Chapter 2
Math Fundamentals

Part 5

| 2.8 Quaternions
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Smart Irishman: Hamilton

e Quaternions

— Probably the most powerful
number system in common use.

e Hamiltonian mechanics

— Generalization of Lagrange
Mechanics

— Which was a generalization of
Newton-Euler Mechanics.

— Which was a generalization of
Newtonian Mechanics.

Carnegie Mellon
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Was It All the Guinness?

GUINNES

GUINNESS

ALNG A LG
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Core Problem and Properties

e How can we divide a vector by a vector?

 Answer. Need to have “principle imaginaries”:

i°=j% = k® = ijk = -1
e Quaternions:

— are generalizations of complex numbers which do not
commute (complex #s do).

— can represent every transformation that an HT can
represent.
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Why Use Em?

Only way to solve some problems

— like the problem of generating regularly spaced 3D

angles.
Best way to solve some problems.

— No “gimbal lock” at Euler angle singularity.
— Still not a unique representation though.

Simplest way to solve some problems.
— Some problems in registration can be solved in closed

form.

Fastest way to solve some problems.

— “Quaternion loop” in an inertial navigation system
updates vehicle attitude 1000 times a second.
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Intuition from Complex Numbers

e Use a second i A
“imaginary”
dimension.

e Permits
manipulation of
rotations like a
vector.

— Remember
“phasors” in EE.
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Notations

( -
4-tup|es (qo, dy» O q3) :\i/lkznlpulate
Hypercomplex | | Polynomials
numbers g = Qg +0,1+ 0, + 03K
§um .Of real and G = q+Q
Imaginary parts \

Ordered doublet (9,9) _
| will use
%e\,'v‘ these two

Exponential qg=e

. _ Carnegie Mellor
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My Preference

A

* Mostly use the q=0q+g
scalar-vector sum
form: ~ means quaternion
- means 3D normal vector
means scalar
e Occasionally write g = Qg t0qq.+0,]+0azk
It out to get

10

hypercomplex

form:
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Multiplication

Quaternions are elements of a vector space endowed

with multiplication.

Gives the sum of all these elements:

— Just Like Complex Numbers
The expression:

Pq = (Py *+ Pqi +P,j +p3kK)(Qg +ayi +0,) +05K)

90 q1 q-J qzk
Po | Po4g Po4,! P9 P43k
Pit| P14t plqlf-‘z P14,17 P93tk
PAJ | Pr9/ PHr4q4Ji pzquz P~9yJk
psk| P3qok Pyq ki P39,k p393k’1

So, we need to define what i*i etc mean...

12
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Multiplication Rule

 Two goals:
— 1) Manipulate like polynomials
— 2) Product of two quaternions is a quaternion.

* To get things to work as Hamilton intended we need to

have:
(. : 1 ] k
Diagonals work like complex
numbers. Off diagonals work i -1 k -]
like vector cross product. . .
\ ] -k -1 1
e Or, more compactly: K j ¥ -1

. _ Carnegie Mello
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Product

In hypercomplex (polynomial) form:
Pg = (Pg +Pq1 +P,) + P3K)(Qp + g1+ poJ+ P3K)

pq = (PoUp — P10 — P20, —P303) + (..)1 + ...

In vector form:

! O

g = (p+P)ag+0J
pi = pa+pd +ap +3d)”?
The last term can be written in terms of familiar vector
PO = P>xa=P*8  vector
Convenient to summarize like so: products
[P |= pa-[Bedf+pd+ap+pxd

. _NOt the same thi ng Carnegie Méflon
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Non-Commutativity

 The vector cross product does not commute. Therefore:

pg # qp

"What is the
source of this

\property? y
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Addition

 Works just like vectors, polynomials, and complex
numbers....

P+q = (Pg+dp) +(P1+ Ui+ (Pa+dy)j+(P3+ g3k

. _ Carnegie Mello
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Distributivity

 Works just like vectors, polynomials, and complex
numbers....

~

(b +8)F = i+

~N N

p(q+r) = pq+pr

. _ Carnegie Mello
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Dot Product and Norm

 Works just like vectors, polynomials, and complex
numbers....

A

}Sta = Pq + 60(] Not the same thing

 Can now define a length (norm):

al = /G ed

* Unit quaternions have a norm of unity.
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Conjugate

 Works just like complex numbers....
~% A
q =(d-¢

* Product with conjugate equals dot product:

K N

) = qeq

O
O
[
~
O
O
+
[y

 Another way to get the norm is then:

Gl = &g

. _ Carnegie Mello
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Quaternion Inverse

The Big Kahuna. Since we have:
~~* D
qq /lal| =1

By definition of inverse:

N

0 =g /19

So....

