
Chapter 2 
Math Fundamentals 

Part 4 
2.7 Transform Graphs and 
Pose Networks 
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Spatial Relationships 
• Orthogonal 

Transforms represent 
a spatial relationship. 

• The property of 
“being positioned 3 
units to the right, 7 
units above, and 
rotated 60 degrees 
with respect to 
something else.” 
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Abstract Relationships 
• Relationships are 

abstract. 
• We may visualize this 

best by drawing two 
arbitrary frames. 

xa 

ya 
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7 

3 
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Instantiated Relationships 
• We may also “instantiate” 

the relationship. 
– Indicate two objects which 

have the relationship. 

Tbox
hand

Box 

Hand 

3 units 7 units 
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Graphical Representation 
• We have 3 elements 

– 2 objects 
– a relationship 

• The relationship is 
directional. 

• So, draw it with an 
arrow like so…. 

• We also know how to 
compute the inverse 
relationship from box 
to hand. 

“Pose of box is  
known wrt hand”. 

Box Hand 
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Compounded Relationships 
• Suppose the hand 

belongs to a robot 
and we have a fwd 
kinematic solution. 

• Call this figure a: 
– Transform Graph, or 
– Pose Network 

Hand 

Base 

Box 

Box 

Hand 

Base 
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Rigidity and Transitivity 
• Suppose (for now), the 

edges represent rigid 
spatial relationships. 

• Connectedness is transitive. 
– Two nodes in a graph are 

connected if there is a path 
between them. 

• Therefore: 
– Anything is fixed (known) wrt 

anything else if there is a 
path between them. 

Box 

Hand 

Base 
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Derived Relationships 
• How to compute their 

relationship? 
 
 
 

• This relationship is 
computable even though 
it is not in the graph. 
 

Tbox
base Thand

base Tbox
hand=

Box 

Hand 

Base 
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2.7.1.2 Trees of Relationships 
• Often pose networks 

are treelike in 
structure. 

• For tracking … can we 
compute? 
 
 
 

• Useful to imagine the 
robot “stamping” the 
floor with axes. 
 

Tcorner
Roboti 1+

𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑖𝑖+1  

Robot(i) 

World 

Robot(i+1) 
Corner 
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General Derived Relationships 
• Is this transform computable? 

 

A 

B 

Mobile Robotics - Prof Alonzo Kelly, CMU RI 12 



General Derived Relationships 
• Is there a path 

from A to B? 
– Hint: Look at the 

colors of the 
letters. 

 

A 

B 
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General Derived Relationships 
• Is there a path from 

A to B? 
– Hint: Look at the 

colors of the 
letters. 

• How could we fix 
it? 
 

A 

B 
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General Derived Relationships 
• Is there a path from 

A to B? 
– Hint: Look at the 

colors of the 
letters. 

• How could we fix 
it? 
– Like so… 

 

A 

B 
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2.7.1.3 Uniqueness 
• For a given 

relationship: 
– The HT matrix is 

uniquely defined. 
– The corresponding 

pose is not (in 3D). 
• Euler angles are not 

unique: 
– Two solutions for a 

given HT. 
• Also Euler angles are 

ambiguous. 
– Several conventions 

in use (zyx, zxy etc.) 

ρb
a

u v w φ θ ψ=

Tb
a

cψcθ cψsθ sφ sψcφ–( ) cψsθcφ sψsφ+( ) u
sψcθ sψsθsφ cψcφ+( ) sψsθ cφ cψsφ–( ) v

s θ– cθ sφ cθcφ w
0 0 0 1

=
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Coding Poses 
• In OO code, it 

makes sense for 
these to be 
different 
manifestations of 
the same class. 

