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Definitions

Motion = movement of the whole body thru
space.

Articulation = reconfigures mass without
substantial motion

Attitude = pitch and roll.
Orientation = attitude & (heading or yaw).
Pose = position & orientation

xyuyl xyz0dwy]
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Task and Joint Space

 For manipulators, 0,
joint space is also C
Space. .
* Manipulators are SO

difficult for operators Joint Space
to control in joint
space.

Task Space

. _ Carnegie Mellor
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Linear Mapping

e So far, we have used:

Task Space ‘ » | Task Space
r=T(p)r
Input Output
Vector . | Operator or > \/ector
r Transform o

e We have considered this to be a linear mapping in
r

— In part, because the matrix is considered a constant.

Carnegie Mellon
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2.4.1.1 Nonlinear Mapping

 There is another view of just the T(p) part when the
“aligning operations” correspond to real joints:

Configuration Space ! >| Task Space‘
Articulation Transform
Variables , |Forward S

P Kinematics T

 Thisisa nonlinear mappingin p.

e T isa matrix-valued function of the configuration vector
p.

e Recall that T can represent the pose of a rigid body (we
saw this in 2D with HTs).

Carnegie Mellon
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2.4.1.2 Mechanism Models

e Let p represent the articulations of a mechanism.

e |tis convenient to think about the moving axis operations
which align a sequence of frames with each other.

. _ Carnegie Mellor
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Conventional Rules of Forward Kinematics

1: Assign embedded frames to the links in sequence
such that the operations which move each frame into
coincidence with the next are a function of the current

joint variable.

2: Write the orthogonal operator matrices which
correspond to these operations in left to right order.

This process will generate the matrix that:

— A: represents the position and orientation of the last
embedded frame with respect to the first, or equivalently,

— B: which converts the coordinates of a point from the last to
the first.
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2.4.1.3 Denavit-Hartenberg Convention

* A special product of 4 fundamental operators is
used as a basic conceptual unit.

e |ts still an orthogonal transform so it has the
properties of the component transforms, namely:
— Operates on points

— Converts coordinates

— Represents axes of one system wrt another

. _ Carnegie Mello
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Denavit- Hartenberg Convention

e Rules:

— Assign frames to links. Consider in order from base to
end.

— Place z axis of each frame on joint linear or rotary axis.

— Point x axis along mutual perpendicular
Ly q

. _ Carnegie Mello
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Denavit- Hartenberg Convention

e Move first frame into
coincidence with
second thus:

— rotate around the x, ;
axis by an angle ¢,

— translate along the x, ,
axis by a distance u,

— rotate around the ne(<
z axis by an angle vy,

— translate along the
new z axis by a
distance w,

How can we get away
with just four dof?

Carnegie Mellon
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Denavit- Hartenberg Convention
 Moving axis operations in left to right order:

TE-1 = Rotx(¢) Trans(yy, 0, 0)Rotz(y,) Trans(0, 0, w)

1 0 0

0100
0010

Off100u,
0 o, -, O
0 s, co, O
1J{000 1

cy, sy, 00[[100 0]
sy, cy, 00/1010 0

0

0

0 10 OOka
0 01/000 1

00 0

@ =

0 0

0

o

A= T-1 = ChL SV (@\Vk _sq)k _S(I)k@ 4 “parameters”

SOLSY | SO Cy, CO, CH W

1
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Denavit- Hartenberg Convention

cCy, Sy, O u,

_ [COSY COCW SOy S W

SOLSY SOCyY, Ch  ChH W
0 0 0 1

 This matrix has the following interpretations:

— It will move a point or rotate a direction by the operator which
describes how frame k is related to frame k-1.

— Its columns represent the axes and origin of frame k expressed in
frame k-1 coordinates.

— It converts coordinates from frame k to frame k-1.

