
Chapter 3 
Numerical Methods 

Part 3 
3.4 Differential Algebraic Systems 
3.5 Integration of Differential 
Equations 

Mobile Robotics - Prof Alonzo Kelly, CMU RI 1 



Outline 
• 3.4 Differential Algebraic Systems 

– 3.4.1 Constrained Dynamics 
– 3.4.2 First and Second Order Constrained Kinematic 

Systems 
– 3.4.3 Lagrangian Dynamics 
– 3.4.4 Constraints 
– Summary 

• 3.5 Integration of Differential Equations 

2 Mobile Robotics - Prof Alonzo Kelly, CMU RI 



Outline 
• 3.4 Differential Algebraic Systems 

– 3.4.1 Constrained Dynamics 
– 3.4.2 First and Second Order Constrained Kinematic 

Systems 
– 3.4.3 Lagrangian Dynamics 
– 3.4.4 Constraints 
– Summary 

• 3.5 Integration of Differential Equations 

3 Mobile Robotics - Prof Alonzo Kelly, CMU RI 



3.4.1.1. Augmented Systems 
• Consider a differential equation with n states subject to 

m constraints: 
 

 
• Linear equations could be substituted into the DE. 

Nonlinear is the case that matters to us. 
• What does it mean? Both equations cannot be correct … 

– It means the DE applies in the subspace of Rn that satisfies the 
constraints. 

– The subspace is known as the constraint manifold. 

4 

x· f x u,( )=
c x( ) 0=

4 Mobile Robotics - Prof Alonzo Kelly, CMU RI 



3.4.1.3 Sequential Approach 
• First Approach: Integrate the unconstrained DE 

one time step. 
 
• Use result as initial conditions for a rootfinding 

problem that enforces constraints 
• Should work but … 

– What if rootfinding step reverses the DE step? 
– Did it move by ∆t or < ∆t or > ∆t ?  
– The two equations can disagree with each other. They 

need to be decoupled. 
• Idea: Make the DE step satisfy the constraints to first order. 
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xk 1+ xk ∆xk+ xk f x u,( )∆t+= =
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3.4.1.4 Projection Approach 
• Second Approach: Remove the component of the state 

derivative out of the constraint tangent plane. 
– Equivalently, project it into the tangent plane. 

• Write step in terms of feasible and infeasible component: 
 

• Remove the component out of the tangent plane: 
 
 

• The matrix                                                        performs a 
projection on the column space of M. 
– Here we project onto colspace of 𝑐𝑐𝑥𝑥𝑇𝑇 - which is the rowspace of 𝑐𝑐𝑥𝑥 

(the Constraint Jacobian). 
– So this is the component that violates the constraints to first order. 
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3.4.2.1 Augmented First Order Systems 
• Third approach: Remove the infeasible component right 

in the differential equation. 
• For a feasible perturbation: 
• The infeasible part is some unknown combination of the 

constraint gradients. Let it be of the form: 
• Remove the infeasible component with: 

 
• Divide both equations by ∆t and pass to the limit: 
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3.4.2.2 Solving The Eqns of Motion 
• This can be written in matrix form: 

 
 
 

• To solve, multiply 1st by      : 
 
 

• By 2nd equation                  so solve for λ:  
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Again in Lagrangian 
Dynamics 
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3.4.2.2 Solving The Eqns of Motion 
• Substitute for λ in first equation: 

 
 
 

• The matrix: 
 
 

• Projects the state derivative directly into the nullspace of 
the constraints – i.e. directly into the tangent plane. 
– By simply removing the component normal to the tangent 

plane (i.e. a weighted sum of the gradients). 
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3.4.2.3 Holonomic Constraints 
• These are of the form: 

 
• It is useful to differentiate constraints sometimes. 
• Differentiating wrt time gives our standard form for a 

velocity constraint: 
 

• If the DE has a holonomic constraint on 𝑥𝑥, this implies 
that the derivative (𝑥̇𝑥,) must be constrained too: 
– In fact it must be orthogonal to the constraint gradient. 
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3.4.2.4 Nonholonomic Constraints 
• Consider a form that depends on the state 

derivative: 
 

• Differentiate to get: 
 

• In general, all higher state derivatives are 
constrained too. 