Class pose: public HT{ 
 … 
 Double poseData[6]; 
 … 
} 

Class Pose extends AffineTransform 
{ 
} 

Java 

C++ 
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Vector Space? 
• 3D angles cannot be 

added like vectors. 
• The closest 

facsimile is: 
• Which is kinda like: 
• In reality, pose 

composition is done 
like so: 

• Write this 
stylistically like so: 

Tc
a Tb

aTc
b=

ρc
a ρ T ρb

a( )T ρc
b( )[ ]=

ρc
a ρb

a ρc
b+= “ ” 
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Graph To Math 
• Our fun with 

subscripts and 
superscripts is 
equivalent to finding 
a path in a network. 

• Common letters in 
adjacent T’s means 
edges are adjacent. 

• Again, if a path 
exists, you are in 
business. 

Td
a Tb

aTc
bTd

c=

• Means pose of b 
wrt a is known. 

• T      is known. b 
a 

c d b a 

b a 
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Solving for a Pose in a Graph 
1. Write down what you know. Draw the 

frames involved in a roughly correct 
spatial relationship. Draw all known 
edges. 

2. Find the (or a) path from the start 
(superscript) to the end (subscript). 

3. Write “O”perator matrices in left to right 
order as the path is traversed.  
– Invert any transforms whose arrow is followed 

in the reverse direction. 
4. Substitute all known constraints. 
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2.7.2.2 Example: Robot Fork Truck 
• Vision system sees pallet. 

 
• Find: 

– desired new pose of robot 
… 

– … relative to present pose.  

• Fork tips must line up with 
pallet holes. 
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2.7.2.2 Example: Robot Fork Truck 
• Designate all relevant 

frames. 
– Robot 
– Base 
– Tip 
– Pallet 
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2.7.2.2 Example: Robot Fork Truck 
• A robot “here” … 
• … and a robot “there”. 
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2.7.2.2 Example: Robot Fork Truck 
• Draw known transforms: 
• Read path from R1 to 

R2: 
 
 

• The solution requires: 
 
 
 

TR2
R1 TB1

R1 TP
B1TT2

P TB2
T2 TR2

B2=

TT2
P I=

from 
camera 
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2.7.2.2 Example: Robot Fork Truck 
• Transforms relating 

frames fixed to robot 
are all constant: 
 
 
 

• Substituting: 
 

TB1
R1 TB

R=

TR2
B2 TB

R( )
1–

=

TR2
R1 TB

RTP
B TT

B( )
1–

TB
R( )

1–
=

Very common 
“Sandwich” 

TR2
R1 TB1

R1 TP
B1TT2

P TB2
T2 TR2

B2=

I 

Measurement 

TB2
T2 TT

B( )
1–

=
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Trajectory Generation 
• Generating a feasible motion 

to connect the two is not 
trivial. 

• See later in course. 
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2.7.3 Cyclic Networks 
• Any edges beyond the 

number required to 
connect everything 
create cycles in the 
network. 

• Cycles create the 
possibility of 
inconsistent 
information. 

• Cycles are not always 
bad. 
– They contain rare, 

powerful information. 
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You are 7 units away.  
Ball is 5 units away. 

Ball is 3 units away. 

Hmmm… 
 
 

7 − 5 ≠ 3  ! 

R2 B R1 

CYCLE ! 



2.7.3.1 Spanning Tree 
• A “tree” is fully connected but 

acyclic 
– Just the right number of edges. 

• Can form a spanning tree from 
a cyclic network. 
– Pick a root. 
– Traverse any way you like. 
– Enter nodes only once. 
– Stop when all nodes connected. 

• Motion planning algorithms 
are based heavily on this 
notion. 
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Paths in Spanning Trees 
• Each node has exactly 

one parent. 
• Exactly one acyclic path 

between any two nodes. 
– Through most recent 

common ancestor 

• Each omitted edge 
closes an independent 
cycle in the cycle basis of 
the graph. 
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2.7.3.2 Cycle Basis 
• N nodes 
• N-1 edges in Spanning 

Tree 
• If there were E edges in 

original network: 
• Then there were: 

– L=E-(N-1) … 
– … independent loops in 

original network.. 