Carnegie Mellon
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2.4.1.4 Example: 3 Link Planar Manipulator

Yo.1

y3 y4

4 1 2 @}IM

— Ll LZ—"— L3_’
Link b u 1 W
0 0 0 W, 0
1 0 |1 WV, 0
2 0 ) 2 0
3 0 5 0 0
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Example: 3 Link Planar Manipulator

A =Tk 1= CORSV Y COCY Y —SP —SO W)
SOLSY | SO CWY Ch  CH W
0 0 0 1 ]
¢; -5, 00 ¢; 5 00 c,—s, 0L, ¢, 5,0 —,L,]
I, = B C 00a71 = |51€100 A, = [2 0 0 as = =S, G 0 S;L
0 010 0 010 0 010 0 01 O
0 0 01 0 001 0 00 1) 0 00 1
'03—530L2- '03 830—C3L2- -1OOL3- -1OO—L3_
Ay= 73 G 00 an= 5360 Sshofflg = (010 0fa-1=f010 0O
0 010 0 01 O 001 0 001 O
|0 0 0 1] 10 00 1 _ 000 1 000 1

17
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Example: 3 Link Planar Manipulator

T2 = TRTITETE = A1AAGA,

C; =S4 00}|c, =s, O L4]l|c3—s3 O L, 100L,
T2—510100520200 s3 ¢ 0 0jjo100
O 0 10//|0 0 1 0f||0 0 1 0]0010O0
_0001__00010001_0001

| | | -
C123I S123| 0 (0123|—3 +Cpl, +CqeLy)

T9 = S123} Ci123 I O.(5123|—3+ Spobp +51L4)
0! 0 !0 1
Orlentathn pOSItIOn

A Completely General Forward Kinematics Solution!
011
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Nonlinear Mapping

* Recall our view of: T(p)

‘Task Space I »| Configuration Space
Articulation
Transform :
, | Inverse > Variables
T Kinematics 0

 The harder (by far) of the two directions.

 Tis given as a block of numbers, not symbols.

Carnegie Mellon
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Ba

Base

Kinematics

- i Tool

@ O 6

Shoulder Elbow Wrist

I_T,OOI
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2.4.2.1 Existence and Uniqueness

* Existence
— Nonlinear equations need not be solveable.
 Uniqueness
— There is no rule requiring only one answer.
— E.g. tanB =0
tano 0

. . . .
/2 3m/2 St/2 m2 g
23 Mobile Robotics - Prof Alonzo Kelly, CMU RI THE ROBO.I{.IEgliﬁ]SPT\"IE]I lnt ’lj'é



Existence

 Nonlinear equations need not be solveable.

i D:[:\

. _ Carnegie Mello
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Uniqueness

 There is no rule requiring only one answer.

_ Goal

/
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2.4.2.2 Technique

e Rewrite equations in multiple ways in order to isolate unknowns.
— No new info generated, its just algebra.

Premultiply — Postmultiply —
TP = AJALAA, T = AJALAA,
ATITY = AALA, TIAZE = AJALA,
AFATITY = ALA, TIAIAZY = ALA,
AFLASIATITS = A, TIAZAZIASY = A,
AFLAGIASIATITS = | TIAIAGIAZIATL = |
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2.4.2.3 Example: 3 Link Planar Manipulator

* Account for known gquantities.

e Thisis a 2D problem, so...

r11 12 13 Py i1 4,0 P,
TQ = Fo1 Moo T3 Py| = |ra1 1220 p

F31 T35 33 P, 0 01 O]

0O 0 0 1 |0 00 1]

. _ Carnegie Mello
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Example: 3 Link Planar Manipulator
T3 = AJAAGA,

rqf rp O Py

| r O By
O 010

0 001

123

$123
0
0

—S103 0 (CyglgtCypl,+Cyly)

Ciog 0 (Sppglgt sysl, +51L9)
0O 1 0
0O O 1

e From the (1,1) and (2,1) elements we have:

28

Wiz = atan2(rpg, 1)
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Example: 3 Link Planar Manipulator
0ALL = \
TAAZ" = AL AA;

fg T2 0 =ryqlg +py Cip3 =S123 0 G (Coly + L) —5:(S,L,)
o T 0 =Tolkg +Py| = |S123 Ci3 0 §1(Coly + Ly) +Cy(S5L5)
0 01 0 0 0 1 0
0 0O 1 0 0 O 1

F19 1o O)=rqqbg + Py Cip3 =S123 OJCp L, + ¢4L

Fn T O|=To1bs + Pyl = [S123 Cizs OfSpplo *+ 5114

0 01 ) 0 0 1 v,

ooo 1 | [o 00 1 |

e From the (1,4) and (2,4) elements we have:
Ky = —rybs+py = cpl, + ¢y

K

—rybz+py = splo+silhy

Carnegie Mello
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Example: 3 Link Planar Manipulator

