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Physical Quantities 
• Mechanics is about 

properties of / relations 
between objects. 

• a is “r-related” to b 
• r property of a relative to b 
• Example velocity (v) of robot 

(r) relative to earth (e): 
• Relationship is directional 

and (often) asymmetric. 
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Properties ? 
• “r’ is not quite a property of a.  

– “the” velocity of an object is not 
defined. 

• It’s a property of a relative to b. 
• a and b are real objects. 
• In rare instances, we do not 

need a b. 
– unit vectors always of length 1. 
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Vectors, Matrices, and Tensors 
• With one exception (e.g. clight) all require a datum 

(def’n of zero). 
• May be scalars (density), vectors (velocity), 

tensors (_?_). 
– All are tensors of varying order. 

• We write: 
 

• The vectors at least can be of 1, 2, or 3 
dimensions. 
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Frames of Reference and Coordinate Systems 
• Objects of interest are real: 

wheels, sensors, obstacles. 

• Abstract them by sets of 
axes fixed to the body. 

• These axes: 
– Have a state of motion 

– Can be used to express 
vectors. 

• Call them coordinate 
frames. 
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Coordinate Frames 
• Points possess position but not orientation: 

 
 

• Rigid Bodies possess position and orientation: 
 
 

• A rigid body: 
– does not have one position. 
– does have one orientation 
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Vectors and Coordinates 
• Many laws of physics relate vectors and hold 

regardless of coordinate system. 
• Notation: 

– 𝑟𝑟 is expressed in some coordinate system. 
 

– 𝑟𝑟 is coordinate system independent. 
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Vectors and Coordinates 
• Vectors of physics are coordinate system 

independent: 
 
 
 
 
 
 

• Addition is defined geometrically. 
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Vectors and Coordinates 
• Vectors of linear algebra are coordinate system 

dependent: 
 
 
 
 
 

• Addition is defined algebraically. 
• A relation to physical vectors (directed line 

segments) requires a coordinate system. 
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Free and Bound Transformations 
• Distinguishes what happens when the reference frame 

changes. 
• Bound: the vector may change and its expression may 

change. 
– Transformation of frame of reference  (physics). 

• Free: the vector remains the same and its expression may 
change 
– Transformation of coordinates (mathematics). 
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Notational Conventions 

• r  relationship / property 
• o  object to which property is attributed 
• d  object serving as datum 
• c  object providing the coordinate system 
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Box 2.1 Notation for Physical Quantities 
•  𝑟𝑟𝑎𝑎: the r property of a expressed in the default 

coordinate system associated with object a. 

•  𝑟𝑟𝑎𝑎𝑏𝑏: the r property of a relative to b in coordinate 

system independent form. 

•  𝑟𝑟𝑎𝑎𝑏𝑏: the r property of a relative to b expressed in the 

default coordinate system associated with object b. 

•  𝑟𝑟𝑐𝑐 𝑎𝑎
𝑏𝑏: the r property of a relative to b expressed in the 

default coordinate system associated with object c. 
Mobile Robotics - Prof Alonzo Kelly, CMU RI 15 



Mobile Robotics - Prof Alonzo Kelly, CMU RI 16 



Sub/Super Scripts – Physics Vectors 

• Leading subscripts denote the frame/ object possessing 
the vector quantity: 

 
• Leading superscripts denote the frame/object with 

respect to which the quantity is measured (i.e. the 
datum): 
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Sub/SuperScripts – LA Vectors 
• Leading subscripts denote the object frame possessing 

the quantity: 
 

• Leading superscripts denote the datum (also the implied 
coordinate system within which the quantity is 
expressed). 
 

• Trailing superscripts denote the coordinate system, and 
leading denotes datum when necessary. 
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Notational Conventions 
• Position vectors: 

 
 

• Also sometimes as     or as     to emphasize it is a 
vector. 

•  Matrices: 
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Why All The Fuss ? 
• Accelerometer: acceleration of the 

sensor wrt inertial space: 
• Strapdown: acceleration of the 

sensor wrt inertial space referred to 
body coordinates: 

• Nav Solution: Acceleration of the 
body wrt earth referred to earth 
coordinates: 
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Why All The Fuss ? 
• WMR kinematics are 

much easier to do in 
the body frame. 

