Chapter 3
Numerical Methods

Part 1

3.1 Linearization and
Optimization of Functions
" of Vectors
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Problem Notation

Box 3.1: Notation for Numerical Methods Problems
The following notational conventions will be used consistently throughout the text in
order to elucidate how most problems reduce to a need for a few fundamental algorithms:
* . optimization problem
x" = argmin [f(x)]
optimize:.  f(x) optimization problem
g(x) = b level curve of g( )
c(x) =0 rootfinding, constraints
7 = h(x) measurement of state
F(X) = __h(x) residual
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Motivation

e A small number of numerical methods occur
frequently.

— Roots of nonlinear equations
— Optimization
— Integration of Diff Eqgs.
e Can’t use MATLAB to control the robot.

 You need to know
— How to implement these.
— How to cast a problem in standard form.

Carnegie Mellon
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Motivation

 Techniques will be used for control, perception,
position estimation, and mapping.

e Specifically:
— compute wheel velocities
— invert dynamic models
— generate trajectories
— track features in an image
— construct globally consistent maps
— identify dynamic models
— calibrate cameras
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3.1.1.1 Taylor Series (About Any Point)

e Scalar function of scalar:
1d 1d 1d

o 2 3
f(x+ AX) = f(X)+Ax{g—f} +A2—X|{—f2} +A3—X|{d—1;} + ...
XIo 4 ldx“ ), 2 ldx° )y

e Scalar function of vector:
1d 2d 3d

2( .2 3.3
f(x +AX) = f(>_<)+A>_<{§} +A—)-<,{8_1;} +A—>—f{a_2} ;
OX . 2! | ox y 3! | ox y

e \ector function of vector:

o

N 3l Ad
8f AXZ 8f AX3 6f
FX+AX) =T X)+AX == ¢t * 59— ¢ T2y —=3( *--
- - OX X 2! OX 3! a)_(?’
L JX L J X
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3.1.1.2 Taylor Remainder Theorem
f(x+ Ax) = T (AX)+ R_(AX)

1 (X +AX) O
Ry (AX) = = (X =)™
Y x O

e

X

n

s

- dC

)G

e Provided the nth derivative is bounded, the
error in a truncated Taylor series is of order

(Ax)n+1.

e When Ax is small, (Ax)"*! is very small.
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3.1.1.3 Linearization

e This is accurate “to first order” ...

e ... meaning the error is second order.

Carnegie Mellon
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3.1.1.4 Gradients and Level Curves and Surfaces
gx) =c X € R"
e This forms an n-1 dimensional subspace of R"
called a level surface (a set of level curves).

e Let the set of solutions be parameterized

locally in 1D by the scalar s to form the level
curve x(s).

— Each element of x(s) is a level curve for which g(x)
is constant. You could plot x,(s) vs x,(s)for example.

e By the chain rule applied along the constraint:

T Gradient is
oa(X(s oq OX T
_g(_(_)) - 0g 9% _dc normal to all the
level curves
Carnegie Mellon
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3.1.1.5 Example

Consider the constraint:

7 . 2

g(x) = a1 +x; = R

The constraint gradient is:

":';l
%~ 3l 4
[’:j:lkll_ﬂ ..,.-.-1 ..-.-2

Parameterize the level curve with:

T
x(s) = [cos(m) sin(lcs)]

The level curve tangent:

Which

11

ox

)]
Tl

s orthogonal to dg/0x

Mobile Robotics - Prof Alonzo Kelly, CMU RI

B [—KSiH(Ks) Kcos(mﬂ = 1([_372 xJ

Carnegie Mellon

THE ROBOTICS INSTITUTE



3.1.1.6 Jacobians and Level Surfaces

g(x) = c xe R c R

[—

1UQ

—_—

e This forms an n-m dimensional subspace of R"
called a level surface (a set of level curves).

e Let the set of solutions be parameterized by
the vector s to form x(s).

— x(s,) and x(s,) are different level curves.

e By the chain rule:

Rows of Jacobian

09(X(3)) Aox ' & are orthogonal
_= = —-—_—— =_=-=10 to tangents to
0S OX S 0S 9] level curves
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Jacobian and Tangent Plane

* Consider again: / Tangents

Jacobian

* The set of all linear combinations of the ;| |
rows of 0x/0s is called the tangent plane.} :

 Therefore, the constraint tangent plane lies -
in the nullspace of the constraint Jacobian.

Carnegie Mellon
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3.1.2 Optimization of Objective Functions
optimize:, f(X) X € R

e fisalways a scalar.
e Called objective, cost or utility function

 The max(f) problem is equivalent to min(-f)
so we will treat all problems as
minimization.