Repeat from last slide: from the (1,4) and (2,4) elements we have:

k; = —rppbg+py = cplb, + 0L
Ko = =Toilg +py = spply+s1L,
e Square and add (eliminates 0,) to yield:
24 k2 — 12412
Or: ki +k; = Ly+L7+2L,L,(c,Cpp +5,555)

kf+ks = Ls+L2+2L,L,c,

Rearranging gives the answer:

(K2+k2) - (L2+ L2
20,1,

Y, = acos[

|

Each solution gives different values for the other two angles.
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Example: 3 Link Planar Manipulator

2"d time, from the (1,4) and (2,4) elements we have:

Ky = —rqibg+py = cpl, + ¢,

kKo = =roilg +py = sppLly+s51L4

With y2 known, these are:

clk3—slk4 = k1

Slk3 +Clk4 — k2

That’s a standard form. The solution is:

v, = atan2[(k,k; — Kk K,), (K;K; +K,K,)]

The last angle is then:

31

V3 = Wiz~ Vo~ Yy
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That’s PRETTY AWESOME!

Y123 = atan2(rp, ryg)
k?+ k%) —(L2+L?
\|/2:acos(1 )~ (Ly+ L)
2L, L,
v, = atan2[(K,k; —k k,), (K ks +K,K,)] Goal

V3 = Wiz~ Vo~ V4
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2.4.2.4 Standard Forms: Explicit Tangent

e Occurs very frequently:

a = c,
b = s, /\ b
e |solate tangent: \j

e Clearly:
Y v, = atan2(b, a)

‘Why do we need two equations for one unknown? ‘
Mobile Robotics - Prof Alonzo Kelly, CMU RI THE ROBO.I{.IEEHI.ﬁiE\IE“"ﬁ
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2.4.2.4 Standard Forms: Point Symmetric

e Occurs as:
sa-cb =20

* |solate tangent: /\ h
s - J

c, a

e Clearly:

v, = atan2(b, a)
‘Why two solutions? ‘

vy, = atan2(-b, -a)

. _ Carnegie Mello
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2.4.2.4 Standard Forms: Line Symmetric

Occurs as:

Trig substitution:

r B
a = rcos(0) Ny
b = rsin(0) w
Leads to:

s,a—c,b =c¢

S(0—wy,) = C/r

So: c(0—y,) = +sqrt(1—(c/r)?)

Solution

35

v, = atan2(b, a)—atan2[c, +sqrt(r2 — c2)]

’ rie Mello
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Inverse Kinematics of a DH HT?

Articulation
Transform _ |inverse » Variables
T Kinematics >
11 T2 T3 By Cy; sy O Ui
(0 T Tog Pyl = [COSW; COCW; —SO; —SO;W;
f31 T3 T3z P SO;SY; SOICY; Co; CoWw;
ooo01 | o o 0o 1 _
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Inverse Kinematics of a DH HT?
Ty = Rotx(¢;)Trans(u;, 0,0)Rotz(y;) Trans(w;, 0,0)

(T T |Py] = i

11 T1o T3 [Py Cyi  —SVY;
COiSY; COiCy; —Sh;|—Sh; W

f31 3o T3
000 1f [ o 0 o0 1
 Translation part is easy:
U = px
B 2 2
W| - py+ pz

37
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Inverse Kinematics of a DH HT?
Ty = Rotx(¢;)Trans(u;, 0,0)Rotz(y;) Trans(w;, 0,0)

M1 T2

M3

[y T

l31 I3

[

33

0 0 0 1

cy; -Sy; |0

U;

CO;SY; COiCy; SO
SO;SY; SOiCy; [Co;

—SO;W;

Ch;W;

0 0 0

e Rotation not much harder:

38

Y
bi

atan2(—riz,r11)

atan2(—ry3,I33)

Mobile Robotics - Prof Alonzo Kelly, CMU RI

1

Carnegie Mel IUE

THE ROBOTICS IN



Outline

e 2.4 Kinematics of Mechanisms
— 2.4.1 Forward Kinematics
— 2.4.2 Inverse Kinematics
— 2.4.3 Differential Kinematics