• Velocity of the front 
right wheel wrt the 
earth (“world”) frame: 

• Velocity of front right 
wheel wrt  earth 
referred to body 
coordinates: 
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Why All The Fuss ? 
• Coordinate system may 

be unrelated to either 
the object or the datum. 
– So you need a third 

symbol to be precise. 

Mobile Robotics - Prof Alonzo Kelly, CMU RI 22 

w 

w vfr 
b 

e 

e vfr 



rb Ta
b ra=

Converting Coordinates 

• We will see later that                notation satisfies our 
conventions where it means the ‘T’ property of ‘object’ a 
wrt ‘object’ b. 
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Tensors 
• For our purposes, these are multidimensional 

arrays: 
• Consider T(I,j,k) to be a 3D “box” of numbers. 
• Suppose it is 3X3X3, then there are three “slices” 

extending out of the page. 
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T1
2 3.6 7
8 4.3– 0

= T2
3 5– 12
4 2 1–

= T3
7 9.2 18

8 4– 0 13
=

T 2 1 3, ,[ ] T 2[ ] 1[ ] 3[ ] t213 12= = =
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Some Notation 
• Block Notation: 

 
 
 

• Tensor Notation: 
– [ .. ] means a set that can be arranged in a rectangle 

that is ordered in each dimension. 
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A
A11 A12

A21 A22

=

A aijk=

26 



Operations 
• Vector dot product: 

– Also written 

• Matrix multiplication: 
– Dot product of i-th row and 

j-th column  
 

• Cross product 
– Also written: 

 
– ‘Skew” matrix 
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a b⋅ ak bk
k
∑=

aTb
C AB cij[ ] aikbkj

k
∑= = =

c a b×

aybz azby–

azbx axbz–

axby aybx–

= =

c a b× aXb= =

aX
0 az– ay

az 0 ax–
ay– ax 0

=
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Operations 

• 2.2.1.7 Outer Product: 
 
 
 

• 2.2.1.8 Block Multiplication: 
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c abT
axbx axby axbz

aybx ayby aybz

azbx azby azbz

= =

A
A 11 A12

A 21 A22

= B
B11 B12

B21 B22

=

AB
A11B11 A12 B21+ A11 B12 A12 B22+
A21B11 A22 B21+ A21 B12 A22 B22+

=

28 



2.2.1.9 Linear Mappings 

• Of course, this is: 
– “every element of y depends on 

every element of x in a linear 
manner”. 

• Two views: 
– “A operates on x”: y is the list of 

projections of x on each row of A. 
– “x operates on A”: y is a weighted 

sum of the columns of A. x is the 
weights. 

• A turns x into y or x collapses 
A’s rows to produce y 

29 Mobile Robotics - Prof Alonzo Kelly, CMU RI 

y Ax=

= 
mX1 mXn 

nX1 
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2.2.2 Matrix Functions … 
• Function of a scalar: 

 
 
 

• Function of a vector: 
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A t( )
a11 t( ) a12 t( ) …

a21 t( ) a22 t( ) …

… … …

aij t( )= =

A x( )
a11 x( ) a12 x( ) …

a21 x( ) a22 x( ) …

… … …

aij x( )= =

30 



Exponentiation 
• Powers of matrices automatically commute: 

 
 

• Hence, we can define matrix “polynomials”: 
 
 
 

• Not so useful in practice but: 
– Y = aX2 +bX +c (scalar coefficients) is super useful. 
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A3 A A2( ) A2( )A AAA= = =

Y AX2 BX+= C+
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Arbitrary Functions of Matrices 
• Recall the Taylor Series: 

 
 

• Taylor series for exponential function: 
 
 

• Hence, define the matrix exponential as: 
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f x( ) f 0( ) x
xd

df

 
 
 

0

x2

2!
-----

x

2

d
d f

 
 
 

0

x3

3!
-----

x

3

d
d f

 
 
 

0
…+ + + +=

ex x( )exp 1 x x2

2!
----- x3

3!
----- …+ + + += =

A( )exp I A A2

2!
------ A 3

3!
------ …+ + + +=
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2.2.3 Matrix Inversion & Inverse Mapping 
• Matrix inverse defined s.t.: 

 
 
 

• Therefore:  
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A 1– y A 1– Ax x= =

x A 1– y=

A 1– A I=

33 



• Scalar-valued function of a 
matrix. 