Carnegie Mellon
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Convexity and Global Minima

e A convex (concave)

16

function is uniformly on
or below (above) any
line between any two
points in its domain.

For these, local and
global minima are the

Sdme.
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3.1.2.1 Local Minima

S(x)

1 I

| 1 1 1

| I I 1 |ocal

I I : local : : minimum

| 1 ..

1 global 1 minimum- I

I minimumt! 1 1 !

[ 1 1 1 1 .,

| | | | 1 X

1 ] 1 1 1 -
JEJ ‘)_C )_63 )_64 )—65

Suppose we compute a minimum over a specified region

Which one you get often depends on where you start
searching.

Any global minimum (not on a boundary of the set) must also
be a local minimum.

Therefore a local minimum is a more fundamental problem.

Carnegie Mellon
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3.1.2.1 Notation

e This section will henceforth use two forms of
shorthand in one compact form:

L _0fl) o)

S (x )=a)£ =a)£

X=X

* Sof,() is a Jacobian or a gradient (if f is scalar-
valued):

Carnegie Mellon
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3.1.2.1 First Order (Necessary) Conditions

e Consider satisfying the weaker condition of being
a local minimum.

* |[n a given neighborhood, a Taylor series
approximation applies.

* Consider the change Af after moving a distance
Ax from a local minimum x*.

AF = 1 +Ax)-F(x) = fiX) +{@fc’(9)>_(< )}Ax—f(x*)
* ) Obje_ctive
Af = {51:2))&( )}A)_( _ f)_(()_(*)A<)_(/ Gradient

Carnegie Mellon
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3.1.2.1 First Order (Necessary) Conditions

* From lastslide... Af = f (X )AX
e |f x*is a local minimum then Af > foran

arbitrary Ax.

e Butif Af(Ax)> 0 then Af(-Ax) would be < 0.
Contradiction.

* Hence we must have equality ...
AT = T,(x )AX = 0 V AX

e But since Ax is arbj have:
f(x ) =0 \

e ...atalocal minimum.

Carnegie Mellon
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3.1.2.1 First Order (Necessary) Conditions

f(x) A

Gradient
IS Zero

\/“ . Gradient

Vectors

Note: The gradient exists in the
x1-x2 plane, not in the x1-x2-f volume.

Carnegie Mellon
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3.1.2.2 Second Order (Sufficient) Conditions

e At alocal minimum, a perturbation in any
direction satisfies:
f(X" +AX) = f(X7)+ f(x )AX = f(X7) VAX

 Therefore, the order 2 Taylor series has no linear
term at this point:

— Instead, it looks like:

2 2
AX |0 f -
fx+Ax) = f)+ =1 — 1
] \6)_( J X

Carnegie Mellon
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3.1.2.2 Second Order (Sufficient) Conditions
In explicit vector layout this is:

AT = f(X +AX)-T(X) = T(X) + %AXTF&(Q()AX

So the optimality condition is:

1,7
Af = §A>_< FodX)AX 20 VAX

In other words, the Hessian must be positive
semi-definite.

The sufficient condition is:

Hessian Must

AXTFXX()_()AX > O Be Positive

— — Definite

Carnegie Mellon
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Feasible Points

e Consider a set of m nonlinear constraints on the n
elements of x.

c(x) =0 ce®R” xeR

* Any point that satisfies these is called a feasible
point.

e Suppose the point x’ is feasible.

Carnegie Mellon
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Consider a feasible perturbation Ax

The Jacobian ¢, is nonsquare m by n.
Since x’ is feasible, c(x’) =0. Hence:

3.1.2.3 Feasible Perturbations

— That is, one which remains feasible to first order.

C(X' + AX) = c(X') +C (X)AX

Cy(X)AX = 0

0

For a feasible perturbation from a feasible point.

25
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3.1.2.4 Constraint Nullspace

* From last slide QX(X')A)_( = 0

 The Jacobian is composed of m gradients (rows):
1Cp (X) Co(X)...Cr(X)}

* The feasibility condition is requiring the perturbation to
be in the nullspace of the constraints.

Nc,) = {A ¢ (X)Ax =0}

Carnegie Mellon
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3.1.2.4 Constraint Tangent Plane

 The constraint nullspace is also known as the
constraint tangent plane.

Tangent c(x) = 0
Plane B

T

——

Carnegie Mellon
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Conditions for Optimality and Feasibility

Box 3.2: Conditions for Optimality and Feasibility

For the scalar-valued objective function f(x) ...

