
Chapter 8 
Perception 

Part 2 
8.2 Physics and Principles of Radiative 
Sensors 
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Radiative Sensors - Introduction 
• Most sensors are either: 

– contact 
– noncontact (radiative) 
– inertial 

• In this section, concentrate on radiative ones. 
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Radiative Sensors - Uses 
• Path planning 

– where do I go next? 
• Navigation 

– where am I? 
• Obstacle detection and avoidance 

– is that an obstacle? 
• Object recognition 

– is it an animal or a rock? 
• Mapping 

– where are all the nasty poisons? 
• Teleoperation 

– lets operator drive vehicle remotely 
• Manipulation 

– allows intelligent grasping etc. 
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Radiative Sensors - Tradeoffs 
• Major advantages are: 

– wide spatial field of view 
– provides lookahead in time (enables prediction) 
– Perceives while avoiding contact with environment 

• Major disadvantages are: 
– sometimes massive computational load 
– physics of radiation can be inconvenient 
– problem of “perception” 
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8.2.1.1 Classification of Radiative Sensors 
• Passive/active 

– passive uses ambient 
radiation 

– active emits own radiation 
• Imaging/nonimaging 

– imaging generates an 
image 

– nonimaging generates a 
single “pixel” 

• Scanning/nonscanning 
– scanning sensors are 

moved over a scene 
– nonscanning sensors have 

sensor array 
 

• Proximity/ranging (range 
resolution) 
– proximity is binary 

detector 
– ranging gives range value 
– “shape” means relative 

range 
• Principle of operation 

– triangulation 
– time of flight 
– scene constraint 
– interferometry 

• Radiation used 
– electromagnetic 
– sound 
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8.2.1.2 Classification of Ranging Sensors 
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Ranging 
Techniques 

Active 
Triangulation 
 
•Point 
•Line 
•Grid 
 

Passive 
Triangulation 
 
•Stereo 
•Motion Stereo 
•Known Object 
•Shape From X 
 

Time of 
Flight 
 
•Pulsed 
•AM-CW 
•FM-CW 

See next section for details…. 
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8.2.2.1 Triangulation 
• General: 

– Inverts the parallax effect of two separated views. 
– All techniques suffer “missing parts” problem. 
– Choice of sensor separation causes tradeoff: 

• Better range resolution (+) causes more missing parts (-) 

– All have uncertainty increasing with range 
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8.2.2.1.1 Passive Triangulation 
• Both forms rely on: 

– scene texture 
– ambient illumination (cf 

night/shadows) 

• Case 1: Known Object 

• Passivity is both a strength 
and a weakness. 

• Case 2: Passive triangulation 
(“Stereo”) 
– major issue: correspondence 

(reduces efficiency) 

Mobile Robotics - Prof Alonzo Kelly, CMU RI 11 

camera 

camera 

Passive - Stereo 

camera 

Passive – Known Object 



8.2.2.1.2 Active Triangulation 
• Emit and sense from 

two different places. 
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8.2.2.2 Time Of Flight 
• Advantages: 

– (+) No missing parts problem (negligible or no 
baseline) 

– (0) BUT, scene can still self-occlude 
– (+) No correspondence problem 
– (+) Accuracy basically independent of range (esp. 

pulsed) 
• Disadvantages 

– (-) Complicated, expensive, often non solid state 
hardware. 

– (-) easy to detect by others. 
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8.2.2.2.1 Pulsed Time of Flight 
• Resolution comparatively low for high wave 

speeds (e.g. light) 
• Because … measuring subnanosecond TOF 

requires expensive electronics 
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8.2.2.2 AM-CW Ranging 
• AM modulated carrier. Its the modulator phase that’s measured 
• Range is proportional to phase difference of received signal and 

reference signal. 
– subject to phase ambiguity problem (can only determine range modulo 

wavelength/2) 
– No ambiguity up to range of wavelength/2 
– Multiple frequencies can resolve ambiguity 

 