• Matrix not invertible if distinct 
inputs map to same output. 

• Determinant measures: 
– Volume spanned by rows of A. 
– Ratio of  the volumes spanned by 

two input and the associated two 
output vectors. 

 
 
 
 

2.2.3.2 Determinant 
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det A( ) a b
c d

ad cb–= =

Matrix A 

(a,b) 

(c,d) 

34 



2.2.3.3 Rank 
• Rank = “dimension of largest invertible submatrix” 
• Unlike determinant, defined for nonsquare matrices. 
• A nonsquare matrix can have a rank no larger than the smaller of 

its two dimensions. 
• The rank of a matrix product cannot exceed the minimum of the 

ranks of the two operands. 
• For an mXn matrix A with (m <= n) 

– Rank = m  “is of full rank” 
– Rank < m  “is rank deficient” 

• For an n X n matrix A: 
– Rank = n  “nonsingular”, “invertible” 
– Rank < n  “singular”, “noninvertible” 
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2.2.3.4 Positivity 
• A square matrix A is called “positive definite” if: 

 
• Matrix equivalent to positive scalars: 

– E.g. sum of two pos def. matrices is pos. def. 

• Covariance, inertia, are always positive definite (in 
absence of bugs). 

• f(x)=xTAx is a parabloid in n dimensions. 
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xTAx 0        x 0≠∀>
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2.2.3.5 Homogeneous Linear Systems 
• Special form of system: 

𝐴𝐴𝑥𝑥 = 0 

• Is called a homogeneous system. 
• When 𝐴𝐴 is nonsingular, the solution is, of course: 

𝑥𝑥 = 𝐴𝐴−10=0 
• If 𝐴𝐴 is singular, there are an infinite number of 

nonzero solutions and 𝑥𝑥 is in the nullspace of A 
(see below for more on nullspace). 
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2.2.3.6 Eigenvalues and Eigenvectors 
• The vector 𝑒𝑒 is an eigenvector of 𝐴𝐴 when it 

satisfies: 
𝐴𝐴𝑒𝑒 = 𝜆𝜆𝑒𝑒 

• For some scalar 𝜆𝜆 called the eigenvalue associated 
with 𝑒𝑒. 

• To solve, rewrite first equation as: 
𝜆𝜆𝐼𝐼 − 𝐴𝐴 𝑒𝑒 = 0 

• Therefore, for this homogeneous system, nonzero 
𝑒𝑒 implies: 

𝑑𝑑𝑑𝑑𝑑𝑑 𝜆𝜆𝜆𝜆 − 𝐴𝐴 = 0 
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2.2.4 Subspaces 
• Consider: 

𝑦𝑦 = 𝐴𝐴𝑥𝑥  ;   𝐴𝐴 ∈ ℝ𝑚𝑚×𝑛𝑛 
• Range or columnspace of 𝐴𝐴, denoted C 𝐴𝐴  is the set of all 

possible values for 𝑦𝑦 ∈  ℝ𝑚𝑚×1. 
– equivalently all possible linear combinations of columns of A 

• The rowspace of 𝐴𝐴, denoted R 𝐴𝐴  is the set of all vectors 
𝑥𝑥 ∈  ℝ𝑛𝑛×1 for which 𝑦𝑦 = 𝐴𝐴𝑥𝑥  ≠ 0. 
– equivalently all possible linear combinations of the rowsof A.  

