
Chapter 9 
Localization and 

Mapping 
Part 3 

9.3 Simultaneous Localization and 
Mapping 
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9.3.1 Introduction 
• The common acronym is S-L-A-M but C-L-M (for Concurrent 

Localization and Mapping) is used occasionally. 
• Some say, the most fundamental problem in mobile robots. 
• SLAM is a circular problem. The vehicle … 

– uses the landmark positions to determine its position and then  
– uses its position to update all of the landmarks. 

• It is not possible to determine absolute position from such 
an arrangement, but... 

• It is possible to use statistical modeling to remove most of 
the inconsistency between: 
– where a landmark is predicted to be based on measured vehicle 

motion and  
– where it now appears to be based on sensor readings. 
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Introduction 
• Until a loop closes, SLAM is often akin to visual 

odometry.  
• When a loop closes, things can get hard quickly. 

– How do you know it closed? 
– Does the entire map need to be updated? 

• I will discuss the original Kalman filter 
formulation. 

• I will assume bearing/range landmark 
measurements but bearing-only or range-only (or 
anything else) can be done similarly.  
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9.3.1 Introduction 
(Map Quality Spectrum) 

• A spectrum of increasing degrees of quality for 
maps includes the following stages 
– persistent storage (maps) enables point repeatability:  

• points in the map are fixed. 

– local smoothness enables tracking:  
• otherwise, discontinuities in the map cause loss of lock. 

– global (internal) consistency enables free-ranging:  
• minimal discontinuities associated with loop closure. 

– external consistency enables external programming:  
• E.g. map which is consistent with a CAD drawing. 
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9.3.2 Global Consistency in Cyclic Maps 
(Setup) 

• Suppose: 
– some kind of images 

overlap each other  
– the goal is to register 

them in all regions of 
overlap. 

• Could be camera or 
rangefinder images. 
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9.3.2 Global Consistency in Cyclic Maps 
(Desiderata) 

• Optimization. 
– Would like residuals in overlap regions to be as small 

as possible (zero is probably not possible due to 
distortion and feature localization error). 

• Constraint. 
– Would like redundant degrees of freedom (if any) to 

be geometrically consistent. 
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9.3.2.1 Absolute Pose Formulation 
• Suppose the vector 𝜌𝜌𝑚𝑚𝑤𝑤  describes 

where image m is w.r.t a world 
frame. 

• Residuals can be generated from 
images m and k: 
 

• This is of the form: 
 
 

• Where both x’s are the vector of 
all image absolute poses. 
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9.3.2.2 Relative Pose Formulation 
• Suppose a vector           

describes where image m is 
w.r.t. image k. 

• Residuals can be generated 
from: 
 
 

• This is of the form: 
 
 

• Where x is the vector of all 
image relative poses. 

Mobile Robotics - Prof Alonzo Kelly, CMU RI 12 

r z h ρm
k( )– z h x( )–= =



9.3.2.3 Unconstrained Optimization 
• We might want to minimize something like: 

 
 

• Where r(x) is the composite of all residuals. 
• Two Approaches: 

– Minimization 
• More robust, slower 

– Rootfinding 
• Assumes small residuals 
• Less robust, faster 
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9.3.2.3 Unconstrained Optimization 
(Rootfinding Approach) 

• Use the Jacobian from the linearized observer: 
 

• When system is fully or even overdetermined, (more 
than enough features), we use the LPI and “solve” for the 
whole residual r in a single iteration. 
 
 

• Unfortunately, ∆x can have 10,000 elements and r can be 
larger so the matrices are huge. 
– Works only for small problems. 
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9.3.2.3 Unconstrained Optimization 
(Minimization Approach) 

• Gradient Descent: 
 

• Newton-Raphson: 
 
 

• In either, there is never an issue getting enough 
equations to determine the step (always enough 
derivatives). 
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9.3.2.4 Constraint Satisfaction with Relative Poses 

• Relative poses raise a different 
consistency issue. 