— Summary

e 2.5 Orientation and Angular Velocity

Carnegie Mellon

39 Mobile Robotics - Prof Alonzo Kelly, CMU RI THE ROBOTICS INSTITUTE



Differential Kinematics

e Studies the derivatives (first order behavior) of
kinematic models.

e Use Jacobians (multidimensional derivatives) to
do this.
e Use them for:
— Resolved rate control
— Sensitivity analysis
— Uncertainty propagation
— Static force transformation
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Derivatives of Fundamental Operators

10 0 0O

o = 104

. X 00 0 1

00 00
0 _ |0 —-s¢p—-cop O
ROtX() =

a9 o) 0 cop Ss¢ O

00 00

* Note capital R in Rotx().

. _ Carnegie Mello
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Derivatives of Fundamental Operators

0
T =
= rans(u, v, w)

0 _
a—VTrans(u, V, W) =

%Trans(u,v,w) =

42 Mobile Robotics - Prof Alonzo Kelly, CMU RI

0001
0000

0000
0000

000 0
000 1

0000
0000

0000
0000

0001

0000

0 _
%Rotx(q)) =

%,
—Roty(0) =
=5 y(0)

%Rotz(w) -

00 0 0
0-s¢p-copO
0cd -s¢0
00 00

500 cO 0

O 0 0O
—cO 0-sO0

10000

—sy —cy 00
cy -sy 00
0O 0 00

0 0 00

Carnegie Mello
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2.4.3.2 Mechanism Jacobian

e How much does end effector move if | tweak this
angle 1 degree?
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2.4.3.2 Mechanism Jacobian

e Recall a Jacobian.... N
r X and g can
o * -
x = F(q) be anything )
Efxl Eixl
-7 |99, 9q
o Then: ox A Ax. L &
J== = Z(E@) = Sl =
B “ —qu ox ox
%9 9q,

e Basic use: d)_c _ Jdg

Carnegie Mello
THE ROBOTICS INSTITUTE
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Resolved Rate Control

* By the Chain Rule of Differentiation:

dx _ [ox (99
d¢ 0q )\ d?
e This is just: )_C _ JQ

e Suppose x is the position of the end effector. This
IS:

o . What does
— Nonlinear in joint variables .
. . .. that imply?
— Linear in the joint rates!

. _ Carnegie Mello
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Resolved Rate Control ’

e Direct mapping from desired velocity onto joint rates!

—1
= J(@q)
e Singularity (infinite Jomt rates) occurs:

— at points where two different inverse kinematic solutions
converge

— when joint axes become aligned or parallel
— when the boundaries of the workspace are reached

Carnegie Mellon
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2.4.3.5 Jacobian Determinant

(dx,dX5...dx,) = Jl(dg,dq,...dgy)

dq;
'8 — £
|J| dxl dX3

dq,

e Relates differential volumes in task space to
differential volumes in configuration space.

— Used in calculus for double, triple, etc integrals.
 We will use this later to figure out when

landmarks are in unfavorable configurations for
navigation.

Carnegie Mellon
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2.4.3.4 Example: 3 Link Planar Manipulator

e Forward kinematics:
X = (Cyplz*+Cyoly+Cqlyq)
Y = (Spp3lg +Sp5Ly +51L4)
Y =y, ty, Ty,
* Differentiate wrt y,, v,, and ..
X = ~(Spp3y123l g+ Sp w10k, +51y1ly)
y = (0123\[1123|—3+ C12\|.112 |—2+ Cl\ifll—l)
v = (g1 +wotys)
 |n matrix form:

(—=S1o3L3 =S1oLo—51L1) (=813 3= S35 5) =Sy3l 3w
(CppglgtCplytcily) (Cppgbg*+Ciply) Cipglsws
1 1 1

e X,
|

VEl

Carnegie Mello
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Summary

* We can model the forward kinematics of
mechanisms by

— embedding frames in rigid bodies

— employing the fundamental orthogonal
operator matrices

— employing a few rules for writing them in the
right order to represent a mechanism.

e The DH convention consists of a special
compound orthogonal transform and a few
rules for orienting the link frames.

— These can be used just like the fundamental

orthogonal operator matrices to do forward
kinematics.

