

Chapter 2 Math Fundamentals

Part 5 2.8 Quaternions

Outline

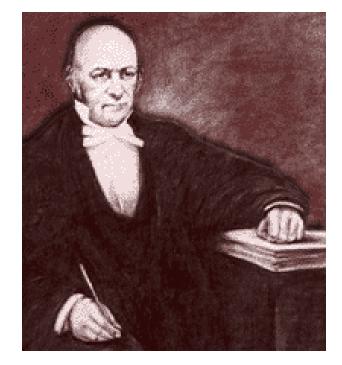
- 2.8.1 Representations and Notation
- 2.7.2 Quaternion Multiplication
- 2.7.3 Other Quaternion Operations
- 2.7.4 Representing 3D Rotations
- 2.7.5 Attitude and Angular Velocity
- Summary

Outline

- 2.8.1 Representations and Notation
- 2.7.2 Quaternion Multiplication
- 2.7.3 Other Quaternion Operations
- 2.7.4 Representing 3D Rotations
- 2.7.5 Attitude and Angular Velocity
- Summary

Smart Irishman: Hamilton

- Quaternions
 - Probably the most powerful number system in common use.
- Hamiltonian mechanics
 - Generalization of Lagrange
 Mechanics
 - Which was a generalization of Newton-Euler Mechanics.
 - Which was a generalization of Newtonian Mechanics.



Carnegie Mellon THE ROBOTICS INSTITUTE

Was It All the Guinness?

Carnegie Mellon THE ROBOTICS INSTITUTE

Core Problem and Properties

- How can we divide a vector by a vector?
- Answer. Need to have "principle imaginaries":

$$i^2 = j^2 = k^2 = ijk = -1$$

- Quaternions:
 - are generalizations of complex numbers which <u>do not</u> <u>commute</u> (complex #s do).
 - can represent every transformation that an HT can represent.

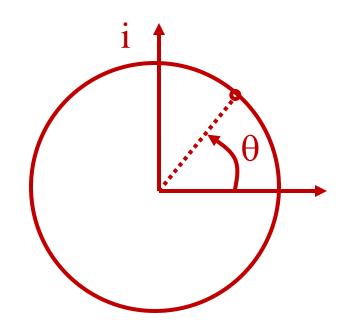
Why Use Em?

- <u>Only</u> way to solve some problems
 - like the problem of generating regularly spaced 3D angles.
- <u>Best</u> way to solve some problems.
 - No "gimbal lock" at Euler angle singularity.
 - Still not a unique representation though.
- <u>Simplest</u> way to solve some problems.
 - Some problems in registration can be solved in closed form.
- <u>Fastest</u> way to solve some problems.
 - "Quaternion loop" in an inertial navigation system updates vehicle attitude 1000 times a second.

Carnegie Mellon THE ROBOTICS INSTITUTE

Intuition from Complex Numbers

- Use a second "imaginary" dimension.
- Permits manipulation of rotations like a vector.
 - Remember"phasors" in EE.

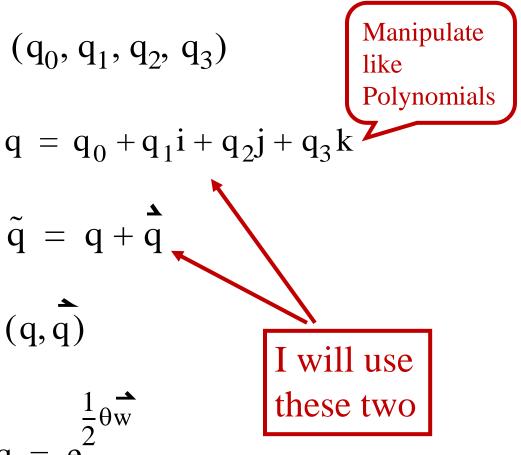


Carnegie Mellon THE ROBOTICS INSTITUTE

Notations

- 4-tuples
- Hypercomplex numbers
- Sum of real and imaginary parts
- Ordered doublet (q, \overline{q})

Exponential



My Preference

Mostly use the scalar-vector sum form:

$$\tilde{q} = q + \dot{q}$$

means quaternion
 means 3D normal vector means scalar

 Occasionally write it out to get hypercomplex form:

$$\mathbf{q} = \mathbf{q}_0 + \mathbf{q}_1 \mathbf{i} + \mathbf{q}_2 \mathbf{j} + \mathbf{q}_3 \mathbf{k}$$

Outline

- 2.8.1 Representations and Notation
- <u>2.7.2 Quaternion Multiplication</u>
- 2.7.3 Other Quaternion Operations
- 2.7.4 Representing 3D Rotations
- 2.7.5 Attitude and Angular Velocity
- Summary