• The nullspace of 𝐴𝐴, denoted N 𝐴𝐴  is the set of all vectors 
𝑥𝑥 ∈  ℝ𝑛𝑛×1 for which 𝑦𝑦 = 𝐴𝐴𝑥𝑥 = 0.  
– Its rank is called nullity. 
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2.2.4 Rank Nullity Theorem 
• Every vector in the rowspace is orthogonal to 

every vector in the nullspace: 
𝑅𝑅(𝐴𝐴)  ⊥ 𝑁𝑁(𝐴𝐴) 

• The union of these two subspaces of ℝ𝑛𝑛 is ℝ𝑛𝑛 . 
𝑅𝑅 𝐴𝐴 ∪ 𝑁𝑁 𝐴𝐴 = ℝ𝑛𝑛 

• The dimensions of these two sum to m: 
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝐴𝐴 + 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝐴𝐴 = 𝑛𝑛 
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2.2.5.3 Blockwise Matrix Elimination 

• Given: 
 
 

• Assuming A is invertible, multiply first block row by 
CA-1: 

 
• Subtract two blocks of m rows to produce: 

 
• Solve for xB and substitute into original 1st equation 

to get xA. 
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A B
C D

xA

xB

yA

yB

= n n×

m n×

n m

n

m
  =

11

n

m

C CA 1– B
C D

xA

xB

CA 1– yA

yB

=

D CA 1– B–( )xB yB CA 1– yA–=
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2.2.5.4 Matrix Inversion Lemma 
• This is: 

 
• Derived in the text using block matrix inversion. 
• The matrix inversion on left is nXn. The one on the 

right is mXm. 
– Therefore, the inversion lemma is less work. 
– Often m=1 so its a lot less work. 
– Special case is the Sherman–Morrison formula often 

used to give a rank 1 update to an inverse. 

• Kalman filter is based on this. 
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A BD 1– C–[ ]
1–

A 1– A 1– B D CA 1– B–[ ]
1–
CA 1–+=
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2.2.6.2 Expansion Operations 
• Derivative of a matrix with respect to a vector is a 

3rd order tensor. 
 
 

• Each k is a different matrix [yij]: 
• Use this to perturb a matrix-valued function: 
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x∂
∂Y x( )  

xk∂
∂ yij x( )=

∆Y x∂
∂Y x( ) 

∆x

= 
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2.2.6.4 Product Rules - 1 
• Derivative of a matrix product w.r.t a scalar: 

 
 

• Example: 
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x∂
∂ C x( )

x∂
∂ A x( )B x( ){ }

x∂
∂ A x( ){ }B x( ) A x( )

x∂
∂ B x( ){ }+= =

td
d x t( )T Ax t( ){ }

 

x·TAx xTAx·+=
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2.2.6.7 Product Rules - 2 
• Derivative of a matrix product w.r.t a vector: 

 
 

• Examples: 

45 Mobile Robotics - Prof Alonzo Kelly, CMU RI 

C x( ) 

x∂
∂ A x( )B x( ){ } 

x∂
∂ A x( )B x( ) A x( )

x∂
∂ B x( )+= =

x∂
∂ xTA{ }

 

AT=

x∂
∂ x{ } 

x∂
∂ Ix{ } 

I= =

x∂
∂ xT{ }

 

x∂
∂ xTI{ }

 

I= =

x∂
∂ xT a{ }

 

aT=

x∂
∂ aTx{ }

 

aT=

x∂
∂ xTAx{ }

 

xTAT 
xT A+=
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2.2.6.8 Names and Notation for Derivatives 
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2.3.1 Affine Transformation 
• Most general linear transformation 

 
 
 
 

• R’s and t’s are the transform constants 
• Can be used to effect translation, rotation, scale, 

reflections, and shear. 
• Preserves linearity but not distance (hence, not areas or 

angles). 
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x2

y2

r11 r12

r21 r22

x1

y1

t1

t2

+=



2.3.1 Homogeneous Transformation 
• Set t1 = t2 = 0: 

 
 
 
 

• r’s are the transform constants 
• Can be used to effect rotation, scale, reflections, and 

shear (not translation). 
• Preserves linearity but not distance (hence, not areas or 

angles). 
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x2

y2

r11 r12

r21 r22

x1

y1

=

Homogeneous 

+ nothing 



2.3.1 Orthogonal Transformation 
• Looks the same   …                          but: 

 
 
