

# Chapter 9 Localization and Mapping

### Part 3

9.3 Simultaneous Localization and Mapping



## Outline

- 9.3 Simultaneous Localization and Mapping
  - 9.3.1 Introduction
  - 9.3.2 Global Consistency in Cyclic Maps
  - -9.3.3 Revisiting
  - 9.3.4 EKF SLAM for Discrete Landmarks
  - 9.3.5 Example: Auto surveying of Laser Reflectors
  - Summary



## Outline

- 9.3 Simultaneous Localization and Mapping
  - 9.3.1 Introduction
  - 9.3.2 Global Consistency in Cyclic Maps
  - -9.3.3 Revisiting
  - 9.3.4 EKF SLAM for Discrete Landmarks
  - 9.3.5 Example: Auto surveying of Laser Reflectors
  - Summary



## 9.3.1 Introduction

- The common acronym is S-L-A-M but C-L-M (for Concurrent Localization and Mapping) is used occasionally.
- Some say, the most fundamental problem in mobile robots.
- SLAM is a <u>circular problem</u>. The vehicle ...
  - uses the landmark positions to determine its position and then
  - uses its position to update all of the landmarks.
- It is not possible to determine absolute position from such an arrangement, but...
- It is possible to use statistical modeling to remove most of the inconsistency between:
  - where a landmark is predicted to be based on measured vehicle motion and
  - where it now appears to be based on sensor readings.

## Introduction

- Until a loop closes, SLAM is often akin to visual odometry.
- When a loop closes, things can get hard quickly.
  - How do you know it closed?
  - Does the entire map need to be updated?
- I will discuss the original Kalman filter formulation.
- I will assume bearing/range landmark measurements but bearing-only or range-only (or anything else) can be done similarly.

THE ROBOTICS IN

## 9.3.1 Introduction

(Map Quality Spectrum)

- A spectrum of increasing degrees of quality for maps includes the following stages
  - persistent storage (maps) enables point repeatability:
    - points in the map are fixed.
  - local smoothness enables tracking:
    - otherwise, discontinuities in the map cause loss of lock.
  - global (internal) consistency enables free-ranging:
    - minimal discontinuities associated with loop closure.
  - external consistency enables external programming:
    - E.g. map which is consistent with a CAD drawing.

## Outline

- 9.3 Simultaneous Localization and Mapping
  - 9.3.1 Introduction
  - 9.3.2 Global Consistency in Cyclic Maps
  - -9.3.3 Revisiting
  - 9.3.4 EKF SLAM for Discrete Landmarks
  - 9.3.5 Example: Auto surveying of Laser Reflectors
  - Summary



## 9.3.2 Global Consistency in Cyclic Maps (Setup)

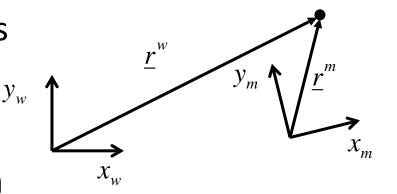
- Suppose:
  - some kind of images
    overlap each other
  - the goal is to register them in all regions of overlap.
- Could be camera or rangefinder images.



## 9.3.2 Global Consistency in Cyclic Maps (Desiderata)

- Optimization.
  - Would like residuals in overlap regions to be as small as possible (zero is probably not possible due to distortion and feature localization error).
- Constraint.
  - Would like redundant degrees of freedom (if any) to be geometrically consistent.

## 9.3.2.1 Absolute Pose Formulation


- Suppose the vector <u>ρ</u><sup>w</sup><sub>m</sub> describes where image m is w.r.t a world frame.
- Residuals can be generated from images m and k:

$$\underline{r} = \underline{r}^{w} \Big|_{m} - \underline{r}^{w} \Big|_{k} = T^{w}_{m}(\underline{\rho}^{w}_{m})\underline{r}^{m} - T^{w}_{k}(\underline{x}^{w}_{k})\underline{r}^{k}$$

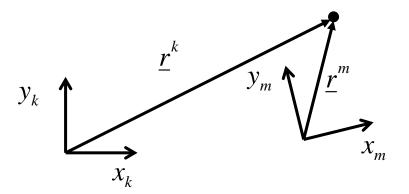
• This is of the form:

$$\underline{r} = h_m(\underline{\rho}_m^w) - h_k(\underline{\rho}_k^w)$$

 Where both x's are the vector of all image absolute poses.



