
Chapter 3 
Numerical Methods 

Part 1 
3.1 Linearization and 
Optimization of Functions 
of Vectors 
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Problem Notation 
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Motivation 
• A small number of numerical methods occur 

frequently. 
– Roots of nonlinear equations 
– Optimization 
– Integration of Diff Eqs. 

• Can’t use MATLAB to control the robot. 
• You need to know 

– How to implement these. 
– How to cast a problem in standard form. 
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Motivation 
• Techniques will be used for control, perception, 

position estimation, and mapping. 
• Specifically: 

– compute wheel velocities 
– invert dynamic models 
– generate trajectories 
– track features in an image 
– construct globally consistent maps 
– identify dynamic models 
– calibrate cameras 
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3.1.1.1 Taylor Series (About Any Point) 
• Scalar function of scalar: 

 
 

• Scalar function of vector: 
 
 

• Vector function of vector: 
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3.1.1.2 Taylor Remainder Theorem 

• Provided the nth derivative is bounded, the 
error in a truncated Taylor series is of order 
(∆x)n+1. 

• When ∆x is small, (∆x)n+1 is very small. 

f x ∆x+( ) Tn ∆x( ) Rn ∆x( )+=

Rn ∆x( ) 1
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3.1.1.3 Linearization 

• This is accurate “to first order” … 
• … meaning the error is second order. 

f x ∆x+( ) f x( ) ∆x
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3.1.1.4 Gradients and Level Curves and Surfaces 

• This forms an n-1 dimensional subspace of Rn 
called a level surface (a set of level curves). 

• Let the set of solutions be parameterized 
locally in 1D by the scalar s to form the level 
curve  x(s). 
– Each element of x(s) is a level curve for which g(x) 

is constant. You could plot x1(s) vs x2(s)for example. 

• By the chain rule applied along the constraint: 
Gradient is 
normal to all the 
level curves 
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3.1.1.5 Example 
• Consider the constraint: 

 
• The constraint gradient is: 

 
• Parameterize the level curve with: 

 
• The level curve tangent: 

 
• Which is orthogonal to  
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3.1.1.6 Jacobians and Level Surfaces 

• This forms an n-m dimensional subspace of Rn 
called a level surface (a set of level curves). 

• Let the set of solutions be parameterized by 
the vector s to form x(s). 
– x(s1) and x(s2) are different level curves. 

• By the chain rule: 
Rows of Jacobian 
are orthogonal  
to tangents to 
level curves  s∂

∂g x s( )( ) 
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Jacobian and Tangent Plane 
• Consider again: 

 
 
 

• The set of all linear combinations of the 
rows of                is called the tangent plane. 

• Therefore, the constraint tangent plane lies 
in the nullspace of the constraint Jacobian. 
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3.1.2 Optimization of Objective Functions 

• f is always a scalar. 
• Called objective, cost or utility function 
• The max(f) problem is equivalent to min(-f) 

so we will treat all problems as 
minimization. 

f x( ) x ℜn∈optimize:x
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Convexity and Global Minima 

• A convex (concave) 
function is uniformly on 
or below (above) any 
line between any two 
points in its domain. 

• For these, local and 
global minima are the 
same. 

Convex 

Not Convex 
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3.1.2.1 Local Minima 

• Suppose we compute a minimum over a specified region 
• Which one you get often depends on where you start 

searching. 
• Any global minimum (not on a boundary of the set) must also 

be a local minimum. 
• Therefore a local minimum is a more fundamental problem. 
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3.1.2.1 Notation 
• This section will henceforth use two forms of 

shorthand in one compact form: 
 
 
 
 

• So fx() is a Jacobian or a gradient (if f is scalar-
valued):  
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3.1.2.1 First Order (Necessary) Conditions 
• Consider satisfying the weaker condition of being 

a local minimum. 
• In a given neighborhood, a Taylor series 

approximation applies. 
• Consider the change ∆f after moving a distance 
∆x from a local minimum x*. 

Objective 
Gradient 
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3.1.2.1 First Order (Necessary) Conditions 
• From last slide… 
• If x* is a local minimum then               for an 

arbitrary ∆x. 
• But if  ∆f(∆x) >  0 then ∆f(-∆x) would be < 0. 

Contradiction. 
• Hence we must have equality … 

 
• But since ∆x is arbitrary, we must have: 

 
• … at a local minimum. 

∆f 0≥
∆ f fx x*( )∆x=

∆f fx x*( )∆x 0           ∆x∀= =

fx x*( ) 0T=
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3.1.2.1 First Order (Necessary) Conditions 

Note: The gradient exists in the  
x1-x2 plane, not in the x1-x2-f volume.  
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3.1.2.2 Second Order (Sufficient) Conditions 
• At a local minimum, a perturbation in any 

direction satisfies: 
 

• Therefore, the order 2 Taylor series has no linear 
term at this point: 
– Instead, it looks like: 
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3.1.2.2 Second Order (Sufficient) Conditions 
• In explicit vector layout this is: 
 
• So the optimality condition is: 
 
• In other words, the Hessian must be positive 

semi-definite.  
• The sufficient condition is: 

∆f f x ∆x+( ) f x( )– f x( ) 1
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Feasible Points 
• Consider a set of m nonlinear constraints on the n 

elements of x. 
 