 

Why? 
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2.7.4.1 Pose Composition 

• What are       ,       and       ?  

yi 

xi 

xj 

yj 

yk 
xk 

aj 
i bj 

i 

θj 
i 

ak 
j 

θk 
j 

bk 
j 

ak 
i bk 

i θk 
i 

ρk
i ρj

i*ρk
j=
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Pose Composition 
• The pose of frame k with respect to frame i can 

be extracted from the compound transform: 
 
 
 

• Read result (more or less) directly: 

Tk
i

cθj
i sθj

i– aj
i

sθj
i cθj

i bj
i

0 0 1

cθk
j sθk

j– a k
j

sθk
j cθk

j bk
j

0 0 1

cθk
i sθk

i– cθj
i ak

j sθj
ibk

j– aj
i+

sθk
i cθk

i sθj
i ak

j cθj
ibk

j bj
i+ +

0 0 1

= =

ak
i cθj

iak
j sθj

ibk
j– aj

i+=

bk
i sθj

iak
j cθj

ibk
j bj

i+ +=

θk
i θj

i θk
j+=

Eqn A 
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2.7.4.2 Compound-Left Pose Jacobian 
• See figure 

yi 

xi 

input 

output 

xj 

yj yk 

xk 

fixed 
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2.7.4.2 Compound-Left Pose Jacobian 

J ij
ik

ρj
i∂

∂ρ k
i 1 0 s θj

ia k
j cθj

i bk
j+( )–

0 1 cθj
i ak

j sθj
i bk

j–( )

0 0 1

1 0 bk
i bj

i–( )–

0 1 a k
i a j

i–( )

0 0 1

= = =

yi 

xi 

xj 

yj 

yk 
xk 

aj 
i bj 

i 

θj 
i 

ak 
j 

θk 
j 

bk 
j 

Differentiated Eqn A 

ak
i cθj

iak
j sθj

ibk
j– aj

i+=

bk
i sθj

iak
j cθj

ibk
j bj

i+ +=

θk
i θj

i θk
j+=

Eqn A 
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2.7.4.3 Compound-Right Pose Jacobian 
• See figure 

input 

output 

fixed 
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2.7.4.3 Compound-Right Pose Jacobian 

yi 

xi 

xj 

yj 

yk 
xk 

aj 
i bj 

i 

θj 
i 

ak 
j 

θk 
j 

bk 
j 

J jk
ik

ρk
j∂

∂ρk
i cθj

i sθj
i– 0

sθj
i cθj

i 0

0 0 1

= = Differentiated Eqn A 

ak
i cθj

iak
j sθj

ibk
j– aj

i+=

bk
i sθj

iak
j cθj

ibk
j bj

i+ +=

θk
i θj

i θk
j+=

Eqn A 
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2.7.4.4 Right-Left Pose Jacobian 
• See figure 

output 

fixed 

input 
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2.7.4.4 Right-Left Pose Jacobian 
ak

j

bk
j

cθj
i sθj

i

sθj
i– cθj

i

ak
i aj

i–

bk
i bj

i–
=

cθj
i sθj

i

sθj
i– cθj

i

ai j
k

bi j
k

=

Differentiated Eqn B 
(not easy. see text) 

Eqn B 

Jij
jk

ρ
j
i∂

∂ρk
j cθj

i sθj
i bk

j–

sθj
i– cθj

i ak
j

0 0 1

–= =

θk
j θk

i θj
i–=
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2.7.4.5 Compound Inner Pose Jacobian 

input 

output 

C-Left * C-Right ! J jk
il

ρk
j∂

∂ρ l
i 1 0 bl

i bk
i–( )–

0 1 al
i ak

i–( )