• A special form that is relevant to us is: 
 

• This does not need to be differentiated to use. 
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Compte Joseph-Louis Lagrange 
• Greatest mathematician of 18 

century? 
• Advised by Leonhard Euler (who was 

advised by Bernoulli) 
• Notable students 

– Joseph Fourier 
– Simeon Poisson 

• Reformulated Newtonian Mechanics 
Mécanique Analytique (Analytical 
Mechanics) (1788). 

• Invented: 
– Theory of Differential Equations 
– Calculus of variations 
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1736-1813 
Italian-French 



Vehicle on Terrain Video 
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3.4.3.1 Equations of Motion 
• Embedded Form: 

– Eliminates constraint forces 
– Fewest dof, fewest equations 
– Nonlinear, complex equations 
– Popular for manipulators 

• Augmented Form: 
– Redundant coordinates 
– Explicit constraint forces 
– Simpler equations 
– Suitable for automation 
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Real wheels do slip. Hence 
nonholonomic “constraints” 

are not really “no slip” 
constraints, they are “slip like 

this” constraints. 



3.4.3.1 Equations of Motion – One Body 
• Equations of motion are simple when the 

generalized coordinates (q) are absolute (inertial). 
• Coordinates for one body: 

 
• Equation of motion: 
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Segment forces into those known and those unknown 

mass external 
force 

constraint 
force 

Unknowns 

Eqn A 



3.4.3.1 Applied and Constraint Forces 
• Constraint forces are generated to oppose motion 

in the disallowed directions. 
• The net force (parallel to acceleration) is therefore 

not in the direction of the applied force. 
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𝑄𝑄𝑐𝑐𝑐𝑐𝑐𝑐 

𝑞̈𝑞 



Center of Mass Reference 
• Choose Center of mass as the body reference 

point. Then: 
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2x2 
identity 

Polar  
moment  
of inertia 



Underdetermined System – n bodies 
• # of equations: 

– 3 n: one for each element of 𝑥̈𝑥 
• # of unknowns: 

– 3 n generalized accelerations 𝑥̈𝑥  
– 3 c constraint forces 
– 3 n generalized velocities 𝑥̇𝑥 
– 3 n generalized coordinates 𝑥𝑥 

• Where do the other 3c “constraints” come from? 
– The constraints  

• Where do the velocities and positions come from? 
– Integration 
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3.4.3.2 Differentiated Constraints - Holonomic 
• The 2nd derivative of a holonomic constraint is: 

 
• Define:  

 
• Then we have: 

 
• This makes the differentiated constraint look like 

Newton’s 2nd law.  
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3.4.3.2 Differentiated Constraints-Nonholonomic 
• Also, for a nonholonomic constraint: 

 
• Define: 

 
• Then the constraint becomes: 

 
• Once again, this makes the differentiated 

constraint look like Newton’s 2nd law.  
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3.4.3.2 Differentiated Constraints-General 
• Both earlier forms are of the form: 
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holonomic 

nonholonomic 

Eqn B 



3.4.3.3 Principle of Virtual Work 
• Credited to Aristotle(!) and/or Bernoulli. 
• Work: The product of a force and a displacement 

in the direction of the force. 
• Virtual Work: As above but either force or 

displacement is not real. 
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3.4.3.3 Lagrange Multipliers 
• We will require the virtual work performed by 

constraint forces to vanish. 
• This is accomplished by writing: 

 
• Why? 

– Columns of CT (rows of C) are prohibited directions. 
– Constraint forces are confined above to those 

prohibited directions. 
– Dot product of constraint forces  with any feasible 

displacement will be zero. 
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Constraint 
Jacobian 

Displacements parallel to the 
the rows of J are infeasible. 

Eqn  C 



• Recall the original equations of motion: 
 

• Substitute from Eqn C: 
 
 

• Combine this with Eqn B: 

3.4.3.4 Augmented System 
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Eqn  A 

Eqn  B 

Eqn  A1 

Feasible 
Accelerations 

Forces in Infeasible 
Directions 



Augmented System 
• We now have c extra equations and have replaced 

the constraint forces with the Lagrange 
Multipliers as unknowns. 
 
