
Chapter 2 
Math Fundamentals 

Part 5 
2.8 Quaternions 
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Smart Irishman: Hamilton 
• Quaternions 

– Probably the most powerful 
number system in common use. 

• Hamiltonian mechanics 
– Generalization of Lagrange 

Mechanics 
– Which was a generalization of 

Newton-Euler Mechanics. 
– Which was a generalization of 

Newtonian Mechanics. 
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Was It All the Guinness? 
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Core Problem and Properties 

• How can we divide a vector by a vector? 
• Answer. Need to have “principle imaginaries”: 

 
 

• Quaternions:  
– are generalizations of complex numbers which do not 

commute (complex #s do). 
– can represent every transformation that an HT can 

represent. 

 

i2 j2 k2 ijk 1–= = = =
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Why Use Em? 

• Only way to solve some problems 
– like the problem of generating regularly spaced 3D 

angles. 
• Best way to solve some problems. 

– No “gimbal lock” at Euler angle singularity. 
– Still not a unique representation though. 

• Simplest way to solve some problems. 
– Some problems in registration can be solved in closed 

form. 
• Fastest way to solve some problems. 

– “Quaternion loop” in an inertial navigation system 
updates vehicle attitude 1000 times a second. 
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Intuition from Complex Numbers 

• Use a second 
“imaginary” 
dimension. 

• Permits 
manipulation of 
rotations like a 
vector. 
– Remember 

“phasors” in EE. 

i 

θ 
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Notations 

• 4-tuples 
• Hypercomplex 

numbers 
• Sum of real and 

imaginary parts 
• Ordered doublet 

 
• Exponential 

q0 q1 q2 q3, , ,( )

q q0 q1i q2j q3 k+ + +=

Manipulate 
like 
Polynomials 

q̃ q q+=

q q,( )

q e
1
2
---θw

=

I will use 
these two 
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My Preference 

• Mostly use the 
scalar-vector sum 
form: 
 
 
 

• Occasionally write 
it out to get 
hypercomplex 
form: 

q q0 q1i q2j q3 k+ + +=

q̃ q q+=

~ means quaternion 
   means 3D normal vector 
   means scalar 
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Multiplication 
• Quaternions are elements of a vector space endowed 

with multiplication. 
– Just Like Complex Numbers 

• The expression: 
 

• Gives the sum of all these elements: 
 
 
 
 

• So, we need to define what i*i etc mean… 

p̃q̃ p0 p1i p2j p3k+ + +( ) q0 q1i q2j q3k+ + +( )=
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Multiplication Rule 
• Two goals: 

– 1) Manipulate like polynomials 
– 2) Product of two quaternions is a quaternion. 

• To get things to work as Hamilton intended we need to 
have: 
 
 
 

• Or, more compactly: 

i2 j2 k2 ijk 1–= = = =

Diagonals work like complex 
numbers. Off diagonals work 
like vector cross product. 
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Product 
• In hypercomplex (polynomial) form: 

 
 
 

• In vector form: 
 

• The last term can be written in terms of familiar vector 
products. 
 

• Convenient to summarize like so: 

p̃q̃ p0 p1i p2j p3k+ + +( ) q0 q1i p2j p3k+ + +( )=

p̃q̃ p0q0 p1 q1– p2q2– p3q3–( ) …( ) i …+ +=

p̃q̃ p p+( ) q q+( )=
p̃q̃ pq pq qp pq+ + +=

pq p q p q•–×=

p̃q̃ pq p q•– pq qp p q×+ + +=

? 

Not the same thing 

2 common 
vector  
products 
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Non-Commutativity 
• The vector cross product does not commute. Therefore: 

 
 

p̃q̃ q̃ p̃≠

What is the 
source of this 
property? 
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Addition 
• Works just like vectors, polynomials, and complex 

numbers…. 
 
 p̃ q̃+ p0 q0+( ) p1 q1+( ) i p2 q2+( )j p3 q3+( )k+ + +=
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Distributivity 
• Works just like vectors, polynomials, and complex 

numbers…. 
 
 p̃ q̃+( ) r̃ p̃ r̃ q̃r̃+=

p̃ q̃ r̃+( ) p̃ q̃ p̃ r̃+=
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Dot Product and Norm 
• Works just like vectors, polynomials, and complex 

numbers…. 
 
 
 

• Can now define a length (norm): 
 
 
 

• Unit quaternions have a norm of unity. 
 
 

p̃ q̃• pq p q•+=

q̃ q̃ q̃•=

Not the same thing 
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Conjugate 
• Works just like complex numbers…. 

