, ,( )=

u' t( ) u t( ) δu t( )+=

x' t( ) x t( ) δx t( )+=

input 
perturbation 

state 
perturbation 

perturbed 
input 

perturbed 
state 



Linearizing a Nonlinear Diff Eq 
• If the perturbed solution is a solution, then: 

 
• Write a truncated Taylor Series at each point in 

time for the derivative f(): 
 

• Where the two new matrices are the Jacobians: 
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x'· t( ) x· t( ) δx· t( )+ f x t( ) δx t( )+ u t( ) δu t( )+ t, ,[ ]= =

f x t( ) δx t( )+ u t( ) δu t( )+ t, ,[ ] f x t( ) u t( ) t, ,[ ] F t( )δx t( ) G t( )δu t( )+ +≈

F t( )
x∂

∂ f
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Linearizing a Nonlinear Diff Eq 
• At this point we have: 

 
• Recall the original differential equation: 

 
• Cancel it from the top one: 

 
 

• If you know the Jacobians, you know the perturbative 
dynamics – the dynamics of error. 

• If you know the transition matrix of that, you know 
the closed form solution to error dynamics. 
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x· t( ) δx· t( )+ f x t( ) u t( ) t, ,( ) F t( )δx t( ) G t( )δu t( )+ +=

x· t( ) f x t( ) u t( ) t, ,( )=

δx· t( ) F t( )δx t( ) G t( )δu t( )+=
Linear 

Perturbation 
Equation 



Next year 
• Move slide 60 (or so) on perturbative dynamics od 

State Est 1 here. The example will be used later in 
State Est1 to derive Integrated Heading error 
dynamics in dead reckoning. 

• Also move slide 61, 62 on transition matrix.  
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Summary 
• Nonlinear dynamical systems cannot be solved in 

closed form in general. 
• The general solution for linear, even time-varying, 

dynamical systems exists. 
– Solution rests on Transition matrix 

• Perturbative techniques linearize nonlinear 
differential equations 
– makes them solveable. 
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Introduction – the “ives” 
• Mobile robots must often be: 

– Deliberative – decide among options 
– Perceptive – aware of the surroundings 
– Reactive – capable of fast action 

• They must be both 
– smart and  
– fast  

• … doing that involves tradeoffs. 
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Role of Dynamics 
• In support of the above, need to be … 

– Predictive – able to project consequences 
– Active – able to execute a plan of action 

• You need dynamics models for both of these. 
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Predictive Modeling 
• Must model … 

– Information processing and propagation. 
– Physical vehicle / environment interaction. 

 
• Often need to map … 

– what you can do (exert forces)  
– what you care about (trajectory through space). 

 

• Latter requires integrating the dynamics. 
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Reasons for Braking 
• A) Last resort response to problems. 

– Collision is imminent due to  
• no solution or  
• inadequate planning or control. 

• B) Deliberately slow down. 
– On slopes 
– The motion is finished. 
– In order to turn around. 
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Avoiding Collision 
• Requires precise knowledge of the time and space 

required to react. 
 

• These depend heavily on: 
– Speed (initial KE) 
– Friction (work done by friction) 
– Slope (change in PE) 
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Why Care about time? 



Braking Model 
• Assume brakes are applied instantly: 
• Free body diagram: 

– Friction and Weight are coupled. 

• Do heavier vehicles take longer to stop? 
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Simple Model 
• Equate work done by external forces to initial 

Kinetic energy (assume it is all used up). 
 

• Solve for braking distance: 
 
 

• Do heavier vehicles take more distance to stop? 
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1
2
---mv2 µsmgsbrake=

s brake
v2

2µ sg
------------=



Tangent: Falling 
• Do heavier objects fall faster? 
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Leaning Tower 

small 
object 

large 
object 



Impact of Slopes 
• Again equate work 

done to initial KE: 
 
 

• Solve for distance: 
• Effective coefficient 

of friction: 
• Then, simply: 
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1
2
---mv2 µsmgcθ mgsθ–( )sbrake=

sbrake
v2

2g µscθ sθ–( )
-----------------------------------=

µef f µscθ sθ–( )=

sb rake
v2

2µef fg
---------------=



Simple Model on Slopes 
• Critical angle exists 

beyond which 
gravity overcomes 
friction…. 
 

