
Chapter 9 
Localization and 

Mapping 
Part 1 

9.1 Representation and Issues 

Mobile Robotics - Prof Alonzo Kelly, CMU RI 1 



Outline 
• 9.1 Representation and Issues 

– 9.1.1 Introduction 
– 9.1.2 Representation 
– 9.1.3 Timing and Motion issues 
– 9.1.4 Related Localization issues 
– 9.1.5 Structural Aspects 
– 9.1.6 Example: Unmanned Ground Vehicle … 
– Summary 

Mobile Robotics - Prof Alonzo Kelly, CMU RI 2 



Outline 
• 9.1 Representation and Issues 

– 9.1.1 Introduction 
– 9.1.2 Representation 
– 9.1.3 Timing and Motion issues 
– 9.1.4 Related Localization issues 
– 9.1.5 Structural Aspects 
– 9.1.6 Example: Unmanned Ground Vehicle … 
– Summary 

Mobile Robotics - Prof Alonzo Kelly, CMU RI 3 



9.1.1 Introduction 
• Mapping = The process of making maps – not just 

using them. 
• Purpose:  encode knowledge over and above: 

– a) what can be seen/measured now 
– b) whatever assumptions may be encoded in software 

algorithms 

• Why do it? 
– Memory 
– Data fusion 
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9.1.1 Introduction  
(Organization) 

• Indexing: 
– Spatially indexed (raster): 

• Properties of places 

– Object indexed (vector): 
• Locations of things 

• Function:  
– predicting sensor readings (navigation). 
– predicting environment interaction (planning). 
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9.1.1 Introduction 
(Navigation Maps) 

• Use innovations to 
resolve pose error. 

• Map stored as: 
– List of landmarks 
– List of range scans 

• Great dilemma: 
– Need location for 

mapping. 
– Need maps for 

localization. 
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9.1.1 Introduction 
(Planning Maps) 

• Predict what will 
happen if the robot 
decides to go 
somewhere specific. 

• Stored as: 
– a 2D or 3D grid 
– a list of obstacle 

locations, roads etc. 
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9.1.2 Representation 
• When designing a map, there are a few big 

decisions to make.  
• Design drivers are convenience or efficiency of 

certain (dominant) computations: 
– E.g. easy to predict slope (Terrain map) 
– E.g. minimal information loss (Image map) 
– E.g. Topological reasoning (Topological map) 
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9.1.2.1 Coordinate System Aspects 
• Consider Representing Motion….. 
• Vehicle fixed coordinates: 

– Move the map to reflect motion 
(expensive). 

– May make sense for small footprint maps. 
– Computations of obstacles relative to 

vehicle are convenient (free). 
• Ground fixed coordinates: 

– Move the vehicle to reflect motion (free). 
– Map size does not matter. 
– Computations of vehicle relative to, 

waypoints, other vehicles, gravity are 
convenient (slightly costly). 
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9.1.2.1 Coordinate System Aspects 
• Consider Sampling Uniformity... 
• Sensors usually sample 

uniformly in their image plane. 
• Distortion is minimized by 

minimum change of viewpoint. 
• Hence, merge pixels in some 

real or synthetic image plane. 
– Still have sampling and 

interpolation issues. 
• Merging may introduce difficult 

correspondence issues 
(opposite). 

Mobile Robotics - Prof Alonzo Kelly, CMU RI 13 

Stereo: Correspondence Unknown 

Reprojection: Correspondence Known 



9.1.2.1 Coordinate System Aspects 
(Example: Virtualized Reality) 

• Range + appearance is the 
essence of a computer 
graphics model. 

• Given one image and range 
info, many completely 
synthetic views can be 
generated 
– subject to missing parts 

problem. 

 

Mobile Robotics - Prof Alonzo Kelly, CMU RI 14 



9.1.2.1 Coordinate System Aspects 
(Example: 3D Video) 
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9.1.2.3 Sampling Issues and Missing Parts 
(Missing Parts) 

• Different viewpoints create 
potential for missing parts in 
maps. 

• Core issue is:  
– viewpoint dependence of image 
– combined with environmental 

self occlusion. 

• Leads to partial information in 
parts of the map. 
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9.1.2.3 Sampling Issues and Missing Parts 
(Missing Parts) 
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• Most sensors have pixels equally spaced in 
angle. 