 
 
 
 

• Solve and then integrate acceleration twice. 
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Mass Matrix 

Augmented 
Force Vector 
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3.4.4.1 Constraint Trim 
• Due to inevitable numerical error, enforcing differentiated 

constraints does not enforce the original constraints. 
• Lt f(t) be the state derivative computed by integrating the second 

order system: 
 

• The first order system is subject to the original constraints: 
 
 

• 𝑥̇𝑥 generated by integration will likely not satisfy these constraints, 
so fix it with the following before integration: 
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3.4.4.2 Drift Control 
• Constraints will drift over time since only 

derivatives are enforced. 
• Elegant solution is to add compensation 

pseudoforces in PID loops… 
 
 

• Gains relate to time constants: 
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3.4.4.4 Initial Conditions 
• Differentiated constraints will hold the constraints 

constant rather than at zero. 
– So they must start at zero to stay at zero. 

• Two approaches. 
– 1) Start from zero velocity state which automatically 

satisfies constraints. Then activate system with forces. 
– 2) Start from moving state but guarantee constraints 

are satisfied by solving the rootfinding problem. 
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Overconstraint 
• Typical of wheeled vehicles. 
• Leads to collapse of nullspace. 

– No motion possible. 
– … or constraints do work. 

• Few approaches: 
– 1) Use any two independent constraints. 
– 2) Compute and equivalent bicycle model of 

constraints for each cycle. 
– 3) Use an equation solver that tolerates the situation 

• It may or may not be appropriate to let the 
overconstrained system slow down. 
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Redundant Constraints 
• Example: two rear wheels of car generate the 

same constraint equation. 
• Leads to singularity of the system. 
• Good approach is avoid inversion. Compute least 

residual norm: 
 
 

• Conjugate gradient algorithm… 
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3.4.4.5 Basic Rigid Body Constraint 
• Two bodies have poses known with respect to the 

world frame. 
• If there is a rotary constraint, frame p is at the 

pivot point. 
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w 

i j 

𝜌𝜌𝑖𝑖 
𝜌𝜌𝑗𝑗 

p 



• Express this in terms of pose composition as 
follows: 
 

• Holonomic of the form: 
 

• Equivalent to: 

Rigidity Constraint 
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• Gradient contains two elements: 
 
 
 

• The first is a right pose Jacobian: 

Rigidity Constraint 
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• The second is more complicated. By the chain 
rule: 
 
 

• This is: 

Rigidity Constraint 
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Left Pose 
Jacobian 

Inverse Pose 
Jacobian 



Rigidity Constraint 
• Total Constraint Jacobian: 

 
 
 
 

• Time Derivative: 
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Where 

Where 



Rotary Joint Constraint 
• Let p denote a reference frame attached to the 

point of rotation. 
• The constraints for the rotary joint at the front 

wheel can be expressed as the first two elements 
of the equation: 
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Rewritten in  
terms of generalized 
coordinates. 

“p” means axis of rotation 

Knowns Unknowns 



Rotary Joint Constraint 
• This gives: 

 
 
 

• Hence, total constraint Jacobian is: 
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Minus sign 

∆xi xp
w xi

w–( )=

∆xj xp
w xj

w–( )=
∆yi yp

w yi
w–( )=

∆yj yp
w yj

w–( )=



Rotary Joint Constraint 
• Time Derivative: 

 
 
 

• Fd vector is: 
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ω i ω i
w θ· i

w
= =

ω j ω j
w θ

·
j
w

= =

Fd 



Outline 
• 3.4 Differential Algebraic Systems 

– 3.4.1 Constrained Dynamics 
– 3.4.2 First and Second Order Constrained Kinematic 

Systems 
– 3.4.3 Lagrangian Dynamics 
– 3.4.4 Constraints 
– Summary 

• 3.5 Integration of Differential Equations 

42 Mobile Robotics - Prof Alonzo Kelly, CMU RI 



Summary - DAEs 
• Simplest formulation for some problems. 
• Only practical formulation for some problems. 
• Can be really fast for mobile robots. 
• Can be written in completely general way to 

simulate anything. 
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3.5.1 State Space 
• State space = a minimal set of variables which can 

be used to predict future state given inputs: 
– Number of initial conditions in a differential equation. 
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3.5.1 Dynamic Models in State Space 
• Predicting the future involves predicting 

trajectories caused by motion commands. 
• General case: 

 
 

• The “inputs” u are a new addition. 
• Known as a “forced” system although the inputs 

need not be forces. 
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x· t( ) f x t( ) u t( ) t, ,( )=

Known as the State 
Space representation 
of the system 



Constraints 
• The dynamics of wheeled mobile robots are 

constrained dynamics in 3D of systems of rigid 
bodies. 