• Atan() is highly 
nonlinear. 
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µs cθ sθ– 0 θtan⇒ µ s= =



General Case 
• More generally: 

 
 
 

• Robots can compute this.  
– The terrain shape is known. 
– Keep integrating until KE exhausted. 
– Final value of s is stopping distance. 
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F sd•

0

s

∫ 1
2
---mv2=



Rough Heuristic for Slopes 
• Make small angle assumptions: 

 
• Change in effective coefficient: 

 
• Ratio of sloped to level stopping distance: 

 
 

• Stopping distance increases or decreases by the 
factor 
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cθ 1= sθ θ=

µef f θ( ) µs cθ sθ–( ) µs θ–≈=

10% slope reduces µ 
by 0.1 

sθ

s0
---- 1

1 θ
µ s
-----–

-------------- 1 θ
µs
-----+≈=

θ µ s⁄
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Turning 
• Goal is to cause terrain to exert a moment on the 

vehicle 
– By 3rd law, vehicle must exert a moment on the 

terrain. 

• May actuate: 
– Wheel steering (Ackerman) 
– Wheel speeds (Differential, skid) 
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Simple Motion Prediction 
• For small steer angles: 

 
• Integrate the differential equations using “back 

substitution”: 
 
 
 
 
 

• Errors in steering are integrated twice to determine 
errors in predicted position. 
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κ t( ) α t( )=

θ t( ) θ0 V t( )α t( )dt
0

t

∫+=

x t( ) x0 V t( ) θ t( )( )dtcos
0

t

∫+=

y t( ) y0 V t( ) θ t( )( )sin dt
0

t

∫+=

Note mapping from 
inputs to outputs are 

integrals. 

The mapping from 
steer angle and 

velocity onto the 
path the robot 

follows. Assumes 
flat terrain. 



Reverse Turn @ Multiple Speeds 
• A curvature step is the 

most ambitious 
maneuver. 

• Not modeling steering 
response leads to 
collisions with obstacles 
above 3.5 m/sec speed. 
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• One Curvature 
• Various Speeds 

“Reverse Turn” 



Recall: Speed Coupling 
• Due to vehicle 

dynamics……. 
 

• The path followed is 
generally a function 
of speed. 
 

• Therefore, they 
must be estimated 
together. 
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Reverse Turn @ Multiple Curvatures 
• Different steering 

commands. Same 
speed (5 m/s). 

• It takes a long 
distance to cross the 
forward (y) axis. 
– Its longer the faster 

you are going. 
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• One Speed 
• Various Curvatures 

“Reverse Turn” 



Swerving 
• Recall our typical 2D equations of motion: 
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Swerving 
• Assuming velocity is constant, and 

curvature rate is limited and 
constant, the yaw is given by: 
 
 

• This gives the position coordinates 
as: 
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“Clothoids” 



Swerving 
• Two limits on curvature (slipping and rollover) can 

be computed from: 
 
 
 

• Given all this, the equations for (x,y) can be 
integrated numerically to get…. 
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Swerving (Urmson) 
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1) Roughly 
linear! 
 

2) Lower than 
stopping 
distance 
(v^2/10) at 
10 m/s and 
beyond 

Sometimes you 
can swerve in 

time even when 
you cannot stop. 
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Note 
• There is plenty of content on rollver in dyn1 too. 

Check it all/ 
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Field Robots Motivation 
• Contemporary 

mining, forestry, 
agriculture, and 
military vehicles, 
operate 
– on slopes and/or 
– at high speeds 

• Field robots do 
rollover! 
– They at least need a 

reactive system if 
predictive elements 
fail. 
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Industrial Robots Motivation 
• Market forces 

reward 
manufacturers of 
industrial truck that: 
– Are narrower, 
– Lift heavier loads, 
– Lift them higher. 

• Automated industrial 
trucks face the same 
challenges. 
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Center 
of 

Gravity 



PerceptOR - Yuma 
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• Some Robots live dangerously. 
• Listen for the distinctive “Crunch” of a ladar 

sensor. 



UGCV – Roll Test 

Mobile Robotics - Prof Alonzo Kelly, CMU RI 77 



Lift Truck Simulations 
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Ungoverned Governed 



Rollover 
• More likely in factory and field robots. 
• Happens due to combinations of: 

– narrow wheel spacing, 
– high centers of gravity 
– high inertial forces (speeds and curvatures)  
– steep slopes 

• Incidents may be: 
– Terrain induced (slide sideways into a curb) 
– Maneuver induced (turn too sharp on a hill) 
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Examples 
• Tipover when stopping on 

a downslope. 
 
 
 

• Rollover when turning 
sharply. 
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Forms of Instability 
• Must distinguish two events: 

– Point of wheel liftoff (still recoverable) 
– Point were cg passes over wheels (irrecoverable) 

• The first occurs first and is easier to detect 
– Does not require knowledge of inertia. 
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NOTE 
• The book was updated to use a singel figure and 

to not reverse the direction of the reactions as the 
figures do here.  