Mobile Robotics - Prof Alonzo Kelly, CMU RI 15 

transmitter/ 
receiver 

transmitter/ 
receiver Phase 

Difference 

Signal 
Reflected 

π2mod2
c
R

=∆Φ

∆Φ



8.2.2.2.3 FM-CW Ranging 
• Linearly FM modulated carrier 
• Range proportional to beat frequency produced when 

return is mixed with reference. 
• Comparatively high noise immunity. 
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8.2.3 Radiation 
(Impact of the Physics) 

• Problems: 
– derive from physics of 

radiation. 
– apply to both active and 

passive sensors. 
– Whether good or bad 

depends on what you are 
doing. 
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8.2.3 Radiation 
(Important Factors) 

• Characteristics of returned 
energy depend on: 
1. Beam properties 
2. Medium physical 

properties 
3. Object material 

properties 
4. Geometry 
5. Ambient radiation 
6. Sensor motion 
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8.2.3.1 Beam and Antenna Properties 
• Angular resolution is a function of beamwidth. 
• Beamforming is accomplished by exploiting interference. 
• Beamwidth is angle where intensity drops to some percentage of 

maximum. 
• Beam shape (and receiver sensitivity) is typically shown with a 

directivity diagram like so: 
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8.2.3.1 Beam and Antenna Properties 
• Diffraction limit on resolution is: 
• Therefore, narrowing the beam requires: 

– larger antennae 
– antenna motion, or  
– smaller wavelength 

• BUT small wavelength increases attenuation. 
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8.2.3.2 Object and Medium Physical 
Properties 

• Objects are simply solid media, 
so you can understand the 
physics based on what 
materials they are made of. 

• Whenever radiation passes 
through an interface between 
two media, portions of the 
energy may be … 
– reflected at the interface … 
– transmitted through the second 

medium … 
– or absorbed by it. 
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8.2.3.2.1 Wave Speed 
• Electromagnetic • Sound 
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8.2.3.2.1 Wave Speed 
(Sound Speed) 

• 5 X times faster in water 
than in air 
 
 
 

• Very temperature 
dependent in air 
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8.2.3.2.1 Wave Speed 
(Dispersion) 

• Variation of above 
material properties with 
wavelength can cause 
“dispersion” (variation 
of speed with 
wavelength).  
– Hence the prism. 

• Speed variation affects 
calibration of time of 
flight sensors 
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8.2.3.2.2 Attenuation 
• Attenuation = absorption + 

scattering 
• Inherently its neither good 

nor bad: 
– Sensor signal attenuated - bad 
– Ambient noise attenuated - 

good 
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8.2.3.2.2 Attenuation 
(Absorption) 

• Media tend to absorb fixed percentage per unit length 
(hence exponential behavior). 

• For electromagnetic: 
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8.2.3.2.2 Attenuation 
(Sound Absorption) 

• For sound, absorption: 
– increases with frequency in both H20, air 
– increases with relative humidity in air  

• hence the fog horn 
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8.2.3.2.3 Transmission and Transparency 
• Absorptive properties indirectly affect how much energy is 

transmitted after reflection. 
– Sometimes get no return if most of the incident energy is absorbed or 

transmitted. 

• Transparency 
– Some materials are transparent to radar, lidar - bad 
– Millimeter wave radar goes through underbrush - good 
– Some materials are strong sonar absorbers - bad  
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8.2.3.2.3 Transmission and Transparency 
(Transmission) 

• Magnitude of the 
transmitted and 
reflected components 
of electromagnetic or 
sound energy is given 
by: 
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8.2.3.2.4 Reflection & Refraction 
• Non-normal incidence 

can cause bending. 
• Depends on the relative 

wave speed in the 
media involved. 

• Laws apply to both EM 
and sound. 
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8.2.3.3.1 Range from Source 
• By conservation, energy 

has to “thin out” as it 
goes. 