 
 

• But: 
– Can be used to effect rotation. 
– Preserves linearity and distance (hence, areas and 

angles). 
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x2

y2

r11 r12

r21 r22

x1

y1

=
r11 r12 r21 r22+ 0=
r11r11 r21 r21+ 1=
r12 r12 r22 r22+ 1=
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2.3.2 Homogeneous Coordinates 
• Coordinates which are unique up to a scale factor. i.e 

 
• The numbers in the vectors are not the same but we 

interpret them to mean the same thing (in fact, the thing 
whose scale factor is unity). 
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x 6x 12x– 3.14x same thing= = = =

w 
w=1 

r̃ x y z w
T=

r̃ x
w
---- y

w
---- z

w
---- 1

T
=
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d

x
y
z
0

=

Pure Directions 
• Its also possible to represent pure directions 

– Pure in the sense they “are everywhere” (i.e. have no position 
and cannot be moved). 

• We use a scale factor of zero to get a pure direction: 
 
 
 
 
 

• It will shortly be clear why this works. 
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Why Bother? 
• Points in 3D can be rotated, reflected, scaled, and 

sheared with 3 X 3 matrices…. 
 
 
 

• But not translated. 
 
 

• What 3X3 matrix is Trans(∆r)? 
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r'
x'
y'
z'

Tr
txx txy txz

tyx tyy tyz

tz x tz y tz z

x
y
z

txxx tx yy txzz+ +

tyxx ty yy tyzz+ +

tz xx tzy y tz zz+ +

= = = =

r' r ∆r+
x1

y1

z1

∆x
∆y
∆ z

+= =



r' r ∆r+

x
y
z
1

∆x
∆y
∆z
1

+

1 0 0 ∆x
0 1 0 ∆y
0 0 1 ∆z
0 0 0 1

x
y
z
1

Trans ∆r( ) r= = = =

Trick: Move to 4D 

• The scale factor in the vector is used to add a 
scaled amount of the 4th matrix column. 
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x 1 x× ∆x+=
y 1 y× ∆y+=

z 1 z× ∆z+=



HT Matrix Format 
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input 

output 



Outline 
• 2.1 Conventions and Definitions 
• 2.2 Matrices 
• 2.3 Fundamentals of Rigid Transforms 

– 2.3.1 Definitions 
– 2.3.2 Why Homogeneous Transforms 
– 2.3.3 Semantics and Interpretations 

• Summary 

Mobile Robotics - Prof Alonzo Kelly, CMU RI 57 



Trig Function Shorthand 
• sin(θ)         sθ 
• cos(θ)         cθ 
• tan(θ)          tθ 
• sin(θ1)cos(θ2)      sθ1cθ2  s1c2 
• sin(θ1+θ2)             sθ1θ2    s12 
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Operators 
• Mapping: 

– Point  Point ’ (both expressed in same coordinates) 
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y 

z 

p 

p’ 

x 



Operators 
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Trans u v w, ,( )

1 0 0 u
0 1 0 v
0 0 1 w
0 0 0 1

=

y 

z 

p 

p’ 

• Note capital T in Trans(). 

x 



Operators 
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x 

y 

z φ 

• Note capital R in Rotx(). 

p 

p’ 
Rotx φ( )

1 0 0 0
0 cφ sφ– 0
0 sφ cφ 0
0 0 0 1

=



Operators 
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y 

z 

x θ 

• Note capital R in Roty(). 

p 

p’ 
Roty θ( )

cθ 0 sθ 0
0 1 0 0
s– θ 0 cθ 0
0 0 0 1

=



Operators 
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z 

x 

y ψ 

Rotz ψ( )

cψ s– ψ 0 0
sψ cψ 0 0
0 0 1 0
0 0 0 1

=

• Note capital R in Rotz(). 

p 

p’ 



Compound Operators 
• Mapping: 