## 9.3.2.2 Relative Pose Formulation


- Suppose a vector Ω<sup>m</sup><sub>m</sub> describes where image m is w.r.t. image k.
- Residuals can be generated from:

$$z = \underline{r}^{k} - \underline{r}^{k} \Big|_{m} = \underline{r}^{k} - T_{m}^{k} (\underline{\rho}_{m}^{k}) \underline{r}^{m}$$

• This is of the form:

$$\mathbf{r} = \mathbf{z} - \mathbf{h}(\mathbf{\rho}_{\mathrm{m}}^{\mathrm{k}}) = \mathbf{z} - \mathbf{h}(\mathbf{x})$$

• Where <u>x</u> is the vector of all image relative poses.



$$\underline{r}^k\Big|_m = T^k_m(\underline{\rho}^k_m)\underline{r}^m$$

$$\begin{bmatrix} x^{k} \\ y^{k} \\ 1 \end{bmatrix} = \begin{bmatrix} c\theta - s\theta & a \\ s\theta & c\theta & b \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x^{m} \\ y^{m} \\ 1 \end{bmatrix}$$

## 9.3.2.3 Unconstrained Optimization

• We might want to minimize something like:

minimize:<sub>x</sub> 
$$f(\underline{x}) = \frac{1}{2}\underline{r}(\underline{x})^{T}\underline{r}(\underline{x})$$

- Where <u>r(x</u>) is the composite of all residuals.
- Two Approaches:
  - Minimization
    - More robust, slower
  - Rootfinding
    - Assumes small residuals
    - Less robust, faster



## 9.3.2.3 Unconstrained Optimization

(Rootfinding Approach)

• Use the Jacobian from the linearized observer:

 $\Delta \underline{r} = H \Delta \underline{x} \, \underline{x}$ 

 When system is fully or even overdetermined, (more than enough features), we use the LPI and "solve" for the <u>whole residual r</u> in a single iteration.

$$\Delta \underline{\mathbf{x}} = \left[ \mathbf{H}^{\mathrm{T}} \mathbf{H} \right]^{-1} \mathbf{H}^{\mathrm{T}} \mathbf{r}$$

- Unfortunately, ∆<u>x</u> can have 10,000 elements and <u>r</u> can be larger so the matrices are huge.
  - Works only for small problems.

## 9.3.2.3 Unconstrained Optimization

(Minimization Approach)

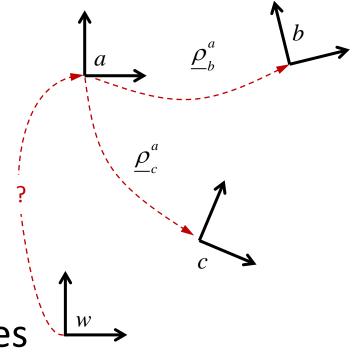
• Gradient Descent:

$$\underline{\mathbf{d}} = -\frac{\partial}{\partial \mathbf{x}}\mathbf{f}(\underline{\mathbf{x}})$$

Follow gradient

• Newton-Raphson:

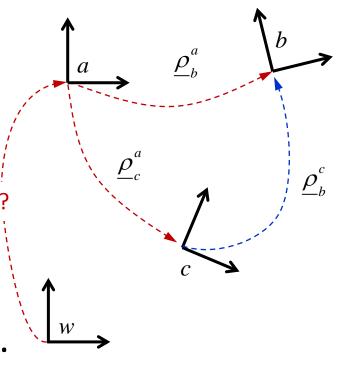
$$\mathbf{d} = -\left[\frac{\partial^2 \mathbf{f}}{\partial \mathbf{x}^2}\right]^{-1} \frac{\partial \mathbf{f}}{\partial \mathbf{x}}(\mathbf{x})$$


 $\overline{}$ 

Find gradient roots

 In either, there is never an issue getting enough equations to determine the step (always enough derivatives). 9.3.2.4 Constraint Satisfaction with Relative Poses

- Relative poses raise a different consistency issue.
- n images have n-1 degrees of pose freedom
  - Must <u>fix one to fix the map</u> location
- For n images, there are R
  possible, distinct, relative poses
  where:


$$R = \sum_{i} i = 1 + 2 + \dots + n = \frac{n(n-1)}{2}$$
  
Mobile Robotics - Prof Alonzo Kelly, CMU RI



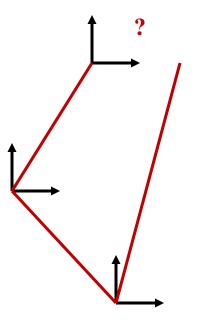
THE ROBOT

9.3.2.4 Constraint Satisfaction with Relative Poses

- If the state vector is larger than n-1 (i.e. if you have more relative poses than necessary)
  - the possibility of inconsistency arises
  - system of unconstrained poses is underconstrained because all the elements are <u>not truly</u> independent.
- There are natural consistency (i.e. loop closure) constraints that <u>should</u> be imposed of the form:  $\underline{g}(\underline{x}) =$