Multiplication

- Quaternions are elements of a <u>vector space</u> endowed with multiplication.
 - Just Like Complex Numbers
- The expression:

 $\tilde{p}\tilde{q} = (p_0 + p_1i + p_2j + p_3k)(q_0 + q_1i + q_2j + q_3k)$

• Gives the sum of all these elements:

	q_0	$q_1 i$	$q_2 j$	$q_3 k$
p_0	$p_{0}q_{0}$	$p_0 q_1 i$	$p_0 q_2 j$	$p_0 q_3 k$
p_1i	$p_{1}q_{0}^{i}$	$p_1 q_1 i^2$	p_1q_2ij	p_1q_3ik
$p_2 j$	$p_2 q_0 j$	$p_2 q_1 j i$	$p_2 q_2 j^2$	p_2q_3jk
p_3k	$p_{3}q_{0}k$	p_3q_1ki	p ₃ q ₂ kj	$p_{3}q_{3}k^{2}$

So, we need to define what i*i etc mean...

Multiplication Rule

- Two goals:
 - 1) Manipulate like polynomials
 - 2) Product of two quaternions is a quaternion.
- To get things to work as Hamilton intended we need to have:

Diagonals work like complex numbers. Off diagonals work like vector cross product.

Or, more compactly:

THE ROBOTICS IN

$$i^2 = j^2 = k^2 = ijk = -1$$

Mobile Robotics - Prof Alonzo Kelly, CMU RI

Product

- In hypercomplex (polynomial) form: $\tilde{p}\tilde{q} = (p_0 + p_1i + p_2j + p_3k)(q_0 + q_1i + p_2j + p_3k)$ $\tilde{p}\tilde{q} = (p_0q_0 - p_1q_1 - p_2q_2 - p_3q_3) + (...)i + ...$
- In vector form: $\tilde{p}\tilde{q} = (p + \mathbf{p})(q + \mathbf{q})$ $\tilde{p}\tilde{q} = pq + p\mathbf{q} + q\mathbf{p} + \mathbf{p}\mathbf{q}$?
- The last term can be written in terms of familiar vector products. $\vec{pq} = \vec{p} \times \vec{q} - \vec{p} \cdot \vec{q}$ 2 common vector

 $\tilde{p}\tilde{q} = pq - \vec{p} \cdot \vec{q} + p\vec{q} + q\vec{p} + \vec{p} \times \vec{q}$

• Convenient to summarize like so:

vector products

THE ROBOTICS IN

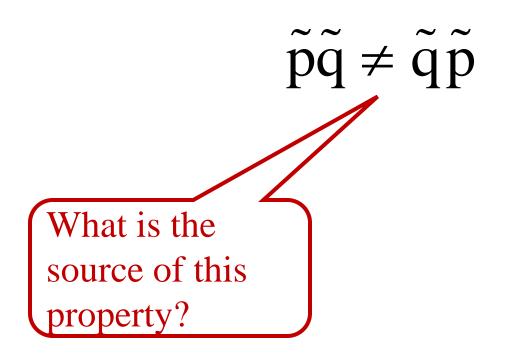
Carnegie

Not the same thing

Mobile Robotics - Prof Alonzo Kelly, CMU RI

Non-Commutativity

• The vector cross product does not commute. Therefore:



Outline

- 2.8.1 Representations and Notation
- 2.7.2 Quaternion Multiplication
- <u>2.7.3 Other Quaternion Operations</u>
- 2.7.4 Representing 3D Rotations
- 2.7.5 Attitude and Angular Velocity
- Summary

Addition

Works just like vectors, polynomials, and complex numbers....

 $\tilde{p} + \tilde{q} = (p_0 + q_0) + (p_1 + q_1)i + (p_2 + q_2)j + (p_3 + q_3)k$

Distributivity

• Works just like vectors, polynomials, and complex numbers....

$$(\tilde{p} + \tilde{q})\tilde{r} = \tilde{p}\tilde{r} + \tilde{q}\tilde{r}$$
$$\tilde{p}(\tilde{q} + \tilde{r}) = \tilde{p}\tilde{q} + \tilde{p}\tilde{r}$$

Dot Product and Norm

• Works just like vectors, polynomials, and complex numbers....

$$\tilde{p} \bullet \tilde{q} = pq + \tilde{p} \bullet \tilde{q}$$
 Not the same thing

• Can now define a length (norm):

$$|\tilde{q}| = \sqrt{\tilde{q} \cdot \tilde{q}}$$

• Unit quaternions have a norm of unity.

