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9.2 Visual Localization and Motion 
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Overall Framework 
• Three related problems. 

– Localize robot based on a map 
– Measuring motion based on imagery 
– Measuring object positions from imagery 

• Last two can be combined to construct maps. 
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9.2.1 Introduction 
• All of the mechanisms we will consider are 

summarized in this figure. 
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9.2.1.1 Canonical Problems 
(Mapping and Localization) 

• Simple Mapping 
 
 

• Localization 
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9.2.1.1 Canonical Problems 
(Motion Estimation) 

• Motion Estimation 
• Observe object O1 twice, then: 
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9.2.1.1 Canonical Problems 
(SLAM) 

• Mapping 
• Also Observe object O2 and 

then: 
 

• Treat O1 as origin: 
 

• Etc.  
• Note how error 

accumulates. 
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9.2.1.1 Canonical Problems 
(Consistent Mapping) 

• Suppose robot sees O2 at 
step 100.  
– Calls it O100. 
– Also  

• Have to go back and fix 
all of  
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9.2.1.2 Visual Localization 
• Compare what robot sees to what it expects to 

see. 
• GPS is an example where “perception” sensor is a 

multi-channel radar. 
 

• Nomenclature: 
– Scene = the real world 
– Image = pixels in a computer 
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• When the pose of the object with respect to the 
sensor (𝜌𝜌𝑂𝑂𝑆𝑆) is known, model frame points can be 
transformed into sensor frame points… 
 

• For example, in detail, this may be… 
 

9.2.1.2.1 Image Formation 
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9.2.1.2.1 Image Formation 
• Substituting the second result into the first gives: 

 
 
 

• This complete model of a camera looking at an 
object tells us where points on the object (mode) 
appear in the image. 
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9.2.1.2.1 Image Formation 
• Use a camera projection matrix to see where the 

point falls on the image plane: 
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9.2.1.2.2 Localization of Objects 
• The familiar measurement relationship has a few 

more arguments: 
 
 
 
 
 
 

• Image could be 640 X 480 color pixels or 1024 X 
64 range pixels etc. 
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9.2.1.2.2 Localization of Objects 
(Predicting Images) 

• Key points: 
– 1:Object model can be defined as a signal 

over scene coordinates: 
– 2: Image and scene coordinates are related 

by a low dimensional transformation. 
– 3: Once transform is known, entire image is 

predictable from the model 

• That’s what computer graphics is….. 
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9.2.1.2.2 Localization of Objects 
(Predicting Images) 

• Consider a color camera and suppose transform depends 
only on rel. pose 
 

• Substituting into our model: 
 

• Imaging process copies information from scene to 
corresponding point in image. 
 

• Give the transform              and the model             we know 
what colors to put where. 
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9.2.1.2.3 Basic Approaches and Issues 
(Basic Approaches) 

• First: search for the pose that explains the image: 
 

• Second: search for the pose which aligns 
coordinates: 
 

 
• A predictable set of issues arise …. 
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9.2.1.2.3 Basic Approaches and Issues 
(Issues) 

Data Association 
• MATCHING  
• Which features are to be 

paired with which? 

Equations 
• ALIGNMENT 
• Is the solution pose unique? 
• Have initial estimate? 
• How good is the data? 
• How much time/computing 

available? 
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We have solved these problems with Kalman Filters already 



9.2.1.2.5 Feature Example: Find The Pallet 

• Reduce image to intensity edges. 
• Match edges to model of fork holes. 
• Find the pose. 
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Video 
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9.2.1.2.5 Robot localization 
• Localizing an object with respect to a sensor is 

mathematically identical to localizing a robot with 
respect to a map.  

