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3.2.1.1 Square Systems 
• You know this one already… 
• Suppose H is square and: 

 
• The “solution” is: 

 
• Use MATLAB and you’re done. 
• But how do you invert a matrix yourself? 
•  Row operations do not change the solution of 

the linear system. 
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• Consider three 
equations: 
 
 

• Multiply 2nd 
equation by 
a31/a21 
 

• Subtract this from 
3rd equation: 

Gaussian Elimination 
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• Multiply 1st equation by a21/a11 and eliminate 
x1 from second equation: 
 
 
 

• Use same process to (new) 2nd and 3rd equations 
to eliminate x2: 
 

Gaussian Elimination 
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Gaussian Elimination 
• Now we have: 

 
 
 

• Solve 3rd equation for x3, then 2nd equation for 
x2 etc. 

• Notice: 
– Process generalizes to larger systems. 
– Process works for arbitrary matrices. 
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• Consider again                      where H is m X n, m>n. 
Called an overdetermined system. 

• Define the residual vector: 
 

• Define a cost function as its magnitude: 
 

• Substitute the definition of residual: 

3.2.1.2 Left Pseudoinverse 
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3.2.1.2 Left Pseudoinverse 
• Use the product rule to differentiate wrt 

x: 
 

• This will vanish at any local minimum: 
 

• Requires residual at minimizer to be 
orthogonal to the column space of H. 
– Hence, known as the “normal equations”. 

• The value of Hx*: 
– Is in the column space of H 
– Has a residual (z-Hx*) of minimum length. 
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3.2.1.2 Left Pseudoinverse 
• Move z to other side and solve: 

 
 
 

• The matrix: 
 

• … is called the Left Pseudoinverse of H because… 
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• Consider again                      where H is m X n, m<n. 
Called an underdetermined system. 

• There are potentially an infinite number of 
solutions. 

• Simple technique is to introduce a regularizer 
(cost function) to rank all solutions and pick the 
best. 

• Define a cost function as the (squared) magnitude 
of x: 

3.2.1.3 Right Pseudoinverse 
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• Now form a constrained optimization problem: 
 
 

• Form the Lagrangian: 
 

• First necessary condition is: 

3.2.1.3 Right Pseudoinverse 
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3.2.1.3 Right Pseudoinverse 
• Substitute into the second necessary condition 

(constraints): 
 
 
 

• The solution for the multipliers is: 
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3.2.1.3 Right Pseudoinverse 
• Substitute back into the first equation: 

 
• The matrix: 

 
• … is known as the right pseudoinverse because … 
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3.2.1.4 About The Pseudoinverse 
• Both LPI and RPI 

– reduce to the regular inverse when the matrix is 
square. 

– require H to be of full rank 
– invert a matrix whose dimension is the smaller of m 

and n 

• It is possible to define “weighted” pseudoinverses 
(easy to re-derive). For example: 
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Produces the 
Weighted 
LPI 
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Standard Form 
• The problem of solving: 

 
• Is equivalent to solving: 

 
• Often, x is really an unknown vector of 

parameters denoted as p. 
• Note that: 
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3.2.2.1 Newton’s Method 
• Basic trick of numerical methods….. 
• Linearize the constraints about a nonfeasible 

point  
 

• Require feasibility after perturbation: 
 

• Leads to: 
• Basic iteration is: 

18 

The precise change which, 
when added to x, will  
produce a root of  
(the linearization of) c(x) 
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Visualizing Newton’s Method 
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Pathologies 

• Nonlinear functions can have several roots – each 
with its own radius of convergence. 

• At an extremum (not at a root) the Jacobian is not 
invertible.  

• Near an extremum, huge jumps to a different root 
are possible. 
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3.2.2.3 Numerical Derivatives 
• Often its simpler, less error prone, and less computation 

to differentiate numerically. 
• Compute the constraint vector one additional time at a 

perturbed location: 
 
 

• This gives a numerical approximation for the i-th column 
of the Jacobian. 

• Collect them all to get  

21 

xi∂
∂c c x ∆xi+( ) c x( )–

∆xi
------------------------------------------= ∆xi 0 0 … ∆xi … 0 0=

i-th position 

cx
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Isaac Newton 

• English mathematician and 
scientist. 

• Perhaps the greatest analytic 
thinker in human history. 

• Graduated Trinity College 
Cambridge in 1665.  

• Then came the Great Plague. 
– University shut down for 2 

years. 
• Worked at home on calculus, 

gravitation, and optics. 
– Figured them all out! 