The necessary condition for a local optimum at Jg* 1s that the gradient with respect to x
vanish at that point:

filx) =

The sufficient condition for a local minimum at x 1s that the Hessian be positive defi-
nite:

‘A AX> 0 VAx

For the set of constraint functions ¢(x) = 0, 1f x' 1s a feasible point (1.e., ¢(x') = 0,
then the new point x" = x'+ Ax is also feasible (to first order) if the state change Ax is
confined to the constraint tangent plane.

¢ (x)Ax = 0

Carnegie Mellon
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3.1.3 Constrained Optimization

optimize:, f(X)
subjectto: C(X) = 0

N
)_(EER

(_:eiRm

n variables in f() subject to m<n constraints.

Also known as nonlinear programming.

If there is no f(), it is constraint satisfaction

or rootfinding.

If there are no constraints it is
unconstrained optimization.
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3.1.3.1 First Order (Necessary) Conditions

 There are n-m degrees of freedom left after the
constraints are enforced.

 Cannot just set objective gradient to zero because such a
point may not be feasible.
 Define a local minimum to mean ...

— ... for a feasible perturbation from a feasible point...
— ... the objective must not increase ...

c, (X )AX = 0 v AXx feasible

f>_<(>_<*)A>_< =0 VAX feasible

Carnegie Mellon
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Lagrange Multipliers

* First, a feasible perturbation lies in the constraint
tangent plane.

(_)X()_(*)A)_( =0 VvV AX feasible

* Second, the objective gradient is orthogonal to an
arbitrary vector in the tangent plane.
f)_<(>_<*)A>_< =0 VAX feasible

* The rows of ¢ (x) span the space of all vectors
orthogonal to the constraints.

* Hence, f,() must be some linear combination of
them:

f(X) = Ac(x)

Carnegie Mellon
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Constrained Local Minimum

A f
fx) i 77 4
— M c(x)=0
o c(x) =1 \\\"///
——— —_
T " e(x) =0 Moving left or right on
— N e(x) = —1 the constraint increases
\ h jectiv

— N2 the objective

‘ s A

| fo = - N

7 fix) = f,
ofix)
Y

 The objective gradient is orthogonal to the level curves of both
the constraints and the objective.

e Level curves of constraints and objective are mutually tangent.

Carnegie Mellon
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Necessary Conditions

e Reverse the sign of the (unknown) multipliers to
get:
f(X )+ C (X )A =0

Egn A
c(x) = 0

e [tis customary to define the Lagrangian:

1, %) = £ +2Te(x)

Carnegie Mellon
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Necessary Conditions

 Define the Lagrangian:

I(x, %) = f(x) +2Te(x)

 The necessary conditions (Eqn A) can then be
written as:

35

ol(x, %) "
o
(% 1) "
o

1O
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3.1.3.2 Solving NLP Problems

* Four basic techniques:

— Substitution: Substitute constraints into objective.
Solve resulting n-m dof unconstrained problem.

— Descent: Follow negative gradient of f() while
remaining feasible.

— Lagrange Multipliers: Solve n+m (linearized) necessary
conditions directly.

— Penalty Function: Convert constraints to a cost and
solve resulting n+m dof unconstrained problem.

Carnegie Mellon
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3.1.3.5 Example: Penalty Function

e Consider the problem:
minimize:, f(x) =

subjectto: Gx = b

e Suppose constraints are not satisfied and define the

residual: - o
rx) = Gx-b reN

 Define a weight matrix R and form the new cost function:

M : . ]_ 1 — % "
IMIMMIZE., fiy) = SX Ox+sr (x)Rr(x) XE€ R

Carnegie Mellon
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Example: Penalty Function

e From last slide:

minimuize: f{ x) =

¥ Ox+ %ET(I}RE[E) xe R

=

1
: 2

e Differentiate f(x) wrt x and solve:

e Hence:

38

or(x)

fi=x 0+ (R=""=0"

5‘1‘\

£ = ETQ_‘_(ETGT_QI}RG _ gr

y ' 0+x'G'RG = b'RC Solution
; - Depends on
{0+G RG}x = G Rb Weight Matrix
K
-1
x = {0+G'RC} G'Rb
. _ Carnegie Mellon
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Summary

e Linearization, derived from the Taylor series, is the
fundamental basis of many numerical methods.

 The gradient vanishes at a local minimum of an
unconstrained objective.

e All the gradient(s) of a set of constraints are
orthogonal to every vector in the constraint
tangent plane.

Carnegie Mellon
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Summary

e A constrained minimum occurs when the
objective tangent plane is tangent to the
constraint tangent plane.

— Equivalently, when the objective gradient is a linear
combination of the constraint gradients.
 The Lagrange multipliers are a set of unknown
projections of a vector onto a set of constraint
gradients (disallowed directions).

Carnegie Mellon
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