Conjugate

• Works just like complex numbers....

$$\tilde{q}^* = q - \tilde{q}$$

• Product with conjugate equals dot product:

$$\tilde{q}\tilde{q}^* = (qq + \tilde{q} \bullet \tilde{q}) = \tilde{q} \bullet \tilde{q}$$

• Another way to get the norm is then:

$$|\tilde{q}| = \sqrt{\tilde{q}\tilde{q}^*}$$

Quaternion Inverse

• The **Big Kahuna**. Since we have:

$$\tilde{q}\tilde{q}^*/|\tilde{q}|^2 = 1$$

• By definition of inverse:

$$\tilde{q}^{-1} = \tilde{q}^* / |\tilde{q}|^2$$

• So....

$$\frac{\tilde{p}}{\tilde{q}} = \tilde{p}\tilde{q}^{-1} = \frac{\tilde{p}\tilde{q}^*}{|\tilde{q}|^2}$$

<u>That's</u> how you divide a vector by a vector!

Outline

- 2.8.1 Representations and Notation
- 2.7.2 Quaternion Multiplication
- 2.7.3 Other Quaternion Operations
- <u>2.7.4 Representing 3D Rotations</u>
- 2.7.5 Attitude and Angular Velocity
- Summary

Vectors as Quaternions

• "Quaternionize":

$\tilde{x} = 0 + x$

Rotations as Quaternions

- The unit quaternion: $\tilde{q} = \cos \frac{\theta}{2} + \hat{w} \sin \frac{\theta}{2}$
- Represents the operator which rotates by the angle θ around the axis whose unit vector is \hat{W} .

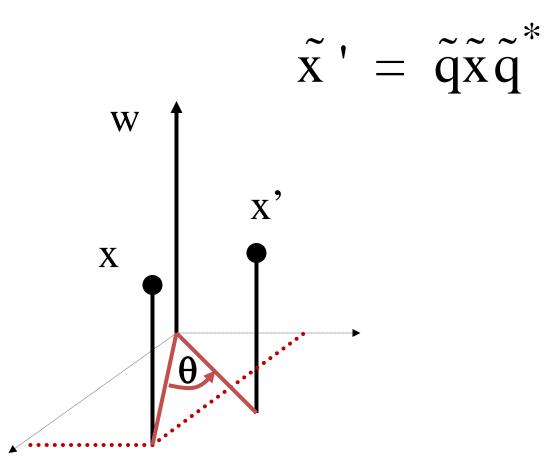
• The inverse is clearly: $\hat{w} = \hat{q}/|\hat{q}|$ $\theta = 2 \tan 2(|\hat{q}|, q)$

Real <u>vectors</u> are just quaternions 0+xi+yj+zk

Carnegie Mellon THE ROBOTICS INSTITUTE

Rotating a Vector (Point)

• Use the quaternion sandwich:



Carnegie Mellon THE ROBOTICS INSTITUTE

Composite Rotations

• Use the composite quaternion sandwich....

- Recall: $\tilde{x}' = \tilde{q}\tilde{x}\tilde{q}^*$
- Thus:

 $\tilde{\mathbf{x}}$ " = $\tilde{\mathbf{p}}\tilde{\mathbf{x}}$ ' $\tilde{\mathbf{p}}^*$ = $(\tilde{\mathbf{p}}\tilde{\mathbf{q}})\tilde{\mathbf{x}}(\tilde{\mathbf{q}}^*\tilde{\mathbf{p}}^*)$

Composition of operations equals multiplication.

Conjugate of a product works like

matrices!

Quaternion to Rot() Matrix

• For the quaternion:

$$q = q_0 + q_1 i + q_2 j + q_3 k$$

• The equivalent Rot() matrix is:

Rot() Matrix to Quaternion

• For the Rot() matrix:

• The equivalent quaternion is determined from:

$$r_{11} + r_{22} + r_{33} = 4q_0^2 - 1$$

$$r_{11} - r_{22} - r_{33} = 4q_1^2 - 1$$

$$-r_{11} + r_{22} - r_{33} = 4q_2^2 - 1$$

$$-r_{11} - r_{22} + r_{33} = 4q_3^2 - 1$$

Are quaternions unique for a given rotation?