• That changed the signs in a few places so the 
figures and the math need to be updated here to 
be consistent with the book. 
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Static Case 
• For translational equilibrium: 

 
 

• For rotational equilibrium: 
 

Mobile Robotics - Prof Alonzo Kelly, CMU RI 83 

fyu
fyl

+ mg φsin=

fzu
fzl

+ mg φcos=

fzu
t mg φhsin+ mg φ t

2
---cos=

Sum moments about lower wheel. Do 
cross products (r x f)  in body 
coordinates where it is easy 

t 



Static Liftoff 
• Imagine raising the slope: 

– fzu decreases 
– fzl increases 

• At some point fzu=0 and the 
moment balance becomes: 
 

• Can solve for the slope at 
which tipping occurs: 
 
 

• Using this, can compute cg 
height using a tilt table. 
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mg φhsin mg φ t
2
---cos=

φtan t
2h
------=

An important/famous vehicle design 
parameter affecting stability. 

Gravity is the only force involved. 

mg 

mgsφ 

mgcφ 



Static Liftoff 
• Since we are talking about 

a moment of a single 
force… 
– Result can be understood 

in terms of the direction of 
gravity. 

• Liftoff criterion is first 
satisfied when gravity 
vector: 
– emanating from the center 

of gravity (cg)  
– points at the lower wheel 

contact point. 
Mobile Robotics - Prof Alonzo Kelly, CMU RI 88 



Dynamic Case 
• Use D’Alemberts principle: 

– I.E. treat – ma like a real force. 

• Moment balance: 
 
 

• Solve for lateral acceleration 
in g’s: 
 

• Set                  to get lateral 
acceleration threshold.      
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fz i
t– mayh– mgsφh mgc φ t

2
---+ + 0=

ay
g
----- t

2
---cφ hsφ

tfzi

mg
--------–+ h⁄=

fzi
0= ay

g
----- t

2
---cφ hsφ+ h⁄=

Vehicle is turning left 
Ma is reversed in sense  

per D’Alembert 
 



Dynamic Case 
• Rewrite last result: 

 
 

• Liftoff when net noncontact specific force: 
 

•    Points at the outside wheel contact point.   
• A pendulum mounted at the cg aligns with this 

vector. 
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ay gsφ–
gcφ

-------------------- t
2h
------=

 f g a–=



Interpretations 
• Static case is just special case of dynamic (ay=0) 
• Stability increases with: 

– Lower cg h 
– Wider tread t 
– Lowering slope 
– Decreasing acceleration 

• Slowing down 
• Reducing curvature 
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ay gsφ–
gcφ

-------------------- t
2h
------=



Stability Pyramid 
• Theory generalizes to vehicles of any shape. 
• Stability pyramid =  the pyramid formed with the 

wheel contact points with the cg at the apex. 
• Each edge is a potential tipover axis. 

– Moment is: 
– Unbalanced when: 
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Wheels need not 
be in the same 

plane. 

M  r  f  ×=

M a• 0>



Implementation 
• Some vehicles articulate mass so the cg would 

have to be (re-)calculated in real time. 
• An accelerometer or inclinometer works like a 

pendulum, but: 
– It probably cannot be placed at the cg. 
– So, acceleration transforms are necessary. 
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Outline 
• 4.3 Aspects of Linear Systems Theory 
• 4.5 Predictive Modelling and System Identification 

– 4.5.1 Braking 
– 4.5.2 Turning 
– 4.5.3 Vehicle Rollover 
– 4.5.4 Wheel Slip and Yaw Stability 
– 4.5.5 Parameterization and Linearization of Dynamic 

Models 
– 4.5.6 System Identification 
– Summary 
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Slip Angle 
• Defined for a car as: 

 
• Alternatively using body frame velocity 

components: 
 

• Can be defined for wheels too. 
 
 

Mobile Robotics - Prof Alonzo Kelly, CMU RI 95 

ζ 

ψ 
β ψ ζ–=
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Generalized Slip Angle 
• Define the angle between the actual and intended 

velocity: 
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Generalized Slip Equation 
• The velocity may be incorrect in all 3 degrees of 

freedom. 
• Express errors in body coordinates: 
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Wheel Slip Graphs 
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Removing Slip with Prediction 
• Slip can be expressed as a function of actual or 

reference velocity (and other things): 
• Compensate in body coordinates. 
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Outline 
• Introduction 
• Wheel Slip 
• Braking 
• Turning & Swerving 
• Rollover 
• System Identification 
• Summary 
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Side Slip 



Summary 
• Braking distance: 

– increases quadratically with initial speed 
– depends heavily on slope 

• Turning and Swerving: 
– predicting steering maneuvers requires calibrated 

dynamic models. 

• Rollover stability can be measured with a 
pendulum at the cg. 
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