 

• Any point that satisfies these is called a feasible 
point. 

• Suppose the point x’ is feasible. 

c x( ) 0= c ℜm∈ x ℜn∈
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3.1.2.3 Feasible Perturbations 
• Consider a feasible perturbation ∆x 

– That is, one which remains feasible to first order. 

 
 

• The Jacobian cx is nonsquare m by n. 
• Since x’ is feasible, c(x’) =0. Hence: 

 
 

• For a feasible perturbation from a feasible point. 

c x' ∆x+( ) c x'( ) cx x'( )∆x+ 0= =

cx x'( )∆x 0=
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3.1.2.4 Constraint Nullspace 
• From last slide  
• The Jacobian is composed of m gradients (rows): 

 
 

• The feasibility condition is requiring the perturbation to 
be in the nullspace of the constraints. 
 

c1 x( ) c2 x( )…cm x( ),{ }

cx x'( )∆x 0=

N cx( ) ∆x:       cx x'( )∆x 0={ }=
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3.1.2.4 Constraint Tangent Plane 
• The constraint nullspace is also known as the 

constraint tangent plane. 
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Conditions for Optimality and Feasibility 
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3.1.3 Constrained Optimization 

• n variables in f() subject to m<n constraints. 
• Also known as nonlinear programming. 
• If there is no f(), it is constraint satisfaction 

or rootfinding. 
• If there are no constraints it is 

unconstrained optimization. 
 

f x( )

subject to: c x( ) 0=
x ℜn∈

c ℜm∈

optimize:x
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3.1.3.1 First Order (Necessary) Conditions 
• There are n-m degrees of freedom left after the 

constraints are enforced. 
• Cannot just set objective gradient to zero because such a 

point may not be feasible. 
• Define a local minimum to mean … 

– … for a feasible perturbation from a feasible point… 
– … the objective must not increase … 

cx x*( )∆x 0           ∆x feasible∀=

fx x*( )∆x 0           ∆x feasible ∀=
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Lagrange Multipliers 
• First, a feasible perturbation lies in the constraint 

tangent plane. 
 

• Second, the objective gradient is orthogonal to an 
arbitrary vector in the tangent plane. 
 

• The rows of           span the space of all vectors 
orthogonal to the constraints.  

• Hence, fx() must be some linear combination of 
them: 
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Constrained Local Minimum 

• The objective gradient is orthogonal to the level curves of both 
the constraints and the objective. 

• Level curves of constraints and objective are mutually tangent. 

f3 

c(x)=0 

Moving left or right on  
the constraint increases  
the objective 

f4 
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Necessary Conditions 
• Reverse the sign of the (unknown) multipliers to 

get: 
 

 
 

• It is customary to define the Lagrangian: 
 

fx
T x*( ) cx

T x*( )λ+ 0=

c x( ) 0=

l x λ,( ) f x( ) λTc x( )+=

Eqn A 
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Necessary Conditions 
• Define the Lagrangian: 

 
 

• The necessary conditions (Eqn A) can then be 
written as: 
 

l x λ,( ) f x( ) λTc x( )+=

Necessary 
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3.1.3.2 Solving NLP Problems 
• Four basic techniques: 

– Substitution: Substitute constraints into objective. 
Solve resulting n-m dof unconstrained problem. 

– Descent: Follow negative gradient of f() while 
remaining feasible. 

– Lagrange Multipliers: Solve n+m (linearized) necessary 
conditions directly. 

– Penalty Function: Convert constraints to a cost and 
solve resulting n+m dof unconstrained problem. 
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3.1.3.5 Example: Penalty Function 
• Consider the problem: 

 
 

• Suppose constraints are not satisfied and define the 
residual: 
 

• Define a weight matrix R and form the new cost function: 
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Example: Penalty Function 
• From last slide: 

 
• Differentiate f(x) wrt x and solve: 

 
 
 
 

• Hence:  

Solution 
Depends on 
Weight Matrix 
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Summary 
• Linearization, derived from the Taylor series, is the 

fundamental basis of many numerical methods. 
• The gradient vanishes at a local minimum of an 

unconstrained objective. 
• All the gradient(s) of a set of constraints are 

orthogonal to every vector in the constraint 
tangent plane.  
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Summary 
• A constrained minimum occurs when the 

objective tangent plane is tangent to the 
constraint tangent plane.  
– Equivalently, when the objective gradient is a linear 

combination of the constraint gradients.  

• The Lagrange multipliers are a set of unknown 
projections of a vector onto a set of constraint 
gradients (disallowed directions). 
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