~~*

- pgt = L
q

That’s how you divide a vector by a vector!

O T

. _ Carnegie Mello
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Vectors as Quaternions

e “Quaternionize”:

A

X = 0+X
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Rotations as Quaternions

* The unit quaternion: & _ Cosgﬂj\,sing

* Represents the operator which rotates by the
angle 0 around the axis whose unit vector is w.

 Theinverseis clearly: = a/‘(_tﬂ

0 = 2atan 2(‘a|, q)

‘ Real vectors are just quaternions O+xi+yj+zk‘

. _ Carnegie Mello
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Rotating a Vector (Point)

e Use the quaternion sandwich:

~ N N*

X' = gxqQ
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Composite Rotations

e Use the composite quaternion sandwich....

~ NNN*

(
° . 1 — Conjugate of
Recall: X = Oxq a pl’(J)d?JCt

works like
matrices!

e Thus: Ny /
X" = px'p = (pq)X(q p )

Composition of operations equals multiplication.
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Quaternion to Rot() Matrix

* For the quaternion:

q = qO+q1i+QQj+CI3k

 The equivalent Rot() matrix is:

] : : ]
2[0, *0; 1-1 2[q40,-0q03] 2[0;05 *+0d,0,]
2 2
2[0409,* 0p03] 2[0p +d, 1-1 2[0,05—0(04]

2 2
-2[%%‘%%] 2[0594 ¥ 0,05] 2[0g * 0y ]_1_
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Rot() Matrix to Quaternion

e For the Rot() matrix: r11 15 M3
R = [ryq 1y) I

31 32 a3

 The equivalent quaternion is determined from:
— 2 4 R
M9 + [ + 33 = 4qO -1 Are quaternions
unique for a

_ 2
r11 B r22 - r33 - 4q1 -1 given rotation?

_ 2 y,
—Ty =Ty = 4051 2
= 4q5-1

M1 =Ty Tl
. _ Carnegie Mello,
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Calculus (wrt scalars)

e Derivatives work like you would expect:

di _ dq, dg

dt  dt dt

* Integrals work like you would expect:

to o t
joth -joth+jOth

. _ Carnegie Mello
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Angular Velocity

* Define the angular velocity:
Onp(1) = (0g+ 011+ @, + ©3K)
 For a unit quaternion representation of
orientation: . -
q(t) = coseizD + WSin%D

e |ts time derivative is: dubyao
("Recall the da(t) 1~
— = Z®

kew matri (t)a(t)
(Sje?;lza?serlé(f d t 2 N
a rotation

\_Mmatrix.

. _ Carnegie Mello
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Angular Velocity

 That was for angular velocity represented in
navigation coordinates:

oOp(t) = (0g+ 011+ wy) + 03K)

e If you have it in body coordinates, just use the
instantaneous value of El(t) itself to convert:

*

e Substituting: ®,(t) = Q(t)mb(t)q(t)@g@
dg(t) _

1m ~
7 = SA0a

. _ Carnegie Mello
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“Quaternion Loop”
e Runs at 10 kHz inside an INS:

i = 2 Aa,

e 16 * 2 =32 flops
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“Quaternion Loop”

* For highest accuracy, we can use Jordan’s trick:

e Define the skew matrix of a quaternion:

34

Thel
~F  ~7 1

Tt

~n ~n ™ 1 ~ ~n .X - ~n
Gevi = Qevi9e = 5 pOrdt = 5 (X(Dh)df dr = exp{ [56]}%

1
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“Quaternion Loop”

 But such matrices have closed form exponentials:

- ,
Gyt = GXP{X[SG)]} = 1+71,(80) 50] +f2(8®)( [6@)

¢ Where: f](SG)) = 91]’12)@ fg(SG)) _ (]—6’05;8@)
00

e After more manipulation

gr., = cosdO[I] +Sin8®[( X[J)g,])/\c?bq

35 Mobile Robotics - Prof Alonzo Kelly, CMU Rl THE ROBO.I{.Ié'g“I rie Ve ""ﬁ
oplle RoObOoTICS - Fro onzo Kelly, N



Outline

2.8.1 Representations and Notation

2.7.2 Quaternion Multiplication

2.7.3 Other Quaternion Operations

2.7.4 Representing 3D Rotations

2.7.5 Attitude and Angular Velocity

Summary

38

Mobile Robotics - Prof Alonzo Kelly, CMU RI

Carnegie Mellon

THE ROBOTICS INSTITUTE



Summary

 Quaternions are hypercomplex numbers with an
,j,and k that act like the i in complex numbers.

e Notation is half the battle.

* Provide elegant and efficient ways to model 3D
transformations of points (and hence 3D
coordinate system conversions).

. _ Carnegie Mello
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