

Chapter 8 Perception

Part 2

8.2 Physics and Principles of Radiative Sensors

Outline

- 8.2 Physics and Principles of Radiative Sensors
 - 8.2.1 Radiative Sensors
 - 8.2.2 Techniques for Range Sensing
 - 8.2.3 Radiation
 - 8.2.4 Lenses, Filters, and Mirrors
 - Summary

Outline

- 8.2 Physics and Principles of Radiative Sensors
 - 8.2.1 Radiative Sensors
 - 8.2.2 Techniques for Range Sensing
 - 8.2.3 Radiation
 - 8.2.4 Lenses, Filters, and Mirrors
 - Summary

Radiative Sensors - Introduction

- Most sensors are either:
 - contact
 - noncontact (radiative)
 - inertial
- In this section, concentrate on radiative ones.

Radiative Sensors - Uses

- Path planning
 - where do I go next?
- Navigation
 - where am I?
- Obstacle detection and avoidance
 - is that an obstacle?
- Object recognition
 - is it an animal or a rock?
- Mapping
 - where are all the nasty poisons?
- Teleoperation
 - lets operator drive vehicle remotely
- Manipulation
 - allows intelligent grasping etc.

Radiative Sensors - Tradeoffs

- Major advantages are:
 - wide spatial field of view
 - provides lookahead in time (enables prediction)
 - Perceives while avoiding contact with environment
- Major disadvantages are:
 - sometimes massive computational load
 - physics of radiation can be inconvenient
 - problem of "perception"

8.2.1.1 Classification of <u>Radiative</u> Sensors

- Passive/active
 - passive uses ambient radiation
 - active emits own radiation
- Imaging/nonimaging
 - imaging generates an image
 - nonimaging generates a single "pixel"
- Scanning/nonscanning
 - scanning sensors are moved over a scene
 - nonscanning sensors have sensor array

- Proximity/ranging (range resolution)
 - proximity is binary detector
 - ranging gives range value
 - "shape" means relative range
- Principle of operation
 - triangulation
 - time of flight
 - scene constraint
 - interferometry
- Radiation used
 - electromagnetic
 - sound

8.2.1.2 Classification of Ranging Sensors

See next section for details....

Outline

- 8.2 Physics and Principles of Radiative Sensors
 - 8.2.1 Radiative Sensors
 - 8.2.2 Techniques for Range Sensing
 - 8.2.3 Radiation
 - 8.2.4 Lenses, Filters, and Mirrors
 - Summary

8.2.2.1 Triangulation

- General:
 - Inverts the parallax effect of two separated views.
 - All techniques suffer "missing parts" problem.
 - Choice of sensor separation causes tradeoff:
 - Better range resolution (+) causes more missing parts (-)
 - All have uncertainty increasing with range

8.2.2.1.1 Passive Triangulation

- Both forms rely on:
 - scene texture
 - ambient illumination (cf night/shadows)
- Case 1: Known Object

- Passivity is both a strength and a weakness.
- Case 2: Passive triangulation ("Stereo")
 - major issue: correspondence (reduces efficiency)

8.2.2.1.2 Active Triangulation

8.2.2.2 Time Of Flight

- Advantages:
 - (+) No missing parts problem (negligible or no baseline)
 - (0) BUT, scene can still self-occlude
 - (+) No correspondence problem
 - (+) Accuracy basically independent of range (esp. pulsed)
- Disadvantages
 - (-) Complicated, expensive, often non solid state hardware.
 - (-) easy to detect by others.

8.2.2.2.1 Pulsed Time of Flight

- Resolution <u>comparatively low</u> for high wave speeds (e.g. light)
- Because ... measuring subnanosecond TOF requires expensive electronics

8.2.2.2 AM-CW Ranging

- AM modulated carrier. Its the modulator phase that's measured
- Range is proportional to phase difference of received signal and reference signal.
 - subject to phase ambiguity problem (can only determine range modulo wavelength/2)
 - No ambiguity up to range of wavelength/2
 - Multiple frequencies can resolve ambiguity

8.2.2.3 FM-CW Ranging

- Linearly FM modulated carrier
- Range proportional to beat frequency produced when return is mixed with reference.
- Comparatively high noise immunity.

Outline

- 8.2 Physics and Principles of Radiative Sensors
 - 8.2.1 Radiative Sensors
 - 8.2.2 Techniques for Range Sensing
 - 8.2.3 Radiation
 - 8.2.4 Lenses, Filters, and Mirrors
 - Summary

8.2.3 Radiation

(Impact of the Physics)

- Problems:
 - derive from physics of radiation.
 - apply to both active and passive sensors.
 - Whether good or bad depends on what you are doing.