Carnegie Mellon THE ROBOTICS INSTITUTE

Calculus (wrt scalars)

• Derivatives work like you would expect:

$$\frac{\mathrm{d}\tilde{q}}{\mathrm{d}t} = \frac{\mathrm{d}q}{\mathrm{d}t} + \frac{\mathrm{d}\tilde{q}}{\mathrm{d}t}$$

• Integrals work like you would expect:

$$\int_0^t \tilde{q} dt = \int_0^t q dt + \int_0^t \tilde{q} dt$$

Outline

- 2.8.1 Representations and Notation
- 2.7.2 Quaternion Multiplication
- 2.7.3 Other Quaternion Operations
- 2.7.4 Representing 3D Rotations
- <u>2.7.5 Attitude and Angular Velocity</u>
- Summary

Angular Velocity

• Define the angular velocity:

$$\tilde{\omega}_{n}(t) = (\omega_{0} + \omega_{1}i + \omega_{2}j + \omega_{3}k)$$

• For a unit quaternion representation of orientation: $\tilde{a}(t) = \cos^{\theta(t)} + \hat{w} \sin^{\theta(t)}$

$$\tilde{q}(t) = \cos\frac{\theta(t)}{2} + \hat{w}\sin\frac{\theta(t)}{2}$$

 $= \frac{1}{2}\tilde{\omega}_{n}(t)\tilde{q}(t)$

dubyaQ

THE ROBOTI

• Its time derivative is:

Recall the skew matrix derivative of a rotation matrix. $\frac{d\tilde{q}(t)}{dt}$

Angular Velocity

• That was for angular velocity represented in navigation coordinates:

$$\tilde{\omega}_{n}(t) = (\omega_{0} + \omega_{1}i + \omega_{2}j + \omega_{3}k)$$

- If you have it in body coordinates, just use the instantaneous value of $\tilde{q}(t)$ itself to convert:
- Substituting: $\tilde{\omega}_n(t) = \tilde{q}(t)\tilde{\omega}_b(t)\tilde{q}(t)^*$

THE ROBOTI

"Quaternion Loop"

• Runs at 10 kHz inside an INS:

$$\tilde{q}(t) = \frac{1}{2} \int_0^t \tilde{q}(t) \tilde{\omega}_b(t) dt$$

• 16 * 2 = 32 flops

"Quaternion Loop"

• For highest accuracy, we can use Jordan's trick:

$$\tilde{q}_{k+1}^{n} = \tilde{q}_{k+1}^{k} \tilde{q}_{k}^{n} = \frac{l}{2} \int_{t_{k}}^{t_{k+1}} \tilde{q}_{k}^{n} \tilde{\omega}_{k} dt = \frac{l}{2} \int_{t_{k}}^{t_{k+1}} \left(\tilde{\omega}_{b} \right) dt \quad \tilde{q}_{k}^{n} = exp \left\{ \tilde{\varepsilon} \tilde{\Theta} \right\} \tilde{q}_{k}^{n}$$

• Define the skew matrix of a quaternion:

$${}^{\times}[\delta\tilde{\Theta}] = \frac{1}{2} \left({}^{\times}\tilde{\omega}_{b} \right) dt = \frac{1}{2} \begin{bmatrix} 0 & -\omega_{x} & -\omega_{y} & -\omega_{z} \\ \omega_{x} & 0 & \omega_{z} & -\omega_{y} \\ \omega_{y} & -\omega_{z} & 0 & \omega_{x} \\ \omega_{z} & \omega_{y} & -\omega_{x} & 0 \end{bmatrix} dt$$

"Quaternion Loop"

• But such matrices have closed form exponentials:

$$\tilde{q}_{k+1}^{k} = exp\left\{ \tilde{\langle \Theta \rangle} \right\} = I + f_{1}(\delta\Theta) \tilde{\langle \Theta \rangle} + f_{2}(\delta\Theta) \left(\tilde{\langle \Theta \rangle} \right)^{2}$$

- Where: $f_1(\delta\Theta) = \frac{\sin\delta\Theta}{\delta\Theta}$ $f_2(\delta\Theta) = \frac{(1-\cos\delta\Theta)}{\delta\Theta^2}$
- After more manipulation

$$\tilde{q}_{k+1}^{k} = \cos \delta \Theta[I] + \sin \delta \Theta \left[\left(\begin{array}{c} \times \tilde{\omega}_{b} \\ \omega_{b} \end{array} \right) / \left| \begin{array}{c} \Delta \\ \omega_{b} \end{array} \right| \right]$$

Outline

- 2.8.1 Representations and Notation
- 2.7.2 Quaternion Multiplication
- 2.7.3 Other Quaternion Operations
- 2.7.4 Representing 3D Rotations
- 2.7.5 Attitude and Angular Velocity
- <u>Summary</u>

Summary

- Quaternions are hypercomplex numbers with an i,j,and k that act like the i in complex numbers.
- Notation is half the battle.
- Provide elegant and efficient ways to model 3D transformations of points (and hence 3D coordinate system conversions).