• n images have n-1 degrees of 
pose freedom 
– Must fix one to fix the map 

location  

• For n images, there are R 
possible, distinct, relative poses 
where: 
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9.3.2.4 Constraint Satisfaction with Relative Poses 
• If the state vector is larger than 

n-1 (i.e. if you have more relative 
poses than necessary) 
– the possibility of inconsistency 

arises 
– system of unconstrained poses is 

underconstrained because all the 
elements are not truly 
independent. 

• There are natural consistency (i.e. 
loop closure) constraints that 
should be imposed of the form: 
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9.3.2.4 Constraint Satisfaction with Relative Poses 

• Again: There are natural 
constraints which should be 
imposed to adequately constrain 
the system: 
 

• These are entirely separate from 
the feature residual.  

• Unless loops close, there is no 
issue of consistency. 
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9.3.2.4.1 Loop Constraints – Sparse Case 
• Constraint equations are 

needed when loops 
close. 

• Relatively few constraints 
are needed in sparse 
networks. 

• Leads to use of a slightly 
redundant state vector 
and a few constraints. 
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9.3.2.4.2 Warping for Constraint Enforcement 
• Suppose: 

– n poses which relate each of n+1 frames in an ordered 
sequence to its predecessor. 

– the relationship of the first frame with respect to the last has 
just been determined to be slightly wrong. 

• Problem is to change ALL of the intermediate poses in 
order to fix the compound pose. 
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9.3.2.4.2 Warping for Constraint Enforcement 
(Total Differential) 

• We can write the total differential in terms of left and 
right pose Jacobians: 
 
 
 

• This is an underdetermined system which can be solved 
with the right pseudoinverse 
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9.3.2.4.2 Warping for Constraint Enforcement 
(Closing Loops) 

• Special case of warping (last slide).  
• When the pose      is associated with a loop, we 

have a constraint which is something like: 
 

• This is notation for: 
 

• Which is of the form: 
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9.3.2.5 Constrained Optimization 
• Can also do both optimization and constraint 

enforcement at the same time. 
• Formulation is: 
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9.3.2.5 Constrained Optimization 
(Penalty Function) 

• Can also form a “constraint residual”: 
 
 

• Add this to the overlap residual and find the 
minimum overall residual. 

• This is the penalty function approach to 
constrained optimization. 
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9.3.2.6 Example Floor Imagery Mosaics as Maps 
(AGV Guidance Maps) 

• Guidance based on Mosaics of floor imagery. 
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9.3.2.6 Example: Large Scale Lidar Maps 
(Grocery Store) 

• 10,000 images have 
been rendered 
globally consistent. 

• About 10 seconds of 
computation. 

Mobile Robotics - Prof Alonzo Kelly, CMU RI 27 



Outline 
• 9.3 Simultaneous Localization and Mapping 

– 9.3.1 Introduction 
– 9.3.2 Global Consistency in Cyclic Maps 
– 9.3.3 Revisiting 
– 9.3.4 EKF SLAM for Discrete Landmarks 
– 9.3.5 Example: Auto surveying of Laser Reflectors 
– Summary 

Mobile Robotics - Prof Alonzo Kelly, CMU RI 28 



9.3.3.1 Issues 
• One of the most difficult problems in mobile 

robots. 
– connected to unsupervised object recognition 
– unsupervised because the system has to generate the 

models to be matched. 

• Uniqueness/Aliasing: 
– If multiple places actually look the same, the difficulty 

is more serious. 

• Omnidirectional sensors matter – Why? 
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9.3.3.1 Issues 
• To do SLAM, you potentially have to check every 

image against every historical image to see if 
there is a match. 
– Maybe you need to match entire submaps of 

neighborhoods if one image is not unique. 
– Position estimates can be used to reduce search. 
– Multi-hypothesis approaches are in vogue. 
– Others have used correlation schemes. 
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9.3.3.1 Issues 
(Global Data Association) 

• Global level data association problems involve heuristic 
rather than brute-force search.  

• Computer vision always has to solve this problem as part of 
the object recognition problem. Some examples include… 
– View/aspect recognition - know which piece of an object you 

are looking at. 
– Mosaicking / Global Registration - know which pieces belong 

together. 
• Mobile robotics defines two instances of this problem: 

– Place recognition: determining that your sensor readings are 
consistent with a particular place in some map. 