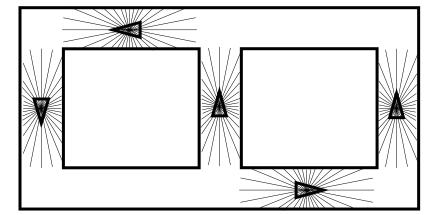


b

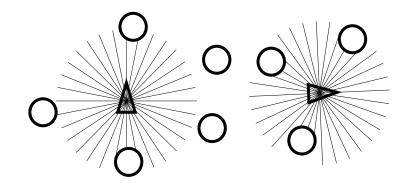

THE ROBOTI

9.3.2.4 Constraint Satisfaction with Relative Poses

 Again: There are natural constraints which should be imposed to adequately constrain the system:


$$\underline{g}(\underline{x}) = \underline{b}$$

- These are <u>entirely separate from</u> the feature residual.
- Unless loops close, there is no issue of consistency.

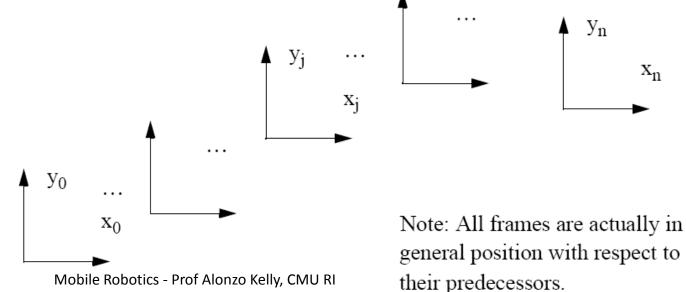



## 9.3.2.4.1 Loop Constraints – Sparse Case

- Constraint equations are needed when loops close.
- Relatively few constraints are needed in sparse networks.
- Leads to use of a slightly redundant state vector and a few constraints.



Hallway Environment




Forest Environment



## 9.3.2.4.2 Warping for Constraint Enforcement

- Suppose:
  - n poses which relate each of n+1 frames in an ordered sequence to its predecessor.
  - the relationship of the first frame with respect to the last has just been determined to be <u>slightly wrong</u>.
- Problem is to change ALL of the intermediate poses in order to fix the compound pose.





### 9.3.2.4.2 Warping for Constraint Enforcement (Total Differential)

• We can write the total differential <u>in terms of left and</u> <u>right pose Jacobians</u>:



 This is an underdetermined system which can be solved with the <u>right</u> pseudoinverse

$$\Delta \underline{\rho} = \mathbf{J}^{\mathrm{T}} [\mathbf{J} \mathbf{J}^{\mathrm{T}}]^{-1} \Delta \underline{\rho}_{\mathrm{n}}^{0}$$



### 9.3.2.4.2 Warping for Constraint Enforcement (Closing Loops)

- Special case of warping (last slide).
- When the pose  $\underline{\rho}_n^0$  is associated with a <u>loop</u>, we have a constraint which is <u>something</u> like:

$$\underline{\rho}_1^0 \ast \underline{\rho}_2^1 \dots \underline{\rho}_n^{n-1} \ast \underline{\rho}_0^n = \underline{0}$$

• This is notation for:

$$T_1^0 T_2^1 \dots T_n^{n-1} T_0^n = I$$

• Which is of the form:

$$\underline{g}(\underline{x}) = \underline{b}$$

Often, maps are so smooth locally that enforcing loop constraints is enough to make a good map.

However, the extra computation needed to get an optimal map is also trivial once the loops close.



## 9.3.2.5 Constrained Optimization

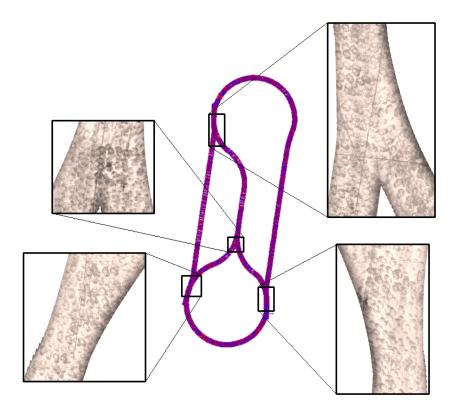
- Can also do both optimization and constraint enforcement <u>at the same time</u>.
- Formulation is:

minimize: 
$$f(\underline{x}) = \frac{1}{2}z(\underline{x})^{T}\underline{z}(\underline{x})$$
  
subject to:  $\underline{g}(\underline{x}) = \underline{b}$ 



# 9.3.2.5 Constrained Optimization (Penalty Function)

• Can also form a "constraint residual":


$$z(\underline{x}) = \underline{b} - \underline{g}(\underline{x})$$

- Add this to the overlap residual and find the minimum overall residual.
- This is the <u>penalty function</u> approach to constrained optimization.