• Now the model is of the form … 
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9.2.1.2.6 Example: Find the Robot From Lidar 
• Its not obvious 

!! 
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9.2.1.3 Visual Motion Estimation 
• When there is no map, we can still estimate motion by 

matching past images to present ones. 
• If the scene to image transform is invertible then, its 

easy: 
 

• Sometimes, this can be written in terms of a relative 
sensor pose: 
 

• Or even in terms of an image-to-image transform: 
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9.2.1.4 Fundamental Algorithms 
• We have seen that there are three basic comuter 

vision algorithms that can be used to localize and 
estimate motion: 
– Align signals in two images 
– Match features to create correspondences 
– Compute relative pose in scene from rlative pose in 

image. 
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9.2.2.1 Signal-Based Objective Function 
• Define the predicted signal: 

 
 
 
 

• We want to find the pose that aligns the observed 
and predicted signal. 

• Form the residual: 
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9.2.2.1 Signal-Based Objective Function 
• Compute the pose that minimizes the squared 

residual: 
 

• Now, order all the elements in the residual based 
on x and then the x argument can be removed: 
 
 

• It may be advisable to normalize video images 
before computing residuals. 
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9.2.2.2 Aligning Video In Image Plane 
• An example approach is correlation of monochrome 

video. 
– Perform exhaustive search over a search window 

• The transformation of feature positions  is: 
 
 

• The pixel residuals are: 
 

• Solve as linear least squares: 
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9.2.2.2 Aligning Video In Image Plane 
• Exhaustive search 

– Checks correspondence over a 
limited regions of possible 
displacements. 

– Muddies distinction between 
pose refinement and data 
association. 

• Correlation is a matched filter 
so there is no better noise 
rejection around. 
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Video : Lucas Kanade Tracker 
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9.2.2.3 Example. Lane Tracking 
• Transform incoming video 

based on: 
– Constant perspective 

foreshortening  
– Variable crosstrack offset 
– Variable road curvature 

• Collapse columns into a 
linear image 

• Search over a series of 
transforms for optimal 
signal match. 
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9.2.2.3 Example. Lane Tracking 
(RoadFollowing / Lanetracking) 

• About 15,000 people die each year in just the US 
in single vehicle roadway departure accidents. 

• This is a visual servoing application.  
• Lane tracking used for: 

– Lane Departure Warning (LDW) 
– Adaptive Cruise Control (ACC) 
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9.2.2.3 Example. Lane Tracking 
(Warping Approach: Dickmanns) 

• Prewarps image regions based on 
expectations for both edge 
position and orientation. 

• Sums along columns in order to 
enhance edges and reduce noise. 
– Summing is the simplest kind of 

filter. The random parts of the signal 
tend to cancel whereas the dc part 
continues to grow with the sum. 

• Runs an edge detector on the 
resulting column sum. 
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9.2.2.3 Example. Lane Tracking 
(Warping Approach: RALPH) 

• Extends this idea to the 
entire road piece in view.  

• Drove 2850 miles across the 
US. 

• Tries to minimize the amount 
of explicit road modeling 
information used. 

• Accomplishes lane detection 
in three steps: 
– sample the image 
– compute the curvature 
– compute the lateral offset 
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9.2.2.3 Example. Lane Tracking 
(Warping Approach: RALPH) 

• For the trapezoidal ROI: 
– start and end depends on 

the velocity. 
– width at all ranges is 

identical on the 
groundplane. 

– produces a rectangular 
“aerial image” of 30(h) X 
32(w) pixels. 
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9.2.2.3 Example. Lane Tracking 
(Finding Curvature in RALPH) 

• Hypothesize a number of possible curvatures. 
• Straighten the aerial image based on each assumption. 
• The transformed aerial image which is straightest is the 

winner. 
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9.2.2.3 Example. Lane Tracking 
(Which is “Straightest”) 

• The column summed image has the sharpest 
peaks when the hypothesis is correct 
– Has edgiest intensity profile 
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9.2.2.3 Example. Lane Tracking 
(Finding Lateral Offset) 

• Column summing produces 32 element vector 
called the scanline intensity profile. 