8.2.3 Radiation

(Important Factors)

- Characteristics of returned energy depend on:
 - 1. Beam properties
 - 2. Medium physical properties
 - 3. Object material properties
 - 4. Geometry
 - 5. Ambient radiation
 - 6. Sensor motion

8.2.3.1 Beam and Antenna Properties

- Angular resolution is a function of <u>beamwidth</u>.
- Beamforming is accomplished by exploiting interference.
- Beamwidth is angle where intensity drops to some percentage of maximum.
- Beam shape (and receiver sensitivity) is typically shown with a directivity diagram like so:

Therefore, narrowing the beam requires:

8.2.3.1 Beam and Antenna Properties

- larger antennae
- antenna motion, or

• Diffraction limit on resolution is:

- smaller wavelength
- BUT small wavelength increases attenuation.

8.2.3.2 Object and Medium Physical Properties

- Objects are simply solid media, so you can understand the physics <u>based on what</u> <u>materials they are made of</u>.
- Whenever radiation passes through an interface between two media, portions of the energy may be ...
 - reflected at the interface ...
 - transmitted through the second medium ...
 - or absorbed by it.

8.2.3.2.1 Wave Speed

• Electromagnetic

 $c = \frac{1}{\sqrt{\mu\epsilon}}$

 ϵ = dielectric_constant μ = magnetic_permeability Sound

$$c_{liquid} = \sqrt{\frac{B}{\rho}}$$

$$c_{solid} = \sqrt{\frac{Y}{\rho}}$$

$$c_{gas} = \sqrt{\frac{B}{\rho}} = \sqrt{\frac{\gamma RT}{M}}$$

 $M = molecular_weight$

- $Y = Young's_modulus$
- $\gamma = \text{specific_heat}$
- $T = absolute_temperature$

THE ROBOTICS INST

Carneyie Mel

- $B = bulk_modulus$
- $R = \text{gas}_{\text{constant}}$

8.2.3.2.1 Wave Speed

(Sound Speed)

 5 X times faster in water than in air

 Very temperature dependent in air

8.2.3.2.1 Wave Speed

(Dispersion)

- Variation of above material properties with wavelength can cause "dispersion" (variation of speed with wavelength).
 - Hence the prism.
- Speed variation affects calibration of time of flight sensors

8.2.3.2.2 Attenuation

- Attenuation = absorption + scattering
- Inherently its neither good nor bad:
 - Sensor signal attenuated bad
 - Ambient noise attenuated good

8.2.3.2.2 Attenuation

(Absorption)

- Media tend to absorb fixed percentage per unit length (hence exponential behavior).
- For electromagnetic:

$$\alpha = c\sigma\mu = \sigma\sqrt{\frac{\mu}{\epsilon}}$$

$$\alpha = \text{absorption}_{\text{coefficient}}$$

$$c = wave_speed$$

8.2.3.2.2 Attenuation

(Sound Absorption)

- For sound, absorption:
 - increases with frequency in both H_20 , air
 - increases with relative humidity in air
 - hence the fog horn

8.2.3.2.3 Transmission and Transparency

- <u>Absorptive</u> properties indirectly <u>affect</u> how much energy is <u>transmitted</u> <u>after reflection</u>.
 - Sometimes get no return if most of the incident energy is absorbed or transmitted.
- Transparency
 - Some materials are transparent to radar, lidar bad
 - Millimeter wave radar goes through underbrush good
 - Some materials are strong sonar absorbers bad

8.2.3.2.3 Transmission and Transparency (Transmission)

 Magnitude of the transmitted and reflected components of electromagnetic or sound energy is given by:

EM (normal incidence)

$$\begin{split} (K_r)_{\perp} &= \left[\frac{E_r}{E_i}\right]_{\perp} = \left[\frac{\mu_2 c_2 - \mu_1 c_1}{\mu_2 c_2 + \mu_1 c_1}\right] \\ (K_t)_{\perp} &= \left[\frac{E_t}{E_i}\right]_{\perp} = \left[\frac{2\mu_2 c_2}{\mu_2 c_2 + \mu_1 c_1}\right] \end{split}$$