• Nonlinear transformation to any other 
coordinate system will distort the sampling 
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9.1.2.4 Semantic Aspects 
(Object Oriented) 

• Planning:  
– Walls 
– Objects 
– Obstacles 
– Costs 

 

• Navigation: 
– Points 
– Lines 
– Images 
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Object oriented maps could store: 



9.1.2.4 Semantic Aspects 
(Sampled) 

• Terrain shape descriptors: 
such as elevation, slope, 
roughness, overhang height 

• Terrain mechanical 
descriptors: such as 
stiffness/compressibility, 
traction, and density (grass 
and underbrush are  low 
density). 

• Terrain classification 
descriptors: such as 
wooded, rocky, high grass, 
deep or shallow water. 

• Hazard descriptors: such as 
cost of traversal, 
information content (e.g. 
range shadows have little 
content). 

• Tactical descriptors: such as 
the relative threat, cover, or 
recon or communications 
availability potential of a 
cell. 
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Sampled maps could store: 



9.1.2.5 Meta-Informational Aspects 
• How processed is the data: 

– Raw sensor readings (e.g scene attributes)  delays 
commitment 

– Semantic interpretation (e.g. walls / doors)  more 
efficient 

• Fidelity: 
– Globally accurate 
– Locally smooth 
– Doing both is hard… 

• Signal representation: 
– Sampled / rasterized  more common for planning maps 

• Some dimensions may remain continuous [e.g.  z(i,j) ] 
– Object Oriented  more common for navigation maps. 
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9.1.2.5 Meta-Informational Aspects 
• Uncertainty…………….. 
• Housekeeping information: 

– time/pose tags 
– distance, position or source associated with the data 

in the cell, 
– backpointers associated with global planning 

algorithms. 
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9.1.3 Timing and Motion Issues 
(Motion Blur) 

• Maps are distorted when the 
robot is moving and the 
timing of data acquisition is 
not accurate enough. 

• Effect goes away when you 
stop moving. 

• Happens even over sub 
second time windows. 
– Robots can rotate fast 

• Angular measurements 
usually matter most. 

• May only matter when 
perception data is high 
fidelity. 
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9.1.3 Timing and Motion Issues 
(Motion Blur) 

• Precise azimuth/elevation of a 
120 Hz laser beam mounted 
on a bouncing vehicle is a 
challenge to achieve. 

• Timing (or pose tags) are used 
to synchronize the perception 
data stream with the 
localization data stream. 
– Done with interrupts deep in 

the system software. 
• A big issue for scanning ladar.  
• Less of an issue for FLIR.  
• Usually not an issue for 

cameras. 
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9.1.3.2 Ghosting 
• Moving objects can create traces in 

maps. 
– When a false static environment 

assumption is being made. 

• Bayesian maps with an integrated 
motion model are a great way to 
deal with moving objects. 
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9.1.3.3 Moving Object Detection and Tracking 
(Motion in Evidence Grids) 

• Use measurements and tracking to refine 
estimates of position. 

• Use motion models to account for growth of 
uncertainty between models. 
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9.1.4.1 Localization Drift and Local Consistency 
• Over time and/or distance, dead reckoning error 

of all types accumulates. 
– encoder odometry 
– gyro odometry 
– visual odometry and all related forms of determining 

relative pose from registration. 

• Net result is that objects are both distorted and 
mislocated. 
– The degree of mislocation between two objects grows 

with the distance between them. 
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Accumulation / Distortion Tradeoff 
• Evidence accumulation 

over time: 
– reduces effect of 

unbiased error. 
– increases the effect of 

drift error. 
• A sweet spot exists 

when 
– drift = desired 

resolution/scale 
• Approach: 

– Accumulate data until 
sweet spot. 
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9.1.4.2 Data Aging and Global Inconsistency  
• An extreme case of 

localization error issue. 
• When the robot returns to a 

place visited earlier, 
integrating old and new data 
can lead to two slightly 
displaced copies of 
everything. 

• One approach is to limit the 
memory of data which is 
based on a drifting estimate. 
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Global Inconsistency 
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9.1.5.1 Structural Aspects 
• Dimension: 2D or 3D storage indexing 

– Have an array of cells or a cube of voxels. 
– Does benefit justify cost of 3D? 

• Metric or Topological 
– Sometimes knowing which edge you are on is enough. 
– Other times, info available is much richer. 