### 9.3.2.6 Example Floor Imagery Mosaics as Maps (AGV Guidance Maps)

• Guidance based on Mosaics of floor imagery.





## 9.3.2.6 Example: Large Scale Lidar Maps (Grocery Store)

- 10,000 images have been rendered globally consistent.
- About 10 seconds of computation.

|                                                                                                                 | - <i>5-</i> *** |     |       | مى المركبينية مي المركبينية مي المركبينية المركبينية المركبينية المركبينية المركبينية المركبينية المركبينية ال<br>المركبينية المركبينية المركبينية المركبينية المركبينية المركبينية المركبينية المركبينية المركبينية المركبينية ال |                                                                                                                                                                                                                                                                                                                                                       |         |      | ingen de<br>Seguera de<br>Seguera de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.<br>1.<br>1. | Radiana di Pili                                                                                                 |   |
|-----------------------------------------------------------------------------------------------------------------|-----------------|-----|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------------------------------------------------------------------------------------------------------|---|
| A CONTRACTOR OF STREET, SAN THE | R               |     | R     |                                                                                                                                                                                                                                    | R                                                                                                                                                                                                                                                                                                                                                     | R       | F    | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | P              | No.                                                                                                             |   |
|                                                                                                                 |                 |     |       |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                       | TALLE   |      | THE WART                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |                                                                                                                 |   |
|                                                                                                                 | Hanna -         |     |       |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                       |         |      | The state of the s |                | and the second secon |   |
|                                                                                                                 |                 |     |       |                                                                                                                                                                                                                                    | المراجع المراجع<br>المراجع المراجع المراجع<br>المراجع المراجع |         |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                                                                                 |   |
|                                                                                                                 |                 |     | -2-2- |                                                                                                                                                                                                                                    | an ann air an                                                                                                                                                                                                                                                                                                     | X and X |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E-C-CU-CL-     |                                                                                                                 | ~ |
| ند :<br>مر                                                                                                      |                 | 1 E | 1 A   |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                       | U       | Ц    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | il a                                                                                                            |   |
|                                                                                                                 |                 |     | Ţ,ŗ   | 5-5-                                                                                                                                                                                                                               | - sk                                                                                                                                                                                                                                                                                                                                                  | guar (  | Ser- | <br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                | - 1                                                                                                             |   |

## Outline

- 9.3 Simultaneous Localization and Mapping
  - 9.3.1 Introduction
  - 9.3.2 Global Consistency in Cyclic Maps
  - 9.3.3 Revisiting
  - 9.3.4 EKF SLAM for Discrete Landmarks
  - 9.3.5 Example: Auto surveying of Laser Reflectors
  - Summary



## 9.3.3.1 Issues

- One of the most difficult problems in mobile robots.
  - connected to unsupervised object recognition
  - unsupervised because the system has to generate the models to be matched.
- Uniqueness/Aliasing:
  - If multiple places actually <u>look the same</u>, the difficulty is more serious.
- Omnidirectional sensors matter Why?

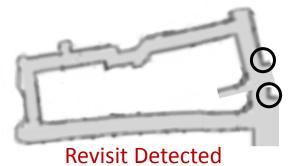
## 9.3.3.1 Issues

- To do SLAM, you potentially have to <u>check every</u> <u>image against every historical image</u> to see if there is a match.
  - Maybe you need to match entire submaps of neighborhoods if one image is not unique.
  - Position estimates can be used to reduce search.
  - Multi-hypothesis approaches are in vogue.
  - Others have used correlation schemes.



## 9.3.3.1 Issues

### (Global Data Association)


- Global level data association problems involve <u>heuristic</u> rather than brute-force search.
- Computer vision always has to solve this problem as part of the object recognition problem. Some examples include...
  - View/aspect recognition know which piece of an object you are looking at.
  - Mosaicking / Global Registration know which pieces belong together.
- Mobile robotics defines two instances of this problem:
  - <u>Place recognition</u>: determining that your sensor readings are consistent with a particular place in some map.
  - <u>Revisiting problem</u>: determining that your sensor readings are consistent with being in a place you have been before before a map is built.

## 9.3.3.2 Example: Revisiting from Lidar

- Suppose the map is a certainty grid m(I,j).
- Correlate incoming image grids l(I,j) with the map m(I,j) so far using H/W acceleration.