• We will use his calculus to 
solve nonlinear equations 
– and a few other things !!! 
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Isaac Newton 
1643 -1727 

 



3.3.1 Nonlinear Optimization 
• The general nonlinear optimization problem: 

 
• Numerical techniques produce a sequence of 

estimates such that: 
 

• …by controlling both the length and the direction of 
the steps. 

• Two basic techniques: 
– 1) Line Search - adjusts length after choosing direction. 
– 2) Trust Region – adjusts direction after choosing length. 

Mobile Robotics - Prof Alonzo Kelly, CMU RI 24 

f x( ) x ℜn∈minimize:x

f xk 1+( ) f xk( )<



3.3.1.1 Line Search 
• Often need to search the descent direction and 

that’s expensive. 
• Consider ways to be smart about this….. 
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Step Too Large Step Too Small 



3.3.1.1 Line Search 
• Given a descent direction d, converts to a 1D problem: 

 
• Define the linearization of the scalar function: 

 
• Convergence is guaranteed if every iteration achieves 

sufficient decrease (relative to linear approximation) 
 
 

• For efficiency, try large steps and backtrack if necessary 
with: 
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f x αd+( ) α ℜ1∈minimize:α

η f x( ) f x αd+( )–

f̂ 0( ) f̂ αd( )–
--------------------------------------- ηmin>=

f̂ αd( ) f x( ) fx αd( )+=

ηmin:   0 ηmin 1< <

αk 1+ 2 i–( )αk    :     i 0 1 2 …, , ,==



Line Search Algorithm 
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Accept step 

Move to new estimate 
Reduce stepsize 



3.3.1.1.2 Descent Direction: Gradient Descent 
• Also called steepest descent. 
• Consider, approximating the objective by degree 1 

Taylor polynomial… 
 
 

• Hence the increase in the objective is the 
projection of ∆x onto the gradient fx. 

• Choose the negative gradient for max decrease: 
 
 
 

Mobile Robotics - Prof Alonzo Kelly, CMU RI 28 

dT fx–=

f x ∆x+( ) f x( ) fx∆x+≈



3.3.1.1.3 Descent Direction: Newton Step 
• Of course the gradient vanishes at a local 

minimum.  
• Write Taylor series for the gradient. 

 
• Hence the step is given by: 

 
 

• This is equivalent to fitting a parabola to f and 
computing the minimum of the parabola. 
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fx x ∆x+( ) fx x( ) fxx∆x+≈ 0T=

fxx∆x fx
T–= ∆x fxx– 1– fx

T=
Sometimes 
Called Newton-Raphson 
Method. 



3.3.1.2 Descent Direction: Trust Region 
• Solve this auxiliary constrained optimization problem: 

 
 

• The solution is also a solution of: 
 
• When objective is locally quadratic µ is small. 
• Otherwise µ is large and algorithm is reduced to 

gradient descent. 
• Trust region is adapted based on ratio of actual and 

predicted reduction: 
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f̂ ∆x( ) f x( ) fx∆x fxx
∆x2

2
---------+ +=

subject to: g ∆x( ) ∆xT∆x ρk
2≤=

∆x ℜn∈optimize:∆x

Inequality constraint 
(stay in a circle) 

fxx µI+( )∆ x* fx
T–= µ 0≥

η
f x( ) f x ∆x+( )–

f̂ 0( ) f̂ ∆x( )–
---------------------------------------=



Levenberg-Marquardt Algorithm 
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Reject step 

Reduce Trust 

Increase Trust 



Carl Friedrich Gauss 

• German mathematician and 
scientist. 

• Some say greatest 
mathematician in history. 

• Famous for doing math in 
his head. 

• Major contributions to 
number theory. 

• “Proved” fundamental 
theorem of algebra. 

• Invented method of least 
squares to predict orbital 
phenomena. 
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Carl Friedrich Gauss 
1777 -855 

 



3.3.1.3 Nonlinear Least Squares 
• Consider nonlinear observations z of x: 

 
• Define a residual and cost function: 

 
 

• The weights can come from the inverse of the 
covariance: 
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z h x( )= z ℜm x ℜn∈ m n>, ,∈ Usually, not 
Satisfied exactly 

r x( ) z h x( )–=

f x( ) 1
2
---rT x( )Wr x( )=

W R 1– Exp zzT( )
1–

= =

Assume a symmetric W 



3.3.1.3.1 Derivatives 
• Nonlinear  must be solved by iterative methods. 
• Gradient: 
• Also: 

 
• Hessian: 
• Also: 
• Give these to any minimization algorithm (like 

Levenberg-Marquardt). Recall the Newton step: 
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fx rT x( )Wrx=

f x( ) 1
2
---rT x( )Wr x( )=

Jacobian 
Matrix 

rx hx–=

fxx rx
TW rx rxx Wr x( )+=

Tensor 

rxx hxx–=

Row 
Vector 

Matrix 

∆x fxx– 1– fx
T=



3.3.1.3.2 Gauss Newton Algorithm 
• From last slide: 
• Residuals are often small since they are caused 

solely by noise. 
• In that case r(x) can be neglected to give: 

