
Chapter 8 
Perception 

Part 1 
8.1 Image Processing Operators and 
Algorithms  
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Introduction 
• Mobile robotics needs these forms of mathematics: 

– kinematics: for relationships between robot and things 
– probability and statistics: for likelihood in absence of info 
– moving reference frames: for inertial sensors 

• Perception also uses: 
– signal processing: 

• Suppress noise 
• Enhance edges 
• Match signals. 

• Data can be  
– Range or appearance 
– 1D or 2D 
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8.1.1 Taxonomy 
• Image Processing 

– Operates on pixels without regard for what they 
represent. 

– Operates on raw input data  

• Geometric Computer Vision 
– Infers shape or motion or both 
– Focus on spatial relationships 

• Semantic Computer Vision 
– Recognize, reason about, interpret the nature of the 

scene 
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8.1.1.1 Image Processing Algorithms 
• Edge Detection 
• Smoothing 
• Segmentation 
• Feature Detection 
• Optical Flow 
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8.1.1.2 Geometric Computer Vision 
• Shape Inference 
• Feature Tracking 
• Visual Odometry 
• Structure from Motion 
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8.1.1.2 Semantic Computer Vision 
• Pixel Classification 
• Object Detection 
• Object Recognition 
• Obstacle Detection 
• Scene Understading 
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8.1.2 High Pass Operators 
• Various operations (e.g. derivatives) applied to 

signals can … 
– enhance the high frequency information  
– and suppress the low frequency information.  

• Good when high frequencies are the signal.  
• Bad when the high frequencies are noise 
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8.1.2.1 First Derivatives in 1D 
(Central Difference Template) 

• Can visualize as a “template” (aka stencil, kernel, mask)  
which is applied everywhere in an image. 
 
 
 
 
 
 

• Approximations of arbitrary complexity can be obtained by: 
– writing Taylor series approximations and … 
– solving for the derivatives that appear in terms of the function 

values that appear. 
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8.1.2.2 Image Operators as Masks 
• To apply the operator (tempalte) at a given pixel…. 

– Position the template 
– Perform a vector dot product 

 
 

• Typically both the signal and the template are 
discrete signals. 
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8.1.2.3 1st Derivatives of 1D Range Data 
• The central difference can be used to detect edges 

in range data. 
• Consider data produced by a downward looking 

ladar. 
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8.1.2.4 First Derivatives of 2D Intensity Data 
• In 2D, a famous central difference, the “Sobel” 

operator, looks like: 
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8.1.2.4 First Derivatives in 2D 
(Sobel Operator Result) 

• Each output pixel is an approximation of the 
gradient magnitude at the corresponding place in 
the input image. 
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8.1.2.4 First Derivatives in 2D 
(Sobel Operator Result) 
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8.1.2.5 Second Derivatives in 1D 
• Compute second derivatives as second differences - 

differences of first differences.  
• Based on earlier definitions: 

 
 

• This expands to: 

Mobile Robotics - Prof Alonzo Kelly, CMU RI 21 

Derivatives 
Amplify Noise. 



Second Derivative Template 
• Can visualize as a template which is applied 

everywhere in an image. 
 
 
 
 
 
 

• Often, this is approximated by subtracting a thin 
Gaussian from a wide one. 
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8.1.2.6 2nd Derivatives of Large Support 
• Notice that 

– 1st derivatives are even functions of 2 humps 
– 2nd derivatives are odd functions of 3 humps 

• When ∆x is large relative to the pixel size, a 
difference of Gaussians is a good way to do a 2nd 
derivative: 
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8.1.2.7 Derivatives as Robust Comparisons 
• Suppose y(x) has the Taylor series… 

 
 

• Then its first and second derivatives are: 
•   
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8.1.2.8 Second Derivatives in 2D 
• The Hessian matrix of a scalar spatial signal z(x,y) 

is: 
 
 
 

• Its trace is a scalar called the Laplacian: 
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8.1.2.8 Second Derivatives in 2D 
(Laplacian Kernel) 

• Looks like so: 
 
 
 
 

• Just the sum of two second derivatives at right 
angles. 
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8.1.2.8 Second Derivatives in 2D  
(Uses of 2nd Derivatives) 

• 1) Maximal Edge Detection: First derivatives 
(edges) are locally highest (or lowest) when the 
second derivatives are zero. “Zero crossings” 

• 2) Normalization: The second derivative of a 
signal contains all information except: 
– the mean (bias) and  
– the linear deviation from the mean (scale).  
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8.1.2.9 Statistical Normalization in 1D 
• The mean of a signal at time 

t, computed over an interval 
T is: 
 