. _ Carnegie Mello
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Summary

* Inverse kinematics requires more skill and
relies on rewriting the forward equations in
an attempt to isolate unknowns.

e Various derivatives of kinematic transforms
can be taken and each has some use.

Carnegie Mello
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Definitions

Yaw y = rotation about vertical axis

Pitch O = rotation about sideways axis
Roll ¢ = rotation about forward axis.
Attitude = roll & pitch [¢ O]

Orientation = attitude + yaw [¢ O y]

Pose = position + orientation [xy z ¢ 0 y]
Azimuth = yaw (for a pointing device)
Elevation = pitch (for a pointing device)

Heading = angle of path tangent. Sometimes
same as yaw. Sometimes not.

. _ Carnegie Mello
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Definitions

 Pose = position & orientation

e |In2D: :x y\p:IT

: T
* In3D: _XyZG(I)\V:I
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2.5.1.1. Axis Conventions

* Aerospace:

D NN A

y
pitch z

yaw

e Ground Vehicles (here at least): y

i =y
<O—oV

. _ Carnegie Mello
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2.5.1.2 Frame Assighnment

Lt

Letter | Name

n,w Navigation, world
W world

P positioner

b,v body, vehicle

h head

S sensor

C wheel contact

Mobile Robotics - Prof Alonzo Kelly, CMU RI
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2.5.1.3 The RPY Transform

e Similar to DH Matrix but encodes 6 dof:

e Aligning operations that move ‘@’ into coincidence
with ‘b’:
— translate along the (x,y,z) axes of frame ‘a’ by (u,v,w)
until its origin coincides with that of frame ‘b’
— rotate about the new z axis by an angle y called yaw
— rotate about the new y axis by an angle 9 called pitch
— rotate about the new x axis by an angle ¢ called roll

Mobile Robotics - Prof Alonzo Kelly, CMU R THE ROBoﬁEg'i‘ﬁi*'“F""ié
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RPY Forward Kinematics

Tg = Trans(u,v,w)Rotz(y)Roty(0)Rotx(¢)

100 ulloy sy 00][co 0so0]f10 0 O
Ta = [010v||sw cy 00[[0 10 0[|0c-sp0

0o1w|lo 0 10[|-s60co00]|{0sd co O
0oo1flo 0o o1flo oo 1fjoo 0 1

-C\|JC9 (CysOsp —syco) (CysOCco + Ssyso) u

T2 = SycO (SysOsg +cwycd) (Sysbco —Ccysp) V
—S0 cOso cOco 0

0 0 0 1

Mobile Robotics - Prof Alonzo Kelly, CMU R THE ROBoﬁEg’i'ﬁi*'Mf‘""Eig
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2.5.1.4 RPY Transform Inverse Kinematics
Tp = Trans(u,v,w)Rotz(y)Rotx(0)Roty(d)

f1f12 13 Px|  [bwco|cwsOso - swecd) (cwsocod +sysd) u
21 [22 23 Py| = |IsycO|(SysOs) +cwycd) (sysOco —Ccysdp) V

r31 32 33 P; —sb c0s¢ coce v
o000 1| LO 0 0 H
bonx axis Yy = atan2(rpqy, rqp)

In world

e Yaw can be determined from a vector aligned with
the body x axis expressed in world coordinates .

|s there another solution?
e Only if there are 2 solutions for 6.

e What if Ce_ IS _ZerO? Carnegie Mellon
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Singularity {c0=0}

$g o %

0 O
£z O O
-y 0 = 30°
0 = 90°
« Yaw and roll are the same rotation when pitch
IS 90 °.

e Only their sum can be determined in inverse
kinematics. Set the value of either.
Carnegie Mellon
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2.5.1.4 RPY Transform Inverse Kinematics

 _ \\
[Rotz(y )] Y[ Trans(u, v, w)]1T2 =\Roty (0 )Rotx (¢)

(r 10 +1pSY)| (rpCy +1nSY)  (rgCy+ ryusy) 0 -ce $05¢ SOCOH 0'
(—T118W +1;1Cy) |(—r125\|/+r22cw) —T13SW+TaCy)0l _ | 0 [op| +s¢| O
3 l3 33 0 -S0 cOso cOcop O
i 0 0 1 LO O 0 1

body x axis wrt yawed frame

0 = atan2(-rgq, r{1CY +15,SYy)

 Pitch can also be determined from a vector

aligned with the body x axis, expressed In
“yawed” coordinates.