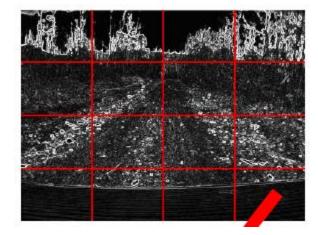
$$p(\rho|l,m) = k \sum_{i \in I} \sum_{j \in J} l[\rho, i, j]m[i, j]$$

 Different approach: lidar keypoints-based revisit detection has been done <u>on the scale of</u> <u>entire cities (Brisbane).</u>



**Repaired Map** 




True Floor Plan



9.3.3.3 Example: Revisiting from Video

(Weighted Gradient Oriented Histograms)

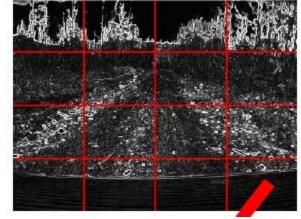
- Divide image into 4 X 4 regions.
- Compute polar histogram of gradient magnitudes.
  - 8 bin histogram of ...
  - gradients at each point ...
  - weighted by distance from center ...
  - and weighted by gradient magnitude

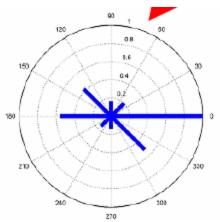




8 bin Histogram




9.3.3.3 Example: Revisiting from Video

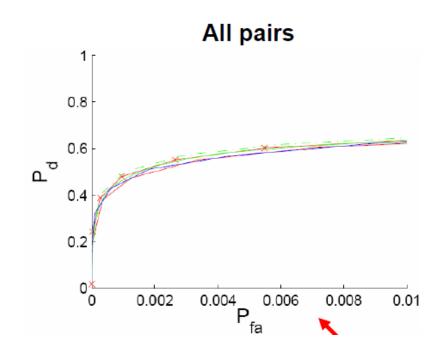

(Weighted Gradient Oriented Histograms)

- Concatenate all 16, 8 bin histograms into a 128-vector.
- Normalize to unit length.
- These 128 numbers encode the (image at) the place.
- Comparison of images to training set based on dot product feature space

38

 $d(X_i, X_j) = 1 - X_i X_j^T \quad \substack{\text{0} = \text{ parallel} \\ 1 = \text{ orthogonal}}$ 






Carnegie Me

THE ROBOTICS INST

## Example: Weighted Gradient Oriented Histograms

 Nearest neighbor classifier trained on 4700 prior images.



80 % probability of detectionWith 6% false alarm rate

## Outline

- 9.3 Simultaneous Localization and Mapping
  - 9.3.1 Introduction
  - 9.3.2 Global Consistency in Cyclic Maps
  - 9.3.3 Revisiting
  - <u>9.3.4 EKF SLAM for Discrete Landmarks</u>
  - 9.3.5 Example: Auto surveying of Laser Reflectors
  - Summary



## 9.3.4.1 System Model (Vehicle)

- As we have seen before...
- State vector:  $\underline{x} = \begin{bmatrix} x & y & \theta & v \\ \omega \end{bmatrix}^T$
- Dynamics:  $\dot{\mathbf{x}} = \begin{bmatrix} -V\sin\theta \ V\cos\theta \ \omega \ 0 \ 0 \end{bmatrix}^{\mathrm{T}}$
- "Transition matrix":





## 9.3.4.1 System Model (SLAM)

State vector includes landmarks:

$$\underline{\mathbf{x}} = \begin{bmatrix} \mathbf{x} \ \mathbf{y} \ \mathbf{\theta} \ \mathbf{V} \ \mathbf{\omega} \ \mathbf{x}_1 \ \mathbf{y}_1 \ \dots \ \mathbf{x}_n \ \mathbf{y}_n \end{bmatrix}^T$$

• Dynamics for landmarks ...





## 9.3.4.2 State Covariance Propagation

• Partition the state vector thus:

$$\underline{\mathbf{x}} = \begin{bmatrix} \mathbf{T} & \mathbf{T} \\ \underline{\mathbf{X}}_{\mathbf{V}} & \underline{\mathbf{X}}_{\mathbf{L}} \end{bmatrix}^{\mathsf{T}}$$

• Transition matrix:

$$\Phi = \begin{bmatrix} \Phi_{vv} & 0 \\ 0 & I \end{bmatrix}$$

• Partition State Covariance:

$$P = \begin{bmatrix} P_{vv} & P_{vL} \\ P_{Lv} & P_{LL} \end{bmatrix}$$



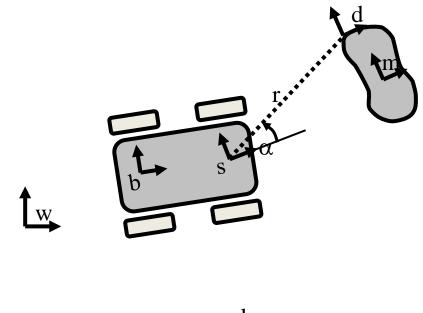
### 9.3.4.2 State Covariance Propagation

