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9.3.1 Introduction

The common acronym is S-L-A-M but C-L-M (for Concurrent
Localization and Mapping) is used occasionally.

Some say, the most fundamental problem in mobile robots.

SLAM is a circular problem. The vehicle ...
— uses the landmark positions to determine its position and then
— uses its position to update all of the landmarks.

It is not possible to determine absolute position from such
an arrangement, but...

It is possible to use statistical modeling to remove most of
the inconsistency between:

— where a landmark is predicted to be based on measured vehicle
motion and

— where it now appears to be based on sensor readings.

Carnegie Mellon
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Introduction

Until a loop closes, SLAM is often akin to visual
odometry.

When a loop closes, things can get hard quickly.
— How do you know it closed?
— Does the entire map need to be updated?

| will discuss the original Kalman filter
formulation.

| will assume bearing/range landmark
measurements but bearing-only or range-only (or
anything else) can be done similarly.

Carnegie Mellon
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9.3.1 Introduction

(Map Quality Spectrum)
* A spectrum of increasing degrees of quality for

maps includes the following stages

— persistent storage (maps) enables point repeatability:

e points in the map are fixed.

— local smoothness enables tracking:

e otherwise, discontinuities in the map cause loss of lock.

— global (internal) consistency enables free-ranging:

 minimal discontinuities associated with loop closure.

— external consistency enables external programming:

e E.g. map which is consistent with a CAD drawing.

Carnegie Mellon
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9.3.2 Global Consistency in Cyclic Maps

(Setup)
 Suppose:

— some kind of images
overlap each other

— the goal is to register
them in all regions of
overlap.

 Could be camera or
rangefinder images.
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9.3.2 Global Consistency in Cyclic Maps
(Desiderata)
* Optimization.

— Would like residuals in overlap regions to be as small
as possible (zero is probably not possible due to
distortion and feature localization error).

e Constraint.

— Would like redundant degrees of freedom (if any) to
be geometrically consistent.

Carnegie Mellon
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9.3.2.1 Absolute Pose Formulation

Suppose the vector py, describes

where image m is w.r.t a world vy,
frame.

Residuals can be generated from
images m and k:

= 2, - T - TG
- r - Tl
This is of the form: T e
. ey —sy a xm
M7 sy ooy bl
— —h, ) :
I HI(Em) ’{(F—)k) 1 o 0 0 ]— 1

Where both x’s are the vector of
all image absolute poses.
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9.3.2.2 Relat!jve Pose Formulation

Suppose a vector P,
describes where image m is
w.r.t. image k. Yi

Residuals can be generated
from:

_ kK k _ ko gk ke om
z=r-r| =1 —Yfﬂ(gm)r_
k _ gk, ke om
This is of the form: ], = Tle,)
k — L
r=1z-nh = z-h(x : - -
' - (Bm) - (%) X c0 —s0 al [x"
. Kl = |1sO O b||,m
Where x is the vector of all y 0 o0 1l
image relative poses. ot AL
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9.3.2.3 Unconstrained Optimization

 We might want to minimize something like:

minimize:, f(X)

1 T
ér(x) r(x)

e Where r(x) is the composite of all residuals.

e Two Approaches:

14

— Minimization
 More robust, slower
— Rootfinding

e Assumes small residuals
e Less robust, faster
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9.3.2.3 Unconstrained Optimization

(Rootfinding Approach)
e Use the Jacobian from the linearized observer:

Ar = HAx

p—

 When system is fully or even overdetermined, (more
than enough features), we use the LPl and “solve” for the
whole residual r in a single iteration.

Ax = [HTH] HT 1

 Unfortunately, Ax can have 10,000 elements and r can be
larger so the matrices are huge.

— Works only for small problems.

Carnegie Mellon
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9.3.2.3 Unconstrained Optimization

(Minimization Approach)
e Gradient Descent:

0 :
d = ——f(x Follow gradient
d = -~ f(x) :
* Newton-Raphson:
52f _16f Find gradient roots
d = ‘[—2} =
OX X

e In either, there is never an issue getting enough
equations to determine the step (always enough
derivatives).