 Could get roll from this step too. CarnegieMellon
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2.5.1.4 RPY Transform Inverse Kinematics
[Rotx(0)]-1[Rotz(y)]-1[Trans(u,v,w) 1T = Roty(¢)

- CO(r LY +Tsy)=T3580 . Of 11 o o o

(=T Sy + IypCy) .0l _ |0Ed|-sd O
s0(rpCw + 1y sy) +r5,00[ . 0] [0fd| co O
0 0 01 00 01

* Roll can be determined from a vector aligned
with the body y axis, expressed in yawed-
pitched coordinates.

Carnegie Mellon
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2.5.2.1 Euler’s Theorem

e All rigid body rotations in 3D can be represented as a
single rotation by some amount (angle) about a fixed
axis:

Rot(d,0,w) <> (0O, )

/

. _ Carnegie Mello
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2.5.2.2 Rotation Vector Representation

* |dea: Use a unit vector scaled by
the magnitude of the rotation:

© = |o, 0, ez]T

e The axis of rotation is:

>

@ = 0//0

e This is not a true vector in the
linear algebra sense.

— Cannot be added vectorially to
produce a meaningful result.

. _ Carnegie Mello
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2.5.2.3 Relationship to Angular Velocity

e Suppose the rotation angle is
differentially small.

d@ = [de, do, deZ]T

>

 The angular velocity is such that:

_|d@J(de Y _ .~
® T (lc@l) ®d® = oo

This is a true vector in the linear
algebra sense.
Conversely, the rotation vector is:

dO = edt = [(DX My (DZ]Tdt

. _ Carnegie Mello
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Recall the Rot() Operators

Rotz(y) = |3V ¢v 00

. _ Carnegie Mello
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2.5.2.4 Rotations Through Small Angles

For small angles:

sin(0)=~06
cos(9)~=1
Substituting into the Rot() operators:
10 0 0 (1 0800 (1 5y 0 0
Rotx(3¢) = [0 L B¢ 0|  Roty@e) =[O0 100 Rotz(sy) = [fv 1 00
086 1 0 50010 0 0 10
00 0 1 |0 00 0 0 01

Useful for computing rapid differentials of complicated
kinematic expressions.

Turns out that while 3D rotations do not commute,
differential 3D rotations do commute.

. _ Carnegie Mello
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General Differential Rotations

Consider a 3D composite differential rotation:

5@ = [56 50 5y

Substituting into the differential Rot() operators and
cancelling H.O.T:

1 -5y 80 0
Sy 1 -8¢ 0
~50 8¢ 1 0
0 0 0 1

Rotx(5¢)Roty(50)Rotz(dy) = Rot(5@) =

To first order, the result does not depend on the order
the rotations are applied.
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2.5.2.4 Skew Matrices

e Last result can be written in terms of a skew matrix:

Rot(8@) = 1+ [50]"
e Where:

0 —oy 0 Beware:
\ N N X ) ‘ 1
Skew(50) = [60]" = | %20 Y0 TYPO in book!

7 O This is correct
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2.5.3.1 Relation to Euler Angle rates
e The pitch 0, yaw vy, and roll ¢ angles are
called Euler angles.

* Their rates are not exactly the angular

velocity vector. @,
0 Q= @y
d
— b O]
dt
measured about
| T fixed axes
measured about 7
moving axes
y
X

Carnegie Mellon
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Relation to Euler Angle rates
« Use Chain Rule. Convert coordinates for
each component into the body frame. Note
use of transform matrices (from world to

« lled” “unrolled”
bOdy) L __/ unrolled ] _/‘unpitched”

o |9 0 0

@ = |y +rot(x, ¢) 0 +rot(x, ¢)rot(y, 9)|o Note

0 " Lowercase
0 a - = “r’ In rot

i o ¢ — sOy 10 -s0]ld
I @ = loy| = [cobd+spcoy | T|[0 co sdco|]p
¢ y _(DZ_ - S(I)é"‘ Cd)Ce\[I_ _O —S(I) Cd)Ce_ \V_

Why express o In the body frame?