– Point   Point′ (both expressed in same coordinates) 

• Compound mapping: 
– Point′   Point′′ (still in same coordinates) 

 
• Operators have fixed axis compounding 

semantics. 
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o''

1 0 0 0
0 0 1– 0
0 1 0 0
0 0 0 1

1 0 0 0
0 1 0 v
0 0 1 0
0 0 0 1

0
0
0
1

1 0 0 0
0 0 1– 0
0 1 0 0
0 0 0 1

0
v
0
1

0
0
v
1

= = =

Example: Operating on a Point 
• A point at the origin is translated along the y axis by ‘v’ 

units and then the resulting point is rotated by 90 
degrees around the x axis. 
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z 

x 

y v 
o' 0 v 0 1

T=

o'' 0 0 v 1
T=

o'' Rotx π 2⁄( )Trans 0 v 0, ,( )o=

Result 



Example: Operating on a Direction 
• The y axis unit vector is “translated” along the y 

axis by ‘v’ units and then rotated by 90 degrees 
around the x axis. 
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z 

x 

y 
j 0 1 0 0

T=

j ' 0 0 1 0
T=

j ' Rotx π 2⁄( )Trans 0 v 0, ,( ) j=

j '

1 0 0 0
0 0 1– 0
0 1 0 0
0 0 0 1

1 0 0 0
0 1 0 v
0 0 1 0
0 0 0 1

0
1
0
0

1 0 0 0
0 0 1– 0
0 1 0 0
0 0 0 1

0
1
0
0

0
0
1
0

= = =

• Having a zero scale factor 
disables translation. 

Same! 



HTs as Coordinate Frames 
• The columns of the identity HT can be considered 

to represent 3 directions and a point – the 
coordinate frame itself. 
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z 

x 

y 
j 0 1 0 0

T=

i 1 0 0 0
T=

k 0 0 1 0
T=o 0 0 0 1

T=

i j k o

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

I= =

{ { 3 directions point 



Example: Operating on a Frame 
• Each resulting column of this result is the transformation 

of the corresponding column in the original identity 
matrix … 

. 
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z 

x 

y 

I '

1 0 0 0
0 0 1– 0
0 1 0 0
0 0 0 1

1 0 0 0
0 1 0 v
0 0 1 0
0 0 0 1

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

1 0 0 0
0 0 1– 0
0 1 0 v
0 0 0 1

= =

I ' Rotx π 2⁄( )Tra ns 0 v 0, ,( )I=

0 0 1 0
T

0 1– 0 0
T

i’ 
k’ 

j’ 



Epiphany 1: HTs are Operators, and Operands, and 
Displacements. 

• 1) The operator that moves points as desired also moves axes 
in the same way. 

• But because the columns of an input matrix are treated 
independently in matrix multiplication… 

• 2) … the operator also moves entire frames (4 columns) in 
one shot when you express them as a matrix. 
– Note that the HT matrix can now be either operator or operand. 

• As Operand: But because frames can be embedded to track 
the motions of rigid bodies. 
– We can use this idea to computationally track the position and 

orientation of rigid bodies…. 
• As Operator: Every orthogonal matrix can be viewed as a 

displacement in translation and rotation. 
– Can be visualized as one set of axes located with respect to another 

set. 
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Epiphany 2 : Operator = Transformed Old 
Frame 

• Notice the result is: 
Rotx(𝜋𝜋/2) ∗  [𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(0, 𝑣𝑣, 0) ∗ 𝐼𝐼] 

• Which is: 
 [Rotx(𝜋𝜋/2) ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(0, 𝑣𝑣, 0)] ∗ 𝐼𝐼 

 
• Which is the compound operator: 

 [Rotx(𝜋𝜋/2) ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(0, 𝑣𝑣, 0)] 
 

• When the operand is the identity, the result is 
also the operator itself. 