Carnegie Mellon
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9.3.2.4 Constraint Satisfaction with Relative Poses

e Relative poses raise a different

consistency issue. i
‘a L

* nimages have n-1 degrees of
pose freedom

~
~-——_-—-——

— Must fix one to fix the map ? B
location A, L)
 For nimages, there are R L ‘
possible, distinct, relative poses "=
where:
: nn—1
R:Zr=]+2+,”+n: (2 )

! Carnegie Mellon
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9.3.2.4 Constraint Satisfaction with Relative Poses

e |f the state vector is larger than
n-1 (i.e. if you have more relative
poses than necessary) . &b/,
— the possibility of inconsistency ST
arises / ‘

— system of unconstrained poses is i \
underconstrained because all the .
\ a _-7
elements are not truly \ <

independent. \\I__9
 There are natural consistency (i.e. =
loop closure) constraints that
should be imposed of the form: g(x) = b

Carnegie Mellon
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9.3.2.4 Constraint Satisfaction with Relative Poses

e Again: There are natural ?
constraints which should be

imposed to adequately constrain

the system:
g(x) =05

P—

e These are entirely separate from
the feature residual.

 Unless loops close, there is no
issue of consistency.

Carnegie Mellon
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9.3.2.4.1 Loop Constraints — Sparse Case
 Constraint equations are .

needed when loops % % %
close.

e Relatively few constraints i Enﬁtg
are needed in sparse
networks. O

e Leads to use of a slightly O
redundant state vector
and a few constraints. Forest Environment

Carnegie Mellon
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9.3.2.4.2 Warping for Constraint Enforcement

 Suppose:

— n poses which relate each of n+1 frames in an ordered
seguence to its predecessor.

— the relationship of the first frame with respect to the last has
just been determined to be slightly wrong.

 Problem is to change ALL of the intermediate poses in
order to fix the compound pose.

Note: All frames are actually in

e brofal U R geu.eral position with respect to ".\It""ﬂll
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9.3.2.4.2 Warping for Constraint Enforcement

(Total Differential)
e We can write the total differential in terms of left and

right pose Jacobians:

_ — O_
A
JCI I 21
En - F) s 6 n— 1 .
i Bl F_)n i Apn_l

 This is an underdetermined system which can be solved
with the right pseudoinverse

1
Ap = 1[0 Ap,

Carnegie Mellon
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9.3.2.4.2 Warping for Constraint Enforcement
(Closing Loops)

e Special case of warping (last slide).

0 . . .
* When the pose p, is associated with a loop, we
have a constraint which is something like:

B?"‘BéE:_I”BE =0 (" Often, maps are so )
— smooth locally that
° PR : . enforcing loop
This is notation for: constraints i enougt
1— 1 to make a good map.
T, T, Ty =1 ~ —/
 Which is of the form: (" However, the extra )
computation needed to
S — get an optimal map is
g(}—l‘) é also trivial once the

\_ loops close. )

Carnegie Mellon
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9.3.2.5 Constrained Optimization

e Can also do both optimization and constraint
enforcement at the same time.

e Formulation is:

1 T
minimize: f(X) = EZ()'() Z(X)

subjectto:  g(X) = b

Carnegie Mellon
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9.3.2.5 Constrained Optimization

(Penalty Function)
e Can also form a “constraint residual”:

Z(X) = b-gXx)

e Add this to the overlap residual and find the
minimum overall residual.

e This is the penalty function approach to
constrained optimization.

Carnegie Mellon

25 Mobile Robotics - Prof Alonzo Kelly, CMU RI THE ROBOTICS INS“TUTE



9.3.2.6 Example Floor Imagery Mosaics as Maps

(AGV Guidance Maps)
 Guidance based on Mosaics of floor imagery.

R 7t
o TPee
' 5 W g X 3

Carnegie Mellon
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9.3.2.6 Example: Large Scale Lidar Maps
(Grocery Store)

|
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9.3.3.1 Issues

 One of the most difficult problems in mobile
robots.

— connected to unsupervised object recognition

— unsupervised because the system has to generate the
models to be matched.

e Uniqueness/Aliasing:

— If multiple places actually look the same, the difficulty
IS more serious.