Carnegie Mellon
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Inverted form
e Most useful in inverted form:

] [eeresetorosced] | f1spto oot
ol = ®,Ch — ©,5¢ =0 co —S¢ |y

y SO\, CO o et

X V] _ “Yeo\ “Zco | 0 ]L"

\

* because:  oko+ogsh = coy
* because: o,co-o,sh = 0

Why convert o to Euler Angle Rates?

Carnegie Mellon
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2.5.4.1 Angular Velocity as a Skew Matrix

e Recall the skew matrix formed from such a
small 3D rotation. R
0 -do, do, 0
6, 0 -do,0
~do, do, 0 0
0 0 0 0

Skew(d®) = [d@]” =

e Dividing by dt permits an equivalent matri
to be formed from the angular velocity

0 -0, oy 01N the derivative of a

vector: j This is very closely related

O = Skew(d—@) = (o] = |®2 O -« O |rotation matrix.
dt —m, O, 0 O
0 0 0 0
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2.5.4.2 Time Derivative of a Rotation Matrix

e Let the matrix R, track the orientation of a
moving frame k with respect to frame n.

 For small time steps, the update to time k+1
is @ composition with a small perturbation: ’\k-l-/ly

L\L

N

Ri+1 = RRRK,; = RRL{1+ [8©T} ]
e By definition of derivative:

: SR RI(t+ 8t) — Rl (t
Ri = lim ook = iy LRI 0D 7Ry ()]
st—0 ot St —> 0 ot
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2.5.4.2 Time Derivative of a Rotation Matrix

e Recall from last slide:

- SR, Ro(t+ 8t)— Ry (t
R = lim ok = 0D~ Ri(D)]
5t —0 Ot 5t —0 ot
e Write this in terms of a perturbation. ’\k-l—/ly
_ Rn | X _Rn
Ri = fim kLU *1OO1 H]= Rl [ \k/>
5t —> 0 ot
* Hence, since R, is fixed: n
- R'[50]" X
R = fim 021 g i, BOT
st—>0 Ot 5t—>0 ot
* Hence: _ X
Ric = RQ{%@] } = RIQ,
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Time Derivative of a Rotation Matrix

 |In other words, we have the remarkable
result that:

‘n
e This holds so long as the components of ’[ \k/>

the skew matrix are expressed in the

moving frame k: 4
0 -o, oy, 0 Why? |

k k —
Q" = Skew( @T() =@ 0 -ox0 The perturbation
—0, O, 0 O] |wasexpressed as a
0 0 0 0 rotation matrix

compositjen, . ki
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2.5.4.3 Direction Cosines from Angular Velocity

 Once again, compound the angular

perturbations thus:
n

_ ~hk
Rk+ 1~ RkRk+1
* Based on previous derivative formula:

tk+1
Re+1 = [ Qfdr
t

Kk

 Assuming the integrand is constant over

a small time step, we have: :
P . Recall:

X _
RE+1 _ Rﬂexp{[d@] ! jAdr = exp{At)}

0

. _ Carnegie Mello
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Direction Cosines from Angular Velocity

* This can be written in terms of two
simple functions because for any v:

X .2 X.3 X .4
o1y} = 1oy LI QD D)

e But its easy to show that:

vT*T = Py 11" = Ay

Etc. So, this simplifies to:

exp{V} = 1+ (VY + () ([T

FURL A

. _ Carnegie Mello
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Direction Cosines from Angular Velocity

e Hence, the direct transformation from

angular velocity to direction cosines is the
recursion:

n n -k
R+ 1= RkRk+1

R,y = 1+ ,(30)[60]%+f, (50)([60T9°

f,(30) = S'gg@) f,(80) = (1—;?25@)

e Where dt is the time step, d® = |d®| and
d® = o dt.

 Advantage: You don’t need to solve for the

Euler angles. —)l |—>
g ® R

. _ Carnegie Mello
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Summary

The RPY matrix is yet another compound orthogonal
operator matrix. Unlike the DH matrix, it has 6 dof, so it is
completely general.

Angular velocity is the time derivative of the rotation
vector.

Compositions of small angle rotations behave
commutatively.

Angular velocity and small rotations can be expressed as
skew matrices.

Angular velocity is related in a complicated manner to the
rates of roll, pitch, and yaw angles.

The skew of angular velocity is related in a more elegant
manner to the rate of the rotation matrix.

Carnegie Mel IUH
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