• As in GPS, a correlation search produces a peak at 
the correct offset. 
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9.2.2.3 Example. Lane Tracking 
(Outlook) 

• Adaptation to multiple roadtypes can be 
accomplished by correlating with multiple road 
signatures simultaneously. 

• Learning can be done at several levels: 
– Supervised: Operator presses a button to save the 

present profile as a template. 
– Unsupervised: Modify the template in use to 

incorporate a small percentage of the present profile. 
– Predictive: Assume curvature is continuous and extract 

a new template from the top of the image (the road 
far ahead). 
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Video 
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2.2.4 Other forms of Maps 
• Any field of perceptual expectations ℎ(𝜌𝜌) over the 

space of poses can be used as a map. 
• Some options 

– Remember VO features in spatially indexable form 
– Lidar intensity signatures of roads 
– Video of factory floors 
– Aerial elevation maps 
– Range data of building walls 
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9.2.2.5 Aligning Surface Geometry in Range Imagery 

• The equivalent of video alignment is curve or surface 
alignment. 

• We usually assume that the two curves or surfaces are 
undistorted but search over distortion is possible. 

• The area between the two surfaces is one way to 
express the registration error. 
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9.2.2.5 Aligning Surface Geometry in Range Imagery 

• Area/Volume between scans is the analog of 
SSD of video. Several schemes are available to 
estimate this area. 

• ICP uses the sum of the lengths of the lines to 
closest points as the residual. 
– Each point on one scan has a closest neighbor on 

the other. 
• Feature-based schemes do the same: 

– but then the points actually correspond. 
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9.2.2.5 Aligning Surface Geometry in Range Imagery 
(Projective Association – Matching in Image Coordinates) 

• Standard association is n2 computations for n 
points and its done every iteration. 

• Projective association is order n. 
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9.2.2.5 Aligning Surface Geometry in Range Imagery 
(Projective Association – Glancing Incidence Pathology 

• Projective association is fast but it can 
be pretty wrong at glancing incidence.  

• Residuals are small near the answer and 
this helps a lot. 
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Matching Features 
• In signal alignment: 

– Data Is already ordered 
– Data at corresponding positions in signal is assumed to 

correspond. 

• Matching features only: 
– Reduces the amount of data to match 
– BUT introduces a data (feature) association problem. 
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9.2.3.1 Segmentation and Features 
• Reducing imagery to features has the advantage 

of: 
– boosting the signal content. 
– making the minimum of cost function as sharp as 

possible. 

• Features can be many things 
– Edges or regions in video 
– Points of high curvature in range data 
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9.2.3.2 Objective Function / 9.2.3.3 Feature Attributes 

• An image 𝑧𝑧𝑜𝑜𝑜𝑜𝑜𝑜 contains more 
information than its signal 
amplitudes 
– because the individual amplitudes 

occur somewhere in particular. 
• Often, the useful info is not the 

amplitudes but where they occur. 
• Features may retain some of the 

original signal or they may be 
stripped of everything but their 
locations. 

• Retained attributes may be: 
– Id, barcode etc. 
– Block of surrounding pixels 
– Eigenvalues of Harris corners 
– Curvature or spin images 
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9.2.3.4 Typical Features and Objective Functions 

• A residual can be formed from predicted and 
observed locations of features. 
 

• Collect them all into a single vector and drop k. 
 
 

• We could then find the location correspoding to 
the residual norm 
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9.2.3.4 Typical Features and Objective Functions 

• The distance between corresponding points is 
only one option. 