• Opposite is for a point 
source. Power at any 
radius is the same: 
– Ignoring attenuation 

• Amplitude therefore falls 
off as 1/R. 
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8.2.3.3.2 Angle Off Symmetry Axis 
• For highly directive (focused) beams, returned 

energy depends on where the sensor points 
• Blind spot is good or bad depending on whether 

you want to detect objects off the beam axis 
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8.2.3.3.3 Microscopic Surface Geometry 
• Geometry on the nanometer scale matters. 
• Waves may be reflected 

– “specularly” = like a mirror 
– “diffusely” = spread out  

• Real surfaces display both types of reflection to 
some degree. 
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8.2.3.3.3 Microscopic Surface Geometry 
• Specular reflection requires surface roughness 

“roughly” less than the wavelength. 
• The transition from diffuse reflection to specular 

takes place when this criterion is satisfied: 
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8.2.3.3.3 Microscopic Surface Geometry 
(Three Effects Combined)  

• Specular received 
power falls of as 
range squared, 

• Diffuse received 
power falls off as 
range to the 
fourth power! 

• Specular 
reflectors 
generate high 
power, but may 
not point it at the 
receiver. 
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8.2.3.3.3 Microscopic Surface Geometry 
(Effect on Exponent)  

• Whether it is R4 or R2 depends only on the surface 
roughness. 

• Next lets look at what affects the “Effective Area” 
of a surface patch. 
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8.2.3.3.4 Macroscopic (Object) Surface Geometry 
(Macroscopic Determines Cross Section) 

• Integrated effect of both orientation and 
projected area gives cross section. 

• Both objects below have same projected area and 
material properties. 

• Each can be good or bad. 
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8.2.3.3.5 Macroscopic (Scene) Surface Geometry 
(Scene Geometry Transcends Cross Section) 

• Object spatial relationships can dramatically 
enhance or suppress returns. 
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8.2.3.4 Sensor Motion 
• This is an issue for sonar mostly. 

– Must wait for narrow beam to return (cannot rotate 
too fast ) 

– Must remember where you were when you sent the 
pulse (ladar too). 
 
 

• Doppler shift is useful for velocity measurement. 
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8.2.3.5 Ambient Radiation 
• For active sensors, ambient effects can cause 

problems: 
– random spurious readings 
– gradual degradations of model fidelity. 

• BUT: Passive sensors (e.g. cameras) rely on it: 
– It must exist or be created (lights) 

• Every modality cares about ambient radiation: 
– Sonar is sensitive to ambient noise. 
– IR lasers are sensitive to ambient illumination. 
– Radars sensitive to radio sources. 
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Here 
• This is test test 
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8.2.4.1 Thin Lenses 
(Descartes Lensmaker’s Formula) 

• Based on Snell’s law of Refraction. 
• Lenses both transmit, and refract 

light. 
• Descartes: All rays emanating from P0 

meet again at image point Pi. 
• When object is at infinity, we get the 

distance to the image focal point Fi. 
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8.2.4.1 Thin Lenses 
(focal length) 

• Substitute second formula into 
first to get the thin lens formula 
(where f = xFi is called the focal 
length of the lens): 
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8.2.4.1 Thin Lenses 
(Magnification) 

• Define the magnification as ratio 
of image size to reality. 

• Manipulating, we can derive the 
basic camera model. 

Mobile Robotics - Prof Alonzo Kelly, CMU RI 48 

z 

x O 

Q 

R 



8.2.4.1 Thin Lenses 
(Depth of Field) 

• Objects at different ranges form images at different distances 
behind lens, so one or the other will be blurred.  

• Depth of field is the motion of the image plane that produces a 1 
pixel blur circle (on either side of perfect focus distance). 
– Larger depth of field means more of image is in focus. 
– Depth f field increases if you reduce aperture (and light entering lens). 
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8.2.4.3 Mirrors 
• These bend or distort the path of 

a laser or the field of view of a 
camera – which can be useful. 

• Omnicams can be constructed 
from a camera and a 
hyperbloidal mirror. 
– Great for seeing in all directions. 
– Great for distinguishing translation 

from rotation in visual odometry. 
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8.2.4.3 Mirrors 
(Omnicam Example) 
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Summary 
• Radiative sensors are the basic mechanism by 

which mobile robots see what is around them. 
• Processing sensor data involves inverting models 

of radiation, so the physics of radiation must be 
understood. 

• Many effects including beam properties, medium 
and object physical properties, and geometry at 
all scales influence behavior of sensors. 

• Proximity sensors are a simple and inexpensive 
means of ranging. 
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