0 0 1

cθj
i sθj

i– 0

sθj
i cθj

i 0
0 0 1

= =

J jk
il

ρk
j∂

∂ρl
i cθj

i sθj
i– bi k

l–

sθj
i cθj

i ai k
l

0 0 1

cθj
i sθj

i– bl
i bk

i–( )–

sθj
i cθj

i al
i ak

i–( )

0 0 1

= = =

fixed fixed 

Use frame k as  
intermediate 

Mobile Robotics - Prof Alonzo Kelly, CMU RI 44 

Jkli = kili * kjki 
Jucklee = keylee*kudgekey 



2.7.4.6 Inverse Pose Jacobian 
• Intuition: 

– Need it to solve 
problems like 
this… 

yi 

xi 

xj 
yj 

aj 
i 

bj 
i 

θj 
i 

ai 
j 

bi 
j 

input 

output 

ρi
j∂

∂ρd
a

ρj
i∂

∂ρd
a

 
 
 

ρi
j∂

∂ρj
i

 
 
 

=
For two 
frames  
a & d 
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Inverse of a Pose 

Ti
j( )

1–
Tj

i
cθi

j sθi
j cθi

j ai
j– sθi

jbi
j–

sθi
j– cθi

j sθi
jai

j cθi
j bi

j–
0 0 1

= =

aj
i cθi

j ai
j– sθi

jbi
j–=

bj
i sθi

jai
j cθi

jbi
j–=

θj
i θi

j–=

Eqn C 

Differentiated Eqn C 
ρi

j∂

∂ρj
i cθi

j– sθi
j– sθi

jai
j cθi

jbi
j–

sθi
j cθi

j– cθi
jai

j sθi
jbi

j+

0 0 1–

cθi
j sθi

j bj
i–

sθi
j– cθi

j aj
i

0 0 1

–= =
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Summary 
• HTs encode a spatial relationship (between two 

frames). 
• A “pose” and a HT are two expressions of exactly the 

same underlying thing. 
• It is trivial to write the compound HT relating any two 

frames in a pose network of arbitrary complexity. 
– But it only exists if they are connected. 

• Overconstrained networks can contain 
inconsistencies and that is valuable information. 
– Spanning Trees and Cycle Bases are fundamental concepts 

in such networks. 
• Derivatives of pose compositions can be computed in 

closed form.  

Mobile Robotics - Prof Alonzo Kelly, CMU RI 48 


	Chapter 2�Math Fundamentals
	Outline
	Outline
	Spatial Relationships
	Abstract Relationships
	Instantiated Relationships
	Graphical Representation
	Compounded Relationships
	Rigidity and Transitivity
	Derived Relationships
	2.7.1.2 Trees of Relationships
	General Derived Relationships
	General Derived Relationships
	General Derived Relationships
	General Derived Relationships
	2.7.1.3 Uniqueness
	Coding Poses
	Vector Space?
	Outline
	Graph To Math
	Solving for a Pose in a Graph
	2.7.2.2 Example: Robot Fork Truck
	2.7.2.2 Example: Robot Fork Truck
	2.7.2.2 Example: Robot Fork Truck
	2.7.2.2 Example: Robot Fork Truck
	2.7.2.2 Example: Robot Fork Truck
	Trajectory Generation
	Outline
	2.7.3 Cyclic Networks
	2.7.3.1 Spanning Tree
	Paths in Spanning Trees
	2.7.3.2 Cycle Basis
	Outline
	2.7.4.1 Pose Composition
	Slide Number 36
	Pose Composition
	2.7.4.2 Compound-Left Pose Jacobian
	2.7.4.2 Compound-Left Pose Jacobian
	2.7.4.3 Compound-Right Pose Jacobian
	2.7.4.3 Compound-Right Pose Jacobian
	2.7.4.4 Right-Left Pose Jacobian
	2.7.4.4 Right-Left Pose Jacobian
	2.7.4.5 Compound Inner Pose Jacobian
	2.7.4.6 Inverse Pose Jacobian
	Inverse of a Pose
	Outline
	Summary