– Revisiting problem: determining that your sensor readings are 
consistent with being in a place you have been before before a 
map is built. 
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9.3.3.2 Example: Revisiting from Lidar 
• Suppose the map is a certainty 

grid m(I,j). 
• Correlate incoming image grids 

l(I,j) with the map m(I,j) so far 
using H/W acceleration. 
 
 
 

• Different approach: lidar 
keypoints-based revisit detection 
has been done on the scale of 
entire cities (Brisbane). 
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9.3.3.3 Example: Revisiting from Video 
(Weighted Gradient Oriented Histograms) 

• Divide image into 4 X 4 
regions. 

• Compute polar histogram of 
gradient magnitudes. 
– 8 bin histogram of … 
– gradients at each point … 
– weighted by distance from 

center … 
– and weighted by gradient 

magnitude 
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9.3.3.3 Example: Revisiting from Video 
(Weighted Gradient Oriented Histograms) 

• Concatenate all 16, 8 bin 
histograms into a 128-vector. 

• Normalize to unit length. 
• These 128 numbers encode 

the (image at) the place. 
• Comparison of images to 

training set based on dot 
product feature space 
distance: 
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Example: Weighted Gradient Oriented 
Histograms 

• Nearest neighbor 
classifier trained on 4700 
prior images. 
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9.3.4.1 System Model 
(Vehicle) 

• As we have seen before… 
• State vector: 
• Dynamics: 
• “Transition matrix”: 
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9.3.4.1 System Model 
(SLAM) 

• State vector includes landmarks: 
 
 

• Dynamics for landmarks … 
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9.3.4.2 State Covariance Propagation 
• Partition the state vector thus: 

 
 

• Transition matrix: 
 

• Partition State Covariance: 
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9.3.4.2 State Covariance Propagation 
• Recall Covariance Propagation: 

 
• First term: 
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9.3.4.2 State Covariance Propagation 
• Recall Covariance Propagation: 

 
• Second term: 
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9.3.4.3 Measurement Model 
• Covered in KF Slides 
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9.3.4.3 Measurement Model 
(Landmark Jacobian) 

• Covered in KF Slides.. 
• Jacobian w.r.t veh pose. 

 
 

• Jacobian w.r.t landmark pose: 
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Initialization 
• The uncertainty in SLAM is 

bounded from below by the 
uncertainty of the initial 
conditions. 

• The map can never be more 
accurate than the error in 
the initial position. 

• In bearing-only SLAM, 
downrange localization is 
poor. When the robot gets 
near landmarks, its 
uncertainty takes on the 
character of that of nearby 
landmarks. 

Mobile Robotics - Prof Alonzo Kelly, CMU RI 49 



Initialization 
• In the most general case, the landmarks are not 

known beforehand in number or location.  
• In scenarios where measurements do not fully 

constrain landmark positions. 
– need some kind of structure from motion. 
– Data association may be pretty hard to do. Some kind 

of visual tracking may be called for. 
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9.3.5 Example: Auto surveying of Laser Reflectors 
• Motivation:  

– Surveying laser reflectors in 
factories costs a lot of money. 

– They move around and change 
in visibility as the plant is 
altered. 

• It is possible to drive the robot 
around in a factory and use the 
laser guidance system to survey 
the reflector positions. 

• Assume that the number and 
approximate location of 
landmarks is known 
beforehand.  
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9.3.5 Example: Auto surveying of Laser Reflectors 

• 3+ well-known coordinates 
(1-1/2 landmarks) visible 
initially makes a huge 
difference. 

• Reasonableness tests: 
– is reflective side of 

landmark facing the laser? 
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9.3.5.2 Data Association 
• Sometimes uncertainty 

ellipses may overlap 
when projected onto the 
sensor space (bearing): 
– impossible to associate 

any readings 
unambiguously 

– impossible to locate the 
landmark 

• Enough large ellipses 
and the system cannot 
work. 
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9.3.5.3 View Conditioning 
• Reflector is viewed over a 

narrow range of viewing 
angles 
– its position along the 

direction of the laser cannot 
be resolved well.  