• Recall Covariance Propagation:

$$\mathbf{P}_{k+1} = \Phi_k \mathbf{P}_k \Phi_k^{\mathrm{T}} + \Gamma_k \mathbf{Q}_k \Gamma_k^{\mathrm{T}}$$

• First term:

$$\Phi_{k}P_{k}\Phi_{k}^{T} = \begin{bmatrix} \Phi_{vv} & 0 \\ 0 & I \end{bmatrix} \begin{bmatrix} P_{vv} & P_{vL} \\ P_{Lv} & P_{LL} \end{bmatrix} \begin{bmatrix} \Phi_{vv} & 0 \\ 0 & I \end{bmatrix}$$
$$\Phi_{k}P_{k}\Phi_{k}^{T} = \begin{bmatrix} \Phi_{vv} & 0 \\ 0 & I \end{bmatrix} \begin{bmatrix} P_{vv}\Phi_{vv}^{T} & P_{vL}I \\ P_{Lv}\Phi_{vv}^{T} & P_{LL}I \end{bmatrix}$$
$$\Phi_{k}P_{k}\Phi_{k}^{T} = \begin{bmatrix} \Phi_{vv}P_{vv}\Phi_{vv}^{T} & \Phi_{vv}P_{vL}I \\ IP_{Lv}\Phi_{vv}^{T} & IP_{LL}I \end{bmatrix}$$


### 9.3.4.2 State Covariance Propagation

• Recall Covariance Propagation:

$$\begin{split} \mathbf{P}_{k+1}^{-} &= \Phi_{k} \mathbf{P}_{k} \Phi_{k}^{T} + \Gamma_{k} \mathbf{Q}_{k} \Gamma_{k}^{T} \\ \text{Second term:} \\ \Gamma_{k} \mathbf{Q}_{k} \Gamma_{k}^{T} &= \begin{bmatrix} \Gamma_{vv} & 0 \\ 0 & I \end{bmatrix} \begin{bmatrix} \mathbf{Q}_{vv} & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{P}_{vv} & 0 \\ 0 & I \end{bmatrix} \\ \Gamma_{k} \mathbf{Q}_{k} \Gamma_{k}^{T} &= \begin{bmatrix} \Gamma_{vv} & 0 \\ 0 & I \end{bmatrix} \begin{bmatrix} \mathbf{Q}_{vv} \Gamma_{vv}^{T} & 0 \\ 0 & 0 \end{bmatrix} \\ \Gamma_{k} \mathbf{Q}_{k} \Gamma_{k}^{T} &= \begin{bmatrix} \Gamma_{vv} & 0 \\ 0 & I \end{bmatrix} \begin{bmatrix} \mathbf{Q}_{vv} \Gamma_{vv}^{T} & 0 \\ 0 & 0 \end{bmatrix} \\ \hline \Gamma_{k} \mathbf{Q}_{k} \Gamma_{k}^{T} &= \begin{bmatrix} \Gamma_{vv} \mathbf{Q}_{vv} \Gamma_{vv}^{T} & 0 \\ 0 & 0 \end{bmatrix} \\ \hline \end{split}$$

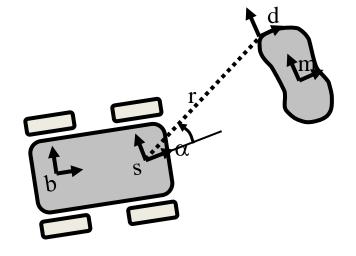
### 9.3.4.3 Measurement Model

Covered in KF Slides



$$\underline{\rho}_{d}^{s} = \underline{\rho}_{b}^{s} \underline{\rho}_{w}^{b} \underline{\rho}_{m}^{w} \underline{\rho}_{m}^{w} \underline{\rho}_{d}^{m}$$




### 9.3.4.3 Measurement Model

(Landmark Jacobian)

- Covered in KF Slides..
- Jacobian w.r.t veh pose.