• Often must consider: 
– Actuator kinematics 
– Lateral and longitudinal wheel slip (or nonslip). 
– Terrain following. 
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3.5.2.1 Euler’s Method 
• For the nonlinear differential equation: 

 
• Seems reasonable to use the definition of 

integration: 
 

• In discrete time: 
 

• Works well if f() is nearly linear. Errors are 2nd 
order.  
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x· t( ) f x t,( )=

x t ∆t+( ) x t( ) f x t,( )∆t+=

xk 1+ xk f xk tk,( )∆ tk+=



3.5.2.2 Midpoint Method 
• Let’s try for a 2nd order approximation. A 2nd 

order Taylor series is: 
 

• Which can be written as (factor out an h): 
 

• Now, the part in brackets is the first degree Taylor 
series for the first time derivative evaluated at the 
midpoint of the step because: 
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x t h+( ) x t( ) f x t,( )h
td

df x t,( )  
h2

2
-----+ +≈

x t h+( ) x t( ) f x t,( ) td
df x t,( )  

h
2
---+

 
 
 

h+≈

f x t h 2⁄+( ) t h 2⁄+,( ) f x t,( )
td

df x t,( )  
h
2
---+≈

Eqn A 

h= ∆ t 



3.5.2.2 Midpoint Method 
• The derivative                     is typically expensive 

computationally. Instead, invert the last formula 
to produce a finite difference approximation:  

 
• Substituting into Eqn A produces: 

 
• And, the value of x at the midpoint can be 

approximated: 
 

• This gives finally: 
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df x t,( ) dt⁄

td
df x t,( ) 

h
2
--- f x t h 2⁄+( ) t h 2⁄+,( ) f x t,( )–≈

x t h 2⁄+( ) x t( ) f x t,( ) h 2⁄( )+≈

x t h+( ) x t( ) hf x t h 2⁄+( ) t h 2⁄+,( )+≈

x t h+( ) x t( ) hf x t( ) f x t,( ) h 2⁄( )+ t h 2⁄+,[ ]+≈



3.5.2.2 Midpoint Method 
• For future reference, this is best written as: 
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k x t( ) f x t,( ) h 2⁄( )+=
x t h+( ) x t( ) hf k t h 2⁄+,( )+≈

t+h t+h/2 t 

x 
Euler 
Step 

Midpoint 
Step 



Example 
• Example, integrate a general curve with respect to 

distance: 
 

 
• In discrete time: 

 
 
• Specific curvature profile is constant (arc): 
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x s( )
y s( )
θ s( )

x 0( )
y 0( )
θ 0( )

θ s( )cos
θ s( )sin

κ s( )

sd
0

s

∫+=

κ s( ) κ0 1= =

x
y
θ k 1+

x
y
θ k

θcos
θsin

κ k

∆s+=



Example 
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Midpoint 
Algorithm 
Reduces 
Error 
By a  
Factor  
Of 
20 



3.5.2.3 (4th Order) Runge Kutta 
• Closest thing to a definitive algorithm for integration. 

 
 
 
 
 
 
 
 

• This can be 1000 times more accurate than Euler’s 
method. 

Mobile Robotics - Prof Alonzo Kelly, CMU RI 55 



Outline 
• 3.4 Differential Algebraic Systems 
• 3.5 Integration of Differential Equations 

– 3.5.1 Dynamic Models in State Space 
– 3.5.2 Integration of State Space Models 
– Summary 

56 Mobile Robotics - Prof Alonzo Kelly, CMU RI 



Summary 
• This is worth knowing about. 
• A few lines of code can be the difference 

between: 
– 100 mm of error after moving 10 meters 
– 0.1 mm of error after moving 10 meters 
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