• Examples of other planar correspondences are 
shown below. 
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9.2.3.5 Search For Associations 
• Based on no other info, the data association problem is 

factorial complexity. 
• However pose knowledge constrains correspondences so 

the two problems are coupled. 
• Features attributes also help constrain the search. 
• Generally, all of the following information can be brought 

to bear: 
– Richness : feature attributes 
– Pose Estimates 
– Spatial Separation (reduced ambiguity) 
– Consensus 
– Conditioning (some incorrect correspondences may be OK) 
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9.2.3.6 RANSAC 
• Short for RANdom Sample Consensus 
• Useful when data set contains outliers that do not fit 

the model. 
– 1: Choose a random sample of data of sufficient size to fix 

all of the parameters of the model (pose). These are 
hypothetical inliers. 

– 2: Test all other points against the hypothetical model and 
reject points as outliers that do not fit. 

– 3: Re-estimate the model from all remaining inliers.  
– 4: If there are sufficient inliers, remember this model if it is 

the best fit so far. 
– 5: Terminate after n iterations or a good enough fit is 

achieved. 
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9.2.3.6.1 Example RANSAC in Image 
• Suppose 16 features and 50% 

outliers in the data. 
• It takes only two features to 

fix the pose in 2D. 
• The probability of selecting 2 

inliers is 25% so it takes only 
4 attempts on average to find 
the right pose. 

Mobile Robotics - Prof Alonzo Kelly, CMU RI 60 



9.2.3.7 Closest Point Association in Range Data 
• Avoids explicit solution of the correspondence problem. 

– Solution emerges as the iteration proceeds 

• Used for range imagery. Makes sense when: 
– Two partial views of the same shape are available. 
– They are largely undistorted. 
– An initial estimate of relative position is available. 
– They are free form surfaces. 
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9.2.3.7 Closest Point Association in Range Data 
(Basic Algorithm) 

• Temporarily associate each point on scan1 with its 
closest neighbor on scan2. 
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9.2.3.7 Closest Point Association in Range Data 
(Interpolation) 

• Discrete samplings need not line up at each point. 
• Need to interpolate. 

Mobile Robotics - Prof Alonzo Kelly, CMU RI 64 

Sensors produce equally 
spaced angular pixels. 



9.2.3.7 Closest Point Association in Range Data 
(Interpolation) 

• A point on the line from p1 to p2 is closer to p3 
if: 
 

• If so, then the closest point is: 
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9.2.3.7 Closest Point Association in Range Data 
(Endpoint Pathology) 

• Unless you actively avoid it, ICP will associate 
points when there is no real association. 

• I.E. Endpoints when scans overlap only partially. 
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9.2.3.7 Closest Point Association in Range Data 
(Internal Tension Pathology) 

• Motion in the tangential direction is resisted by 
almost any set of associations 
– Because when some association lines are shortened, 

others are lengthened. 
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9.2.3.7 Closest Point Association in Range Data 
(Other Improvements) 

• Basic issue: 
– Closest does not always equal corresponding. 

• Other ideas for fixes: 
– Associations in the local normal direction. 
– Associations only at points of high curvature. 
– Associations of only “compatible” (similiar curvature) 

points. 

• All are a kind of shift toward a feature based 
approach. 
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9.2.4 Searching for the Optimal Pose  
(3 SubProblems) 

• Pose Determination 
– Find pose with no prior information 

• Pose Refinement 
– Find pose with initial estimate inside radius of 

convergence. 

• Pose Tracking 
– Find pose with initial estimate very near by. 
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9.2.4.1 Pose Determination 
• Also called the insertion problem (AGVs). 
• Vision part of the problem is place recognition. 
• Fundamentally, this is minimization of an 

objective function with many local minima. 
• Two ideas for proceeding… 

– Sampling will work when there are few local minima 
– Lookup tables can be used to find a good initial guess 

from the data. 

Mobile Robotics - Prof Alonzo Kelly, CMU RI 74 



9.2.4.1.1 Example Place Recognition in Bearing Data 

• Problem: process a single scan 
of 4 fiducial bearings and 
determine, roughly, where the 
robot is. 