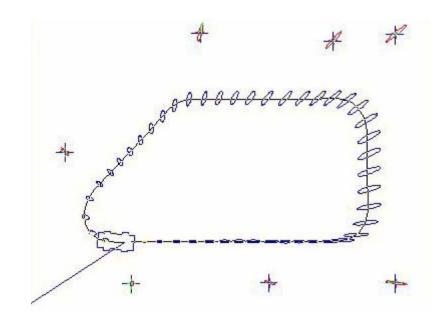
$$\mathbf{H}_{\mathbf{x}}^{\mathbf{z}} = \left(\frac{\partial \underline{\mathbf{z}}}{\partial \underline{\boldsymbol{\rho}}_{\mathbf{d}}^{\mathbf{s}}}\right) \left(\frac{\partial \underline{\boldsymbol{\rho}}_{\mathbf{d}}^{\mathbf{s}}}{\partial \underline{\boldsymbol{\rho}}_{\mathbf{d}}^{\mathbf{b}}}\right) \left(\frac{\partial \underline{\boldsymbol{\rho}}_{\mathbf{d}}^{\mathbf{b}}}{\partial \underline{\boldsymbol{\rho}}_{\mathbf{b}}^{\mathbf{w}}}\right) = \mathbf{H}_{\mathbf{s}}^{\mathbf{z}} \mathbf{H}_{\mathbf{b}}^{\mathbf{s}} \mathbf{H}_{\mathbf{x}}^{\mathbf{b}} \qquad \mathbf{\mathbf{f}}_{\mathbf{s}}$$

• Jacobian w.r.t landmark pose:



$$\underline{\rho}_{d}^{s} = \underline{\rho}_{b}^{s} * \underline{\rho}_{w}^{b} * \underline{\rho}_{m}^{w} * \underline{\rho}_{d}^{m}$$

$$\mathbf{H}_{m}^{z} = \left(\frac{\partial \underline{z}}{\partial \underline{\rho}_{d}^{s}}\right) \left(\frac{\partial \underline{\rho}_{d}^{s}}{\partial \underline{\rho}_{d}^{b}}\right) \left(\frac{\partial \underline{\rho}_{d}^{b}}{\partial \underline{\rho}_{d}^{w}}\right) \left(\frac{\partial \underline{\rho}_{d}^{w}}{\partial \underline{\rho}_{d}^{w}}\right) \left(\frac{\partial \underline{\rho}_{d}^{w}}{\partial \underline{\rho}_{m}^{w}}\right) = \mathbf{H}_{s}^{z} \mathbf{H}_{b}^{s} \mathbf{H}_{w}^{b} \mathbf{H}_{m}^{w}$$


# Outline

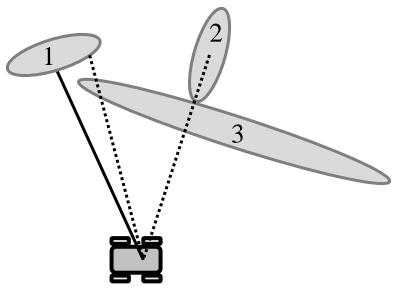
- 9.3 Simultaneous Localization and Mapping
  - 9.3.1 Introduction
  - 9.3.2 Global Consistency in Cyclic Maps
  - -9.3.3 Revisiting
  - 9.3.4 EKF SLAM for Discrete Landmarks
  - <u>9.3.5 Example: Auto surveying of Laser Reflectors</u>
  - Summary



# Initialization

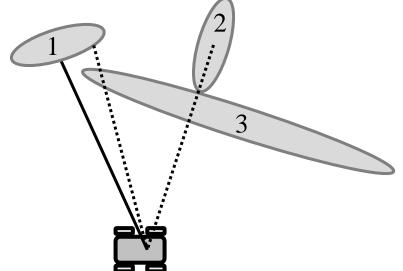
- The uncertainty in SLAM is <u>bounded from below</u> by the uncertainty of the initial conditions.
- The map can never be more accurate than the error in the initial position.
- In bearing-only SLAM, downrange localization is poor. When the robot gets near landmarks, its <u>uncertainty takes on the</u> <u>character</u> of that of nearby landmarks.




## Initialization

- In the most general case, the landmarks are <u>not</u> <u>known beforehand in number or location</u>.
- In scenarios where <u>measurements do not fully</u> <u>constrain landmark positions</u>.
  - need some kind of structure from motion.
  - Data association may be pretty hard to do. Some kind of visual tracking may be called for.

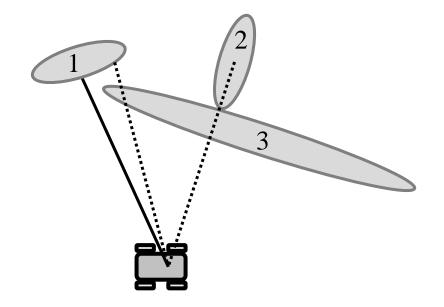



### 9.3.5 Example: Auto surveying of Laser Reflectors

- Motivation:
  - Surveying laser reflectors in factories costs a lot of money.
  - They move around and change in visibility as the plant is altered.
- It is possible to drive the robot around in a factory and use the laser guidance system to survey the reflector positions.
- Assume that the number and approximate location of landmarks is known beforehand.