 
• This is a very cheap 2nd derivative computed from 

a 1st derivative (which you would need anyway). 
• The Newton step becomes: 
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fxx rx
TW rx rxx Wr x( )+=

fxx rx
TWrx≈Gauss Newton Approximation  

to The Hessian 

∆x fxx– 1– fx
T rx

TWrxrx
TWr x( )–= = Eqn A 



3.3.1.3.3 Rootfinding to a Minimum? 
• The objective nearly vanishes at a minimum. 
• Linearize observations and solve for the “root” of the 

gradient: 
 

• Solve iteratively with left pseudoinverse: 
 
 

• To be safe, use this as a descent direction and use line 
search. 

• Gauss Newton nonlinear least squares is equivalent 
to (gradient) rootfinding for small residuals. 
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rx∆x r x( )–= Overdetermined 
System 

∆x rx
Trx[ ]–

1–
rx

T r x( )=
Same as Eqn A for 
W=I 
This is a valid 
approach 



Small Residuals 
• Everything is fine as long as the minimum residual 

is small relative to the present one. 
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Large Residuals 
• When the present residual is close to the 

minimum, the slope is near zero. 
– Eventually the update actually increases the residual. 

 
 
 
 

• Moral: Be sure to use line search. 
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Gauss-Newton 
does not work for 
large residuals.  
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Constrained Optimization 
• Problem Statement: 

 
 

• Recall the necessary conditions: 
 
 

• These are n+m (generally nonlinear) equations in 
the n+m unknowns (x*,λ*). 
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f x( )

subject to: c x( ) 0=
x ℜn∈

c ℜm∈

optimize:x

c x( ) 0=
fx

T cx
Tλ+ 0= n eqns

m eqns



Compact Necessary Conditions 
• Define the Lagrangian: 

 
 

• Then, the necessary conditions become: 
 
 

• These are (the same) n+m (generally nonlinear) 
equations in the n+m unknowns (x*, λ*). 
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l x λ,( ) f x( ) λT c x( )+=

lλ
T 0=

lx
T 0= n eqns

m eqns



Constrained Newton Method 
• Linearize of course! 

 
 
 

• Where: 
 

• Efficient ways to invert this matrix were covered in 
the math section. 

• Solution gives a descent direction for line search 
or trust region algorithm. 
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lxx cx
T

cx 0

∆x
∆ λ

lx
T

c x( )
–=

lxx fxx λTcxx+=

lx fx λT cx+=



Initial Lagrange Multipliers 
• An initial estimate of x is doable.  
• What about λ? 
• One way is to solve the first (n) first order 

conditions for the (m) multipliers.  
 
 

• They overdetermine λ so the solution is a left 
pseudoinverse (of      ). 
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λ
0

cxcx
T[ ]

1–
cx fx

T–=

fx
T cx

Tλ+ 0=

cx
T



Constrained Gauss-Newton 
• Consider the constrained nonlinear least squares 

problem: 
 
 

• The 1st and 2nd derivatives are: 
 
 

• Now go back and use the constrained Newton 
method on these to find a descent direction. 
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f x( ) 1
2
---r x( )

T
r x( )=minimize:

g x( ) b=subject to:

lxx fxx λTgxx+ rx
Trx λTgxx+= =

lx fx λTg
x

+ rT x( )rx λTg
x

+= =
Small residuals  
Assumed here 



Penalty Function Approach 
• Consider the following unconstrained problem: 

 
 

• Solve this for progressively increasing values of 
the weight wk. 

• Why do this? 
– Many constraints are soft and can be traded-off 

against the objective. 
– This has only n dof rather than n+m. 
– Can be used to get a good initial estimate for a 

constrained approach. 
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fk x( ) f x( ) 1
2
---wk c x( )Tc x( )+=
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Summary 
• The inverse of a nonsquare matrix can be defined 

based on minimization of some suitable objective. 
• The roots of nonlinear functions can be found by 

linearization and iteration. Newton’s method 
converges quadratically. 

• Minimization problems are very different from 
rootfinding. 
– Though they are easy to confuse when doing least 

squares. 
– Small residuals is a key assumption. Know when you 

are making it. 
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Summary 
• Numerical methods for optimization either search 

for roots of the gradient or for local minima. Two 
techniques are: 
– Line search 
– Trust region 

• Protected steps (line search) and backtracking are 
key ways to achieve robustness.  
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