Mobile Robotics - Prof Alonzo Kelly, CMU RI 70 



Epiphany 3 : Operator = Transform 
• Because the operator, like all operators, expresses the 

new frame in the coordinates of the original frame…. 
• 1) The operator has columns that express the new axes in 

the coordinates of the old ones. 
• Because 𝑦𝑦 = 𝐴𝐴𝑥𝑥 = 𝑎𝑎1𝑥𝑥1 + 𝑎𝑎2𝑥𝑥2 + ⋯ (where  𝑎𝑎1 is 1st col 

of A)… 
• And because the columns of the operator are the 

transformed unit vectors and origin….  
• Then the operator [Rotx(𝜋𝜋/2) ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(0, 𝑣𝑣, 0)] must 

convert coordinates from the primed frame to the 
unprimed frame. 

• See below for more.. 
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I b
a Rotx π 2⁄( )Trans 0 v 0, ,( )I a

a
1 0 0 0
0 0 1– 0
0 1 0 v
0 0 0 1

= =

Conversion of Basis 
• Operator: the result is the movement of frame a’s unit 

vectors (“basis”) to those of frame b. 

• So the result must express the unit vectors of frame b in 
coordinates of frame a. 
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ka 

ia 

ja 

ib 

kb 

jb 

• We have converted coordinates of 
the basis b from frame b to frame a. 



Converting Frames of Reference 
• Converting frames is about expressing the same physical 

point with respect to a new origin and set of unit vectors. 
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za 

xa 

ya 

zb 

xb 

yb 

rp
a rp

b

p 



Converting Coordinates 
• Consider a general point expressed relative to frame b in 

the coordinates of frame b. 

 

• The unit vectors can be expressed in any coordinate 
system we like. Choose a. 
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rp
a xp

b ia
b( ) yp

b ja
b( ) zp

b ka
b( ) ob

a+ + +=

Origin 
change 

By Definition: rp
b xp

b ib
b( ) yp

b jb
b( ) zp

b kb
b( ) ob

b+ + +=

rp
a xp

b Ib
a ib( ) yp

b Ib
ajb( ) zp

b Ib
akb( ) Ib

aob+ + +=



• This is: 
 

• Or more simply: 
 

• Because           converts the coordinates of the 
basis, it converts to coordinates of an arbitrary 
vector too: 
– because an arbitrary vector is just a linear combination 

of the basis vectors. 
– and matrices are linear operators 

Converting Coordinates 
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Ib
a

rp
a Ib

a xp
b ib

b( ) yp
b jb

b( ) zp
b kb

b( ) ob
b+ + +[ ]=

rp
b

rp
a Ib

a rp
b=



Operator/Transform Duality 
• The homogeneous transform that moves frame ‘a’ 

into coincidence with frame ‘b’ (operator) also 
converts the coordinates (transform) of points in 
the opposite direction - from frame ‘b’ to frame 
‘a’.  

• Because, of the opposite direction semantics, its 
sometimes more convenient to use the matrices 
which convert coordinates from frame ‘a’ to frame 
‘b’.  
– These are just the matrix inverses. 
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Aligning Operations 
• We can ask of any two frames: 

– What operations, applied to one frame, bring it into 
coincidence with the other. 

• To formulate the aligning operations 

• ……. is equivalent to formulating the coordinate 
transformation. 

• One of the biggest ideas in 3D kinematics. 
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Transforms 
• Mapping: 

– Point a  Point b   (same physical point) 
– Think now of moving frame a into coincidence with frame b. 
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za 

xa 

ya 

p 

zb 

xb 

yb 



Transforms 
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za 

xa 

ya 

p 

zb 

xb 

yb 

trans u v w, ,( )

1 0 0 u–
0 1 0 v–
0 0 1 w–
0 0 0 1

=

• Note lowercase t in trans(). 

(u,v,w) are defined as the 
position of the origin of b 
wrt a expressed in frame 
a coords. 



Note 
• Phi and theta may need to be swapped on the 

following slides. 
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Transforms 
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xa,xb 

ya 

za 

p 

θ 

θ 

yb 

zb 

rotx θ( )

1 0 0 0
0 cθ sθ 0
0 s– θ cθ 0
0 0 0 1

=

• Note lowercase r in rotx(). 