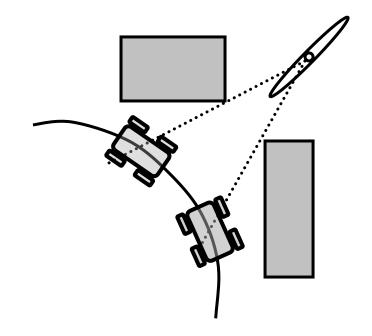


9.3.5 Example: Auto surveying of Laser Reflectors

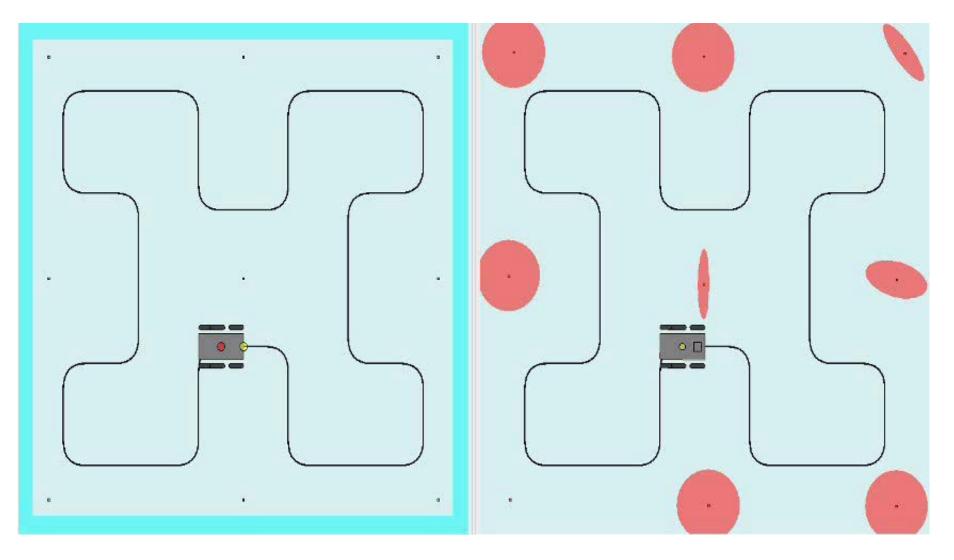

- 3+ well-known coordinates (1-1/2 landmarks) visible <u>initially</u> makes a huge difference.
- Reasonableness tests:
  - is reflective side of landmark facing the laser?






### 9.3.5.2 Data Association

- Sometimes uncertainty ellipses may overlap when projected onto the sensor space (bearing):
  - impossible to associate any readings unambiguously
  - impossible to locate the landmark
- Enough large ellipses and the <u>system cannot</u> <u>work</u>.




# 9.3.5.3 View Conditioning

- Reflector is viewed over a narrow range of viewing angles
  - its position along the direction of the laser <u>cannot</u> <u>be resolved well</u>.
- Does not too negatively affect the robot pose
  - Pose is <u>insensitive to depth</u> <u>variation</u>.
- Two sides of the same coin.



### Video



## 9.3.5.4 Brittleness

- SLAM with Kalman filters is a house of cards.
- One <u>incorrect positive</u> association has great potential to break everything.
- <u>False negatives</u> (not using data that you could have used) is much less of a problem
  - unless they amount to a significant fraction.
- Hence
  - YOU CAN AFFORD TO BE CONSERVATIVE.
- Errors are assumed to be <u>unbiased</u>.

Systematic errors of any significant size can cause filter divergence.

THE ROBOTICS INS

# Outline

- 9.3 Simultaneous Localization and Mapping
  - 9.3.1 Introduction
  - 9.3.2 Global Consistency in Cyclic Maps
  - 9.3.3 Revisiting
  - 9.3.4 EKF SLAM for Discrete Landmarks
  - 9.3.5 Example: Auto surveying of Laser Reflectors
  - <u>Summary</u>



## Summary

- A spectrum of degrees of quality exists for maps in terms of metric accuracy.
  - Self consistency and external consistency are the two highest.
- State vector consistency is only an issue if there are more states than the degrees of freedom of the system.
  - For sparse systems, state consistency can be enforced very efficiently.
- Its easy to do it all automatically except for one thing the revisiting problem.
- Using these techniques a sparse system with 30,000 degrees of freedom can be rendered consistent in a few seconds.

## Summary

- SLAM is an ambitious problem to tackle but some instances are harder than others.
- The amount and quality of initial information matters a lot.
- The degree of constraint generated by a single sensor reading matters a lot.
- Basically, its shape-from-motion. It cannot determine absolute location.