• The rms value is: 
 
 

• Lets similarly define the 
standard deviation as: 
 

• The normalized signal (at 
interval T) can be defined as: 
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8.1.2.10 Image Sum Notation 
• To avoid messy looking sums. 
• Let index i vary symmetrically of a window of 

width h 
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8.1.2.11 Statistical Normalization – 2D 
• In discrete 2D imagery: 

– Local mean: 
 

– Variance: 
 

– Standard Deviation: 
 

– Normalized Image: 
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8.1.2.11 Statistical Normalization – 2D 
(Enhancing Texture) 

• Normalization: 
– not well behaved if the 

denominator is small 
– often makes no sense to 

match flat signals anyway 

• Use after a 2nd derivative 
has removed the local 
plane fit. 

• Result is the “texture” or 
“edginess” of the signal 
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8.1.2.11 Statistical Normalization – 2D 
(Enhancing Texture) 
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8.1.3 Low Pass Operators 
• Various operations (e.g. integrals) applied to 

signals can 
– enhance the low frequency information  
– and suppress the high frequency information.  

• Good when low frequencies are the signal.  
• Bad when the low frequencies are not useful. 
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8.1.3.1 Average Filtering 
• Replace every signal value by the average of the 

neighborhood around it. 
• In 1D, this is: 

 
 

• T is called the “support” of the operator. 
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8.1.3.1 Average Filtering 
(Efficiency of Box Filter) 

• Efficient ways to compute: 
– subtract the last value and add the next as window 

moves. 

• Image “pyramids” can be defined where each 
layer is half as large as layer below. 
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8.1.3.2 Gaussian Filtering 
• Could use a Gaussian shaped kernel: 
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Template Properties 
• Notice that the operators covered so far have 

these properties: 
– integrals: even and unimodal (bell) 
– 1st derivative: odd and bimodal (sine) 
– 2nd derivative: even and trimodal (sombrero) 
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8.1.4 Matching Signals and Images 
• Some motivating uses are: 

– recognition. Determining if an instance of an object 
appears in the image. 

– registration/mosaicking. Joining together two partial 
views to produce a larger view. 

– tracking. determining the displacement that a known 
region has undergone as a result of parallax or motion. 
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8.1.4.1 Convolution 
• Formally, the convolution of two signals f(t) and 

g(t) is the: 
– integral of the continuous product of the two. 
– computed as a function of their relative position, as 

they are slid over each other. 

• That is: 
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8.1.4.1 Convolution 
• τ is a dummy variable 
• when τ = t integrand 

contains g(0) 
• when τ = t + e integrand 

contains g(-e) 
• Hence g() is reflected 

about the origin. 
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8.1.4.1 Convolution 
(Convolution as Image Processing) 

• The relationship to vision is this.  
– g() can be thought of as an operator which is to be 

applied at every pixel in the image. 
– f() can be thought of as the image to be operated 

upon. 
– Changes in the variable t (or x or y in the spatial 

domain) correspond to moving the operator over the 
image. 

• The region over which g() is nonzero is often 
called the support of the operator. 
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8.1.4.2 Correlation 
• The (cross) correlation is defined as the integral of 

the product over a region: 
 
 

• Same as convolution but without the flip of g(). 
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8.1.4.3 Correlation in 2D 
• In discrete 2D imagery, the (double) integral 

becomes a double sum: 
 
 
 

• Often used to match regions in two images 
against each other by searching a region of (x,y) 
for the best match. 
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8.1.4.3 Correlation in 2D : Example 
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8.1.4.4 Sums of Differences 
• An alternative view of matching is minimizing 

differences. 
• The sum of squared differences of two signals is 

defined as: 
 

• For an image, this becomes 
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8.1.4.4 Sums of Differences 
(Absolute Differences) 

• An alterative to squared differences is absolute 
differences: 
 

• For an image, this becomes 
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8.1.5 Feature Detection 
• Features == “interesting” points  
• Are points, curves, or regions in an image which are 

distinguished in some useful way. 
• The word “feature” is used in a broad range of 

contexts in vision. 
– Points with high texture or where lines intersect in 

imagery. 
– Regions like edges, lines, shapes (e.g. blobs of specified 

moments) in images. 
– Points of high curvature in range imagery. 
– Regions of constant curvature in range imagery. 
– Regions of constant depth in sonar data. 
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8.1.5 Feature Detection 
(Good Features Are…) 

• Persistent from image to image and hence 
trackable 

• Relatively rare in the image and hence a good way 
to distill the scene to a few pieces of data 

• Known to be well distributed providing a good 
basis for triangulation 

• Surrounded by relatively distinct neighborhoods 
which creates a potential for recognition. 
 