• Does not too negatively 
affect the robot pose 
– Pose is insensitive to depth 

variation. 

• Two sides of the same coin.  

Mobile Robotics - Prof Alonzo Kelly, CMU RI 56 



Video 
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9.3.5.4 Brittleness 
• SLAM with Kalman filters is a house of cards. 
• One incorrect positive association has great 

potential to break everything. 
• False negatives (not using data that you could 

have used) is much less of a problem 
– unless they amount to a significant fraction. 

• Hence 
– YOU CAN AFFORD TO BE CONSERVATIVE. 

• Errors are assumed to be unbiased. 
– Systematic errors of any significant size can cause filter 

divergence. 
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Summary 
• A spectrum of degrees of quality exists for maps in terms of 

metric accuracy.  
– Self consistency and external consistency are the two highest. 

• State vector consistency is only an issue if there are more 
states than the degrees of freedom of the system. 
– For sparse systems, state consistency can be enforced very 

efficiently. 
• Its easy to do it all automatically - except for one thing - the 

revisiting problem. 
• Using these techniques a sparse system with 30,000 

degrees of freedom can be rendered consistent in a few 
seconds. 
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Summary 
• SLAM is an ambitious problem to tackle but some 

instances are harder than others. 
• The amount and quality of initial information 

matters a lot.  
• The degree of constraint generated by a single 

sensor reading matters a lot. 
• Basically, its shape-from-motion. It cannot 

determine absolute location. 

Mobile Robotics - Prof Alonzo Kelly, CMU RI 61 


	Chapter 9�Localization and Mapping
	Outline
	Outline
	9.3.1 Introduction
	Introduction
	9.3.1 Introduction�(Map Quality Spectrum)
	Outline
	9.3.2 Global Consistency in Cyclic Maps�(Setup)
	9.3.2 Global Consistency in Cyclic Maps�(Desiderata)
	9.3.2.1 Absolute Pose Formulation
	9.3.2.2 Relative Pose Formulation
	9.3.2.3 Unconstrained Optimization
	9.3.2.3 Unconstrained Optimization�(Rootfinding Approach)
	9.3.2.3 Unconstrained Optimization�(Minimization Approach)
	9.3.2.4 Constraint Satisfaction with Relative Poses
	9.3.2.4 Constraint Satisfaction with Relative Poses
	9.3.2.4 Constraint Satisfaction with Relative Poses
	9.3.2.4.1 Loop Constraints – Sparse Case
	9.3.2.4.2 Warping for Constraint Enforcement
	9.3.2.4.2 Warping for Constraint Enforcement�(Total Differential)
	9.3.2.4.2 Warping for Constraint Enforcement�(Closing Loops)
	9.3.2.5 Constrained Optimization
	9.3.2.5 Constrained Optimization�(Penalty Function)
	9.3.2.6 Example Floor Imagery Mosaics as Maps�(AGV Guidance Maps)
	9.3.2.6 Example: Large Scale Lidar Maps�(Grocery Store)
	Outline
	9.3.3.1 Issues
	9.3.3.1 Issues
	9.3.3.1 Issues�(Global Data Association)
	9.3.3.2 Example: Revisiting from Lidar
	9.3.3.3 Example: Revisiting from Video�(Weighted Gradient Oriented Histograms)
	9.3.3.3 Example: Revisiting from Video�(Weighted Gradient Oriented Histograms)
	Example: Weighted Gradient Oriented Histograms
	Outline
	9.3.4.1 System Model�(Vehicle)
	9.3.4.1 System Model�(SLAM)
	9.3.4.2 State Covariance Propagation
	9.3.4.2 State Covariance Propagation
	9.3.4.2 State Covariance Propagation
	9.3.4.3 Measurement Model
	9.3.4.3 Measurement Model�(Landmark Jacobian)
	Outline
	Initialization
	Initialization
	9.3.5 Example: Auto surveying of Laser Reflectors
	9.3.5 Example: Auto surveying of Laser Reflectors
	9.3.5.2 Data Association
	9.3.5.3 View Conditioning
	Video
	9.3.5.4 Brittleness
	Outline
	Summary
	Summary