* Omnidirectional sensors matter — Why?

Carnegie Mellon
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9.3.3.1 Issues

 To do SLAM, you potentially have to check every
image against every historical image to see if
there is a match.

— Maybe you need to match entire submaps of
neighborhoods if one image is not unique.

— Position estimates can be used to reduce search.
— Multi-hypothesis approaches are in vogue.
— Others have used correlation schemes.

Carnegie Mellon
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9.3.3.1 Issues

(Global Data Association)
* Global level data association problems involve heuristic

rather than brute-force search.

e Computer vision always has to solve this problem as part of
the object recognition problem. Some examples include...
— View/aspect recognition - know which piece of an object you
are looking at.

— Mosaicking / Global Registration - know which pieces belong
together.

e Mobile robotics defines two instances of this problem:

— Place recognition: determining that your sensor readings are
consistent with a particular place in some map.

— Revisiting problem: determining that your sensor readings are
consistent with being in a place you have been before before a

map is built.

Carnegie Mellon
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9.3.3.2 Example: Revisiting from Lidar

e Suppose the map is a certainty
grid m(l,j).

 Correlate incoming image grids
I(1,j) with the map m(l,j) so far
using H/W acceleration.

ppllm) = kS M, i, jimli

ieljed

e Different approach: lidar
keypoints-based revisit detection
nas been done on the scale of
entire cities (Brisbane).
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9.3.3.3 Example: Revisiting from Video

(Weighted Gradient Oriented Histograms)
e Divide image into 4 X 4 .

regions.

e Compute polar histogram of
gradient magnitudes.
— 8 bin histogram of ...

— gradients at each point ... Ve ﬁ': %

— weighted by distance from ff R ) |
center ... \ /

— and weighted by gradient \::4!;_%__;,,;!;.:/
magnitude 8 bin Himstogram

Carnegie Mellon
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9.3.3.3 Example: Revisiting from Video

(Weighted Gradient Oriented Histograms)
Concatenate all 16, 8 bin

histograms into a 128-vector.

Normalize to unit length.

These 128 numbers encode
the (image at) the place.

Comparison of images to
training set based on dot
product feature space

38

d(X”Xj) :1—)(;_/Y":;‘Ir 0 = parallel

1= orthogonal
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Example: Weighted Gradient Oriented

Histograms
 Nearest neighbor
. o . All pairs
classifier trained on 4700 "
prior images. 08}

O"\ L 1 L L |
0 0.002 0004 0006 0.008 0.01

Pfa w

»80 % probability of detection
»With 6% false alarm rate

Carnegie Mellon
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9.3.4.1 System Model

(Vehicle)
As we have seen before...

]
State vector: X =[xy 6 V o

. . T
Dynamics: X = |-Vsin® Vcosd o 0 0]

“Transition matrix”:

100 -s6dt O

~ 1010 codt O
O=|1001 0 dt

000 1 O
000 0 1

Carnegie Mellon
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9.3.4.1 System Model

(SLAM)
e State vector includes landmarks:

X = I:xyG)Va)xly1 ...xnyn:lT

 Dynamics for landmarks ...

X 1 Landmarks
don’t move
Y1 with time.

=0

Carnegie Mellon
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9.3.4.2 State Covariance Propagation

e Partition the state vector thus:
T T T
<= | ]

e Transition matrix:
o = |Pw O
0O |

e Partition State Covariance:

va PvL

o
[

Prv P

Carnegie Mellon
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9.3.4.2 State Covariance Propagation

e Recall Covariance Propagation:

Pri1 = OP @ +T,Q, I
e First term:

CDkPk(D-lE — |:(va 0 va PVL CDIV 0
0 | _PLV PLL_ 0 |

T
)] Pv®,, Pyl
T — vv =vv ' vL

DO P D = [ Y I] .
_PLv(va I:)LLI_

T
II Cvava(va (DVVPVLI

IPL @y, 1P
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9.3.4.2 State Covariance Propagation
e Recall Covariance Propagation:

Pci1 = OP@ +T,Q,I)
e Second term:

Landmark A
uncertainty
does not grow

_ - /Kwith time.. )
QI = 1ﬂvvo vio 0
kk-k
0 1[0 Off o 1
_F _ T
T = A% I'yy O
FkaFk = vi \YAY;
0 1 0 0
T Independent
FkaF-kr = [TwQuwl'w O] of number of
0 0 landmarks.
. _ Carnegie Mellon
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9.3.4.3 Measurement Model
e Covered in KF Slides

b
S S b W m
Pd = Pp Pw Pm Py

Carnegie Mellon
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9.3.4.3 Measurement Model

(Landmark Jacobian)

e Covered in KF Slides.. d
e Jacobian w.r.t veh pose.
= .~
z 0z apd @pg Z, .S, b QL, 4
Hy = | = | =5 ||— | = HeHpHy g s
opy/\ 9Py )\ 9Py = [
e Jacobian w.r.t landmark pose:
S s, b W, m
Pd = Pb Pw Pm P

Carnegie Mellon
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Initialization

e The uncertainty in SLAM is
bounded from below by the

uncertainty of the initial WYV YVIIYY.
conditions. Vs -

e The map can never be more g"ﬂ ;
—

accurate than the error in ¢ _
the initial position. e

* In bearing-only SLAM, 4
downrange localization is
poor. When the robot gets
near landmarks, its
uncertainty takes on the
character of that of nearby
landmarks.

Carnegie Mellon
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Initialization

n the most general case, the landmarks are not
known beforehand in number or location.

n scenarios where measurements do not fully
constrain landmark positions.

— need some kind of structure from motion.

— Data association may be pretty hard to do. Some kind
of visual tracking may be called for.

Carnegie Mellon
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9.3.5 Example: Auto surveying of Laser Reflectors

e Motivation:

— Surveying laser reflectors in
factories costs a lot of money.

— They move around and change
in visibility as the plant is
altered.

e |tis possible to drive the robot
around in a factory and use the
laser guidance system to survey
the reflector positions.

e Assume that the number and
approximate location of
landmarks is known
beforehand.

Carnegie Mellon
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9.3.5 Example: Auto surveying of Laser Reflectors

* 3+ well-known coordinates
(1-1/2 landmarks) visible
initially makes a huge
difference.

e Reasonableness tests:

— is reflective side of
landmark facing the laser?

Carnegie Mellon
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9.3.5.2 Data Association

e Sometimes uncertainty
ellipses may overlap
when projected onto the
sensor space (bearing):

— impossible to associate
any readings
unambiguously

— impossible to locate the
landmark

 Enough large ellipses
and the system cannot
work.

Carnegie Mellon
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9.3.5.3 View Conditioning

e Reflector is viewed over a

narrow range of viewing /
angles

— its position along the
direction of the laser cannot
be resolved well.

 Does not too negatively
affect the robot pose

— Pose is insensitive to depth
variation.

e Two sides of the same coin.

Carnegie Mellon
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Video
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9.3.5.4 Brittleness

SLAM with Kalman filters is a house of cards.

One incorrect positive association has great
potential to break everything.

False negatives (not using data that you could
have used) is much less of a problem

— unless they amount to a significant fraction.
Hence

— YOU CAN AFFORD TO BE CONSERVATIVE.

Errors are assumed to be unbiased.

— Systematic errors of any significant size can cause filter
divergence.

Carnegie Mellon
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Summary

A spectrum of degrees of quality exists for maps in terms of
metric accuracy.

— Self consistency and external consistency are the two highest.
State vector consistency is only an issue if there are more
states than the degrees of freedom of the system.

— For sparse systems, state consistency can be enforced very
efficiently.

Its easy to do it all automatically - except for one thing - the

revisiting problem.

Using these techniques a sparse system with 30,000
degrees of freedom can be rendered consistent in a few
seconds.

Carnegie Mellon
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Summary
SLAM is an ambitious problem to tackle but some
instances are harder than others.

The amount and quality of initial information
matters a lot.

The degree of constraint generated by a single
sensor reading matters a lot.

Basically, its shape-from-motion. It cannot
determine absolute location.

Carnegie Mellon
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