• Account for symmetry using 
supplied heading quadrant. 
– 4 solutions for any given scan 

Mobile Robotics - Prof Alonzo Kelly, CMU RI 75 

0110 

3 

2 

1 

0 



9.2.4.1.1 Example Place Recognition in Bearing Data 

• Solution: reduce each scan to a 4 digit binary number. 
– 0 iff bearing < 45° 
– 1 iff bearing > 45° 
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9.2.4.2 Pose Refinement 
• Assume a signal matching approach.   

 
• Let the unknown pose and warp be defined by a set of 

parameters 𝑝𝑝. 

 
• The residual would be the (vectorized version of): 
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9.2.4.2 Pose Refinement 
• If an initial estimate is available, it may be close enough 

to justify the use of gradient information to find a local 
minimum. 

• Recall that the (unweighted) Newton step takes the form: 
 

• where 𝑟𝑟𝑝𝑝 is the residual gradient wrt the parameters. In 
this case: 
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9.2.4.2 Pose Refinement 
• Recall from last slide: 
• By the chain rule: 

 
 
 

• The two components of the gradient are: 
– (𝜕𝜕𝑧𝑧 𝜕𝜕𝑦𝑦� ) the gradient of the image evaluated at 𝑦𝑦(𝑝𝑝). 

–  (𝜕𝜕𝑧𝑧 𝜕𝜕𝑝𝑝� ) the parameter Jacobian of the transform evaluated at 
𝑝𝑝. 
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9.2.4.2 Pose Refinement 
• If instead we were matching features, the Newton step is 

more simply: 
 
• The pose gradient is: 

 
 

• We can substitute this into the Newton step to produce: 
 
 

• Which is just the left pseudoinverse. In vision problems, 
the equations are typically overdetermined. 
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9.2.4.2.2 Example: Locate a Pallet 
• Vertical fork hole edges must 

– be principally oriented in the image  
– occur in darkening / lightening pairs 

• Different templates can be 
correlated to identify the pallet 
type. 

• Models encode the (scale 
independent) ratio of hole width 
to hole separation. 
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9.2.4.2.2 Example: Locate a Pallet 
• Assume that the 4 vertical edges of the pallet 

holes have been found. Localize the pallet. 
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9.2.4.2.2 Example: Locate a Pallet 
• Let m denote model frame and s denote sensor. 
• The measurement model is simply: 
• Which is proportional to the bearing angle α. 
• The vector of scene coordinates is: 
• Then, the measurement Jacobian is: 
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9.2.4.2.2 Example: Locate a Pallet 
• Attach a frame to each of the four feature points. 
• Then the Jacobian is a compound-left pose 

Jacobian: 
 
 
 

• We will use only the first two lines 
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9.2.4.2.2 Example: Locate a Pallet 
• The complete solution for an assumed initial value 

for the pose 𝜌𝜌𝑚𝑚𝑠𝑠   is: 

 
 
 
 

• 4 measurements are stacked to form the residual:  
 

• and its gradient points the way in line search. 
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9.2.4.3 Pose Tracking 
• In the most general case: 

– Feature locations are predicted, possibly based on 
secondary estimates of motion. 

– Corresponding features are passed to a pose 
refinement algorithm. 
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9.2.4.3.1 Feature Velocities 
• If  we want velocites and there are no 

secondary estimates available … 
• We can compute camera velocity from feature 

velocity. First linearize the measurement model 
wrt sensor motion. 

 
• Then divide by ∆t and pass to the limit: 
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9.2.4.3.2 Making and Tracking Floor Mosaics 
• All systems which use a map to localize are 

(model-based) visual trackers. 
• Hence visual tracking is one of the most important 

algorithms in mobile robotics. 
– The Kalman filter system model amounts to the 

estimate of intervening motion. 
– Measurement model is the prediction mechanism. 
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9.2.4.3.2 Making and Tracking Floor Mosaics 
(Tracking Mosaics) 

• Floor mosaics are 
used as the map. 

• Features in imagery 
are correlated with 
map (mosaic) based 
predictions. 