• Normally, we care mostly about their position and 
perhaps about an attribute or two (like length). 
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8.1.5.1 Detecting Features to Track in Imagery 
• A minimal assumption is that the environment is 

“textured”. 
• Assume also that textures are not repetitive - 

different places look somewhat different. 
• Harris Detector considers Eigenvalues of: 
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8.1.5.1 Detecting Features to Track in Imagery 
(Texture Scores) 

• Bright spots in the right image are regions of high 
texture in the left image. 
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8.1.5.1 Detecting Features to Track in Imagery 
(Harris Corners) 
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8.1.5.2 Finding Corners in Range Data 
• Ladar scans of indoor scenes 

have a lot of right angles in 
them.  

• These are useful for computing 
ego motion (visual odometry) 
or for map-based guidance. 

• Beware occluding edges that 
masquerade as real surfaces.  

• While sparsely separated 
endpoints may be an occluding 
edge, closely separated ones 
are probably not. 
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8.1.5.2 Finding Corners in Range Data 
• Curvature-based edge finding is particularly effective in 

environments which are composed mostly of lines.  
• Points of infinite curvature are corners 
• Points of high curvature are likely to be corners that got 

smoothed by aliasing 
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8.1.6 Region Processing 
• These create and process arbitrary shapes in an image. Only 

some will be covered here. 
• Segmentation  

– extracts regions of pixels that are similar in some way.  
– In many cases (in both intensity and range imagery), these 

regions will correspond to objects. 
• Growing and Thinning 

– shrink and expand regions.  
– useful for cleanup of small errors. 

• Splitting and Merging 
– of lines and regions can be used to find canonical descriptions 

of scenes in terms of natural objects.  
– a good way to find the largest object possible of some type (e.g. 

line). 
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8.1.6 Region Processing 
• Medial Axis and Grassfire Transforms  

– extremely efficient for finding the skeleton and range 
contours of an arbitrary shape. 

• Moment and Invariant Computations 
– abstract regions to a few numbers that are often 

invariant to scale and perspective transformation.  
– provide convenient metrics to compare shapes for 

recognition purposes. 
• Histogramming and Thresholding 

– Finds natural boundaries of pixel classes 
– Shrink images to a small number of “colors” 
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8.1.6.1 Segmentation : Appearance Imagery 
• Want to group groups 

pixels which are similar 
and adjacent into regions. 

• Similiarity measure can 
be anything. 

• A very fast one-pass 
algorithm exists. 

• A second pass though 
equivalence classes 
produces unique ids for 
each “blob”. 

• Generalizes readily to 
nonbinary imagery. 

if (f(Xc)==0) then continue 
else { 
   if( f(Xu) ==1 && f(Xl) ==0) 
      color(Xc) = color(Xu); 
    if( f(Xl) ==1 && f(Xu) ==0) 
       color(Xc) = color(Xl); 
    if( f(Xl) ==1 && f(Xu) ==1) 
       color(Xc) = color(Xu); 
       color(Xl) equiv color(Xu); 
} 
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8.1.6.2 Detecting Shapes 
• Eg Fiducials - deliberately 

place markers when you can. 
• Once you have  a region, 

moments are a compact 
encoding of shape. 
 
 
 

• Compare moments of 
detected regions to those of 
prototypes. 
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8.1.6.3 Histogramming 
• Basically, the PDF of colors and intensities. 
• Orange, black, white, and green below. 
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8.1.6.4 Segmentation: 2D Range Imagery 
• Curvature is invariant to viewpoint so it’s a good 

feature for recognition. 
• For a surface of the form: 
• The Hessian matrix is: 
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8.1.6.4 Segmentation: 2D Range Imagery 
• Define Mean and 

Gaussian curvatures: 
 
 

• The 9 possible pairings of 
(0,+,-) and (0,+,-) lead to 9 
classes of local shape. 
– Spherical, cylindrical, 

saddle, etc. 
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8.1.6.5 Segmentation: 1D Range Imagery 
• Split and Merge is 

one of many good 
ideas applicable to 
this problem.  

• Start with one line 
segment joining start 
and end.  

• In each iteration, for 
each line segment, 
find the point of 
largest deviation and 
split there.  

• Check if two lines 
should merge.  

• Repeat. 
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Summary 
• Image processing and signal processing are close 

cousins. 
• Discrete mathematics provides the tools for 

filtering images to enhance and suppress high and 
low frequencies. 

• Correlation measures similarity and can be used 
to find things. 
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