 
 
 

• Product with conjugate equals dot product: 
 
 
 

• Another way to get the norm is then: 
 
 
 
 

q̃* q q–=

q̃q̃* qq q q•+( ) q̃ q̃•= =

q̃ q̃q̃*=
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Quaternion Inverse 
• The Big Kahuna. Since we have: 

 
 

• By definition of inverse: 
 
 

• So…. 
 
 

• That’s how you divide a vector by a vector! 

q̃ q̃* q̃ 2⁄ 1=

q̃ 1– q̃* q̃ 2⁄=

p̃
q̃
--- p̃q̃ 1– p̃ q̃*

q̃ 2
--------= =
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Vectors as Quaternions 
• “Quaternionize”: 

x̃ 0 x+=
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Rotations as Quaternions 
• The unit quaternion: 

 
• Represents the operator which rotates by the 

angle θ around the axis whose unit vector is 𝑤𝑤� . 
 

• The inverse is clearly: 

q̃ θ
2
---cos ŵ θ

2
---sin+=

θ 2 2 q q,( )atan=

ŵ q q⁄=

Real vectors are just quaternions 0+xi+yj+zk 
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Rotating a Vector (Point) 
• Use the quaternion sandwich: 

 x '˜ q̃x̃ q̃*=
w 

θ 

x 
x’ 
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Composite Rotations 
• Use the composite quaternion sandwich…. 

 
• Recall: 

 
• Thus: 

 x ''˜ p̃x '˜ p̃* p̃q̃( ) x̃ q̃*p̃*( )= =

x '˜ q̃x̃ q̃*=

Composition of operations equals multiplication. 

Conjugate of 
a product 
works like 
matrices! 
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Quaternion to Rot() Matrix 
• For the quaternion: 

 
• The equivalent Rot() matrix is: 

 

q q0 q1i q2j q3 k+ + +=

R

2 q0
2 q1

2+[ ] 1– 2 q1q2 q0q3–[ ] 2 q1q3 q0q2+[ ]

2 q1q2 q0q3+[ ] 2 q0
2 q2

2+[ ] 1– 2 q2q3 q0q1–[ ]

2 q1q3 q0q2–[ ] 2 q0q1 q2q3+[ ] 2 q0
2 q3

2+[ ] 1–

=
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Rot() Matrix to Quaternion 
• For the Rot() matrix: 

 
 
 

• The equivalent quaternion is determined from: 
 

R
r11 r12 r13

r21 r22 r23

r31 r32 r33

=

r11 r22 r33+ + 4q0
2 1–=

r11 r22– r33– 4q1
2 1–=

r11– r22 r33–+ 4q2
2 1–=

r11– r22– r33+ 4q3
2 1–=
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Calculus (wrt scalars) 
• Derivatives work like you would expect: 

 
 

 
• Integrals work like you would expect: 
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td
dq̃ 

td
dq

td
dq 

+=

q̃ td
0

t

∫ q td
0

t

∫ q td
0

t

∫+=
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Angular Velocity 
• Define the angular velocity: 

 
• For a unit quaternion representation of 

orientation: 
 
• Its time derivative is: 
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q̃ t( ) θ t( )
2

----------cos ŵ θ t( )
2

----------sin+=

td
dq̃ t( )  1

2
---ω̃n t( ) q̃ t( )=

ω̃n t( ) ω0 ω1i ω2j ω3k+ + +( )=

dubyaQ 
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Angular Velocity 
• That was for angular velocity represented in 

navigation coordinates: 
 
• If you have it in body coordinates, just use  the 

instantaneous value of           itself to convert: 
 

• Substituting: 
 

32 

ω̃n t( ) ω0 ω1i ω2j ω3k+ + +( )=

ω̃n t( ) q̃ t( )ω̃b t( ) q̃ t( )*=

q̃ t( )

td
dq̃ t( ) 

1
2
---q̃ t( )ω̃b t( )=

Qdubya 
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“Quaternion Loop” 
• Runs at 10 kHz inside an INS: 

 
 
 
 
 

• 16 * 2 = 32 flops 
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q̃ t( )  1
2
--- q̃ t( )ω̃b t( ) td

0

t
∫=
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“Quaternion Loop” 
• For highest accuracy, we can use Jordan’s trick: 

 
 
 

• Define the skew matrix of a quaternion: 
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“Quaternion Loop” 
• But such matrices have closed form exponentials: 

 
 

• Where: 
 

• After more manipulation 
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Summary 
• Quaternions are hypercomplex numbers with an 

i,j,and k that act like the i in complex numbers. 
• Notation is half the battle. 
• Provide elegant and efficient ways to model 3D 

transformations of points (and hence 3D 
coordinate system conversions). 
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