Transforms 
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ya,yb 

za 

xa 

p 

φ 

φ 

zb 

xb 

rot y φ( )

cφ 0 s– φ 0
0 1 0 0
sφ 0 cφ 0
0 0 0 1

=

• Note lowercase r in roty(). 



Transforms 
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za,zb 

xa 

ya 

p 

ψ 

ψ 

xb 

yb 

rotz ψ( )

cψ sψ 0 0
s– ψ cψ 0 0
0 0 1 0
0 0 0 1

=

• Note lowercase r in rotz(). 



Compound Transforms 
• Mapping: 

– Point a  Point b  (same physical point) 
– Result expressed in frame b 

• Compound mapping 
– Point b  Point c (same physical point) 
– Result now expressed in frame c. 

• Transforms have moving axis compounding 
semantics. 
– Result is not expressed in “the original frame” but 

rather in the last one. 
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Example: Compound Transformation 
• The origin of frame b has coordinates [0 0 v 1]T in frame a. Prove it. 

• Takes two fundamental operations. Compound transforms to 
convert ob  oa. 
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za 

xa 

ya 

xb 

zb 

yb 

xi 

zi 
yi 

v 

Intermediate 
frame 

ob
a trans 0 0 v–, ,( )rotx π– 2⁄( )ob

b=

ob
a

1 0 0 0
0 1 0 0
0 0 1 v
0 0 0 1

1 0 0 0
0 0 1– 0
0 1 0 0
0 0 0 1

0
0
0
1

1 0 0 0
0 0 1– 0
0 1 0 v
0 0 0 1

0
0
0
1

0
0
v
1

= = =



Format of HTs 

Mobile Robotics - Prof Alonzo Kelly, CMU RI 86 

Perspective Scale

Rotation
Matrix

Po
sit

ion
Ve

cto
r

We will not use the  
perspective part much 



Inverse of a HT 
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0

R

0 0 1

p

0

RT

0 0 1

-RTp=

-1



Duality Theorem 
• Note that transforms and operators of the same name 

are (matrix) inverses: 
 
 
 
 
 

• This implies that a sequence of transforms in one order 
(say, left to right) is identical to the same sequence of 
operators in the opposite order. 

• The latter view is traditional in robotics. 
• Without loss of generality, we will use operators only 

from now on. 
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t rans 0 0 v, ,( ) Tra ns 0 0 v, ,( ) 1–=

rotx θ( ) Rotx θ( ) 1–=

roty φ( ) Roty φ( ) 1–=

rotz ψ( ) Rotz ψ( ) 1–=



Outline 
• 2.1 Conventions and Definitions 
• 2.2 Matrices 
• 2.3 Fundamentals of Rigid Transforms 

– 2.3.1 Definitions 
– 2.3.2 Why Homogeneous Transforms 
– 2.3.3 Semantics and Interpretations 

• Summary 
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Summary 
• Tensors are just matrices with 3 or more indices. 
• Arbitrary functions on matrices can be defined. 
• The row space is orthogonal to the null space. 
• Gaussian Elimination can be performed blockwise to 

express solution to big problems in terms of solutions to 
small problems. 

• Matrix valued functions can be differentiated with 
respect to scalars and vectors. 
– Layout  of resulting tensor is implicit in the latter case.   
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Summary 
• An operator formed from an orthogonal HT 

preserves distances and hence is rigid. 
• Homogeneous Transforms are: 

– Operators 
– Transforms 
– Frames 

• They can be both the things that operate on other 
things and the things operated upon. 
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Summary 
• Such a 4X4 operator matrix has these properties. 

– It rotates and/or translates points and directions and 
hence rotates and translates coordinate frames. 

– Its columns represent the unit vectors and origin of 
the result of operating on a coordinate frame 
expressed in the coordinates of the original frame. 

– It converts coordinates of points and directions from 
the result to the original frame. 
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Summary 
• Everything is relative. There is no way to distinguish 

moving a point “forward” from moving the coordinate 
system “backward”. 
 
 
 
 

• In both cases, the resulting (red) point has the same 
relationship to the redframe. 
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