• Topology 
– Will the map have cyclic or acyclic (tree) structure. 
– Latter avoids difficult “loop closing” problem of SLAM. 
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9.1.5.2 Extent 
• Big maps can be too big to store. When they are 

too big, there are a few options. 
• Cacheing - keep most of it on disk and know how 

to ship small pieces in and out efficiently. 
• Wraparound - a multidimensional ring buffer can 

be used to continue to reuse the same memory 
while always surrounding the vehicle with the 
nearby data. 
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Fig 9.8 Scrolling and Wrapping Maps 
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9.1.5.2 Extent 
(Duration: Short Term) 

• Short Term: 
– Great way to avoid many integrated skew issues. 
– Makes sense for a map whose sole purpose is obstacle 

avoidance. 
• “Aging” data is one good/efficient idea. 

– Render it artificially invisible after some time/distance 
window.  

• There are two issues to deal with: 
– Since data is not explicitly deleted, need a mechanism to 

render old data invisible. 
– When new data is actually associated with a different 

place than the old data, the old data must be erased. 
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9.1.5.2 Extent 
(Duration: Long Term) 

• For mapping, need to remember a lot to be able 
to detect loop closure. 
– and need enough resolution to do comparision. 

• For global planning, need 
– Long term memory 
– Large map extent  
– but often its possible to sacrifice resolution. 
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9.1.5.3 Hierarchy 
• Duplicated data 

– problem in planning maps 
– asset in navigation maps (helps close loops). 

• A two layer hierarchy is useful here. 
– Organize map into rigid chunks. 
– The chunks remain rigid but they can be moved with 

respect to each other.  
– Such a structure is natural for scanning laser radar (1D 

or 2D) , stereo, and camera imagery. 
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9.1.5.4 Layers 
• Maps can usefully have 

multiple “bit planes” or 
layers. 

• One use of this is to keep 
data from separate 
sources separate, to 
enable: 
– Variable weighting. 
– Registration. 
– Calibration for (cost) 

consistency. 
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9.1.6 Example : Unmanned Ground Vehicle 
(Demo II Terrain Mapping (1992)) 

• Similar to Hughes ALV system. Reused on 
PerceptOR 

• ERIM laser rangefinder, SICK laser rangefinder(s) 
• Models terrain with elevation map encoding z(x,y) 

in sampled form. Cells accumulate an average and 
variance for z over time. 

• Fills holes with interpolation (UGV) 
• Supports obstacle detection and path planning. 
• Designed for high speed on rough terrain. 
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9.1.6 Example : Unmanned Ground Vehicle 
(Sensor Configuration) 
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2.6 m 

4 m 12 m 

Scanning Lidar Specifications 

Horizontal Field of view 80° Horizontal Range Pixels 256 

Vertical Field of View 30° Vertical Range Pixels 64 

Range Resolution 10 cm Frame Rate 2 Hz 



9.1.6.1 Range Imagery and Terrain Map 
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9.1.6.2 Software Data Flow 
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9.1.6.3 Motion Distortion Removal 
• Pose tags of each image were interpolated to 

approximate vehicle motion. 
– Different pose for each range pixel. 
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9.1.6.5 Sampling Issues 
(Scan Conversion and Interpolation) 

• Solution for sampling 
problem.  

• Based on linear 
interpolation and 
Bresenham’s Line 
algorithm 

• Unified treatment of 
undersampling and 
range shadows 
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9.1.6.6 Computational Image Stabilization 
(Processing Requirements) 
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9.1.6.6 Computational Image Stabilization 
• Converts ROI to 

polar coordinates 
in real time. 
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9.1.6.7 Dual Pose Estimates 
• GPS “jumps” are the rule in 

complex natural and urban 
settings. 

• Jumps due to intermittent 
high quality measurements 
are … 
– Great for waypoint 

following and map creation 
or processing. 

– Disaster for ladar-based 
obstacle detection. 

• Perception data 
accumulation at different 
scales has conflicting pose 
quality requirements. 
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9.1.6.7 Dual Pose Estimates 
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• 1: Dual Estimates: a) globally accurate and b)locally smooth. 
• 2: Filtering: Local estimate does not process any measurement 

which projects directly onto position or orientation states. 
• 3: Lazy Registration: Local and global obstacle data registered 

(lazy) whenever its needed. 
• Point: Obstacle Avoidance becomes completely immune to GPS 

drift and jumps. 



PerceptOR Cooperative Mapping 
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Summary 
• Maps can be used for navigation or planning. 
• Maps use memory to increase the amount of 

information available for decision making. 
• Many design issues remiscent of data structures 

occur. 
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