• Submillimeter 
precision and 60 
mph speeds are 
possible. 
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9.2.4.3.2 Making and Tracking Floor Mosaics 
(Lens Distortion Removal) 

• Wide FOV lens is necessary because cmaera is so 
close to floor and large image footprint is 
required. 

• Technique: Image a grid and compute the lens 
distortion function that explains it. 

• Then, invert the distortion to rectify the images. 
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9.2.4.3.2 Making and Tracking Floor Mosaics 
(Tracking Update Rate) 

• A sweet spot exists. 
– Random error rewards slow updates. 
– Systematic error rewards fast updates. 
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9.2.4.3.2 Making and Tracking Floor Mosaics 
(Making Mosaics) 

• A very easy case 
because: 
– Ranges are known 
– Environment is flat 

(no disortion) 
– Motion is 

approximately 
known (odometry) 
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9.2.4.3.2 Making and Tracking Floor Mosaics 
(Registration) 

• Bright centers of all images are merged to 
produce a single long thin image… 
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9.2.4.3.2 Making and Tracking Floor Mosaics 
(Registration) 

• It is not necessary to 
solve for the rotations of 
each feature – it comes 
out at the pose level. 

• The image alignment is 
accomplished with a 
compound-left pose 
Jacobian: 
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9.2.4.3.3 Visual Odometry 
• Solve the same tracking 

problem but: 
– Flow is assumed to be caused by 

camera motion. 
– Goal is to find the camera 

motion. 
• Essential mathematics are 

identical to pose refinement. 
BUT: 
– State vector represents 

• differential motion 
• in the scene 

– A secondary integration process 
usually computes position. 

 
 

Mobile Robotics - Prof Alonzo Kelly, CMU RI 98 

Features Everywhere 



9.2.4.3.3 Visual Odometry 
• In this case, the 

camera motion 
and the scene 
surfaces are 3D. 

• It helps to have 
two cameras 
(stereo) to resolve 
the scale 
ambiguity 
problem. 

• A secondary pose 
estiamate helps 
too. 
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9.2.4.3.3 Visual Odometry 
(Projective Difficulties: [Monocular] Scale Ambiguity) 

• Features at twice the depth 
are consistent with twice the 
translation. 
– no way to tell which of the top 

two cases is correct.  
• However, orientation change 

can be measured without 
knowing depth. 
– If you knew the motion was 

rotation! 
• Distinguishing rotation from 

translation is another 
problem. 
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9.2.4.3.3 Visual Odometry 
(Projective Difficulties: Depth Determination) 

• Some people use SFM to 
get the depth. 
– Vizodo is a special case 

where you “ignore” the 
shape output. 

• Stereo is another 
alternative. 
– Need two features to 

determine 2D motion. 
• A FOV wide enough to 

see well separated 
features helps for the 
problem of distinguishing 
rotation from translation. 
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Outline 
• 9.2 Visual localization and Motion Estimation 

– 9.2.1 Introduction 
– 9.2.2 Aligning Signals for Localization and Motion 

Estimation 
– 9.2.3 Matching Features for Localization and Motion 

Estimation 
– 9.2.4 Searching for the Optimal pose 
– Summary 
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Summary 
• Perception based positioning, rather than being 

esoteric, is a core capacity of capable mobile robots. 
• The following four technologies are similar in 

substance but different in emphasis 
– Pose Refinement 
– Registration 
– Visual Tracking 
– Visual Odometry 

• All rest on solutions to: 
– prediction 
– correspondence 
– registration 
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Summary 
• Pose Refinement / Registration  

– Residuals between real and predicted features  

• Visual Tracking / Odometry 
– Residuals between two sets of real feature locations. 

• The existence of a prior map or model is a key 
distinction. 
– Prior maps make position estimation repeatable. 

• ICP and template correlation are local association 
algorithms  
– use brute force search. 
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