 $E = \text{electric_field_amplitude}$

Mobile Robotics - Prof Alonzo Kelly, CMU RI

Sound (normal incidence)

$$K_r = \begin{bmatrix} \frac{p_r}{p_i} \end{bmatrix} = \begin{bmatrix} \frac{\rho_2 c_2 - \rho_1 c_1}{\rho_2 c_2 + \rho_1 c_1} \end{bmatrix}$$
$$K_t = \begin{bmatrix} \frac{p_t}{p_i} \end{bmatrix} = \begin{bmatrix} \frac{2\rho_2 c_2}{\rho_2 c_2 + \rho_1 c_1} \end{bmatrix}$$

8.2.3.2.4 Reflection & Refraction

incident

- Non-normal incidence can cause bending.
- Depends on the relative wave speed in the media involved.
- Laws apply to both EM and sound.

Snell's Laws law for reflection: index of refraction: $n = \frac{c_{reference}}{c_{reference}}$ $\theta_i = \theta_{rfle}$ C_{medium} law for refraction: $n_i \sin \theta_i = n_{rfra} \sin \theta_{rfra}$ $\sin \theta_i = \frac{\sin \theta_{rfra}}{\sin \theta_{rfra}}$ All rays lie in $c_i c_{rfra}$ same plane reflected medium 1 medium 2 θ_{ref} transmitted \hat{n} θ_{refr} θ

8.2.3.3.1 Range from Source

- By conservation, energy has to "thin out" as it goes.
- Opposite is for a point source. Power at any radius is the same:
 - Ignoring attenuation
- Amplitude therefore falls off as 1/R.

8.2.3.3.2 Angle Off Symmetry Axis

- For highly directive (focused) beams, returned energy depends on where the sensor points
- Blind spot is good or bad depending on whether you want to detect objects off the beam axis

8.2.3.3.3 Microscopic Surface Geometry

- Geometry on the nanometer scale matters.
- Waves may be reflected
 - "specularly" = like a mirror
 - "diffusely" = spread out
- Real surfaces display both types of reflection to some degree.

diffuse

specular

Mobile Robotics - Prof Alonzo Kelly, CMU RI

8.2.3.3.3 Microscopic Surface Geometry

- Specular reflection requires surface roughness "roughly" less than the wavelength.
- The transition from diffuse reflection to specular takes place when this criterion is satisfied:

8.2.3.3.3 Microscopic Surface Geometry

(Three Effects Combined)

- Specular received power falls of as range squared,
- Diffuse received power falls off as range to the fourth power!
- Specular reflectors generate high power, but may not point it at the receiver.

Reflected Intensity (Specular): $I_r(r, \theta) = \frac{P_0(\theta)A_{eff}}{4\pi(R+r_r)^2}$

Sensor Incident Pwr (Specular): $P_{e}(r, \theta) = \frac{P_{0}(\theta)A_{eff}A_{e}\cos\theta}{16\pi R^{2}}$

Result (Specular):

$$P_{spec} = K \left(\frac{P_0(\theta) \cos \theta A_{eff}}{R^2} \right)$$

Reflected Intensity (Diffuse): $I_r(r, \theta) = \frac{P_0(\theta)A_{eff}}{(4\pi R^2)4\pi r_r^2}$

Sensor Incident Pwr (Diffuse):

$$P_e(r,\theta) = \frac{P_0(\theta)A_{eff}A_e\cos\theta}{16\pi^2 R^4}$$

8.2.3.3 Microscopic Surface Geometry (Effect on Exponent)

- Whether it is R⁴ or R² depends only on the surface roughness.
- Next lets look at what affects the "Effective Area" of a surface patch.

8.2.3.3.4 Macroscopic (Object) Surface Geometry (Macroscopic Determines Cross Section)

- Integrated effect of both orientation and projected area gives cross section.
- Both objects below have same projected area and material properties.
- Each can be good or bad.

Low Cross Section

High Cross Section

8.2.3.3.5 Macroscopic (Scene) Surface Geometry (Scene Geometry Transcends Cross Section)

 Object spatial relationships can dramatically enhance or suppress returns.

8.2.3.4 Sensor Motion

- This is an issue for sonar mostly.
 - Must wait for narrow beam to return (cannot rotate too fast)
 - Must remember where you were when you sent the pulse (ladar too).

• Doppler shift is useful for velocity measurement.

8.2.3.5 Ambient Radiation

- For active sensors, ambient effects can cause problems:
 - random spurious readings
 - gradual degradations of model fidelity.
- BUT: Passive sensors (e.g. cameras) rely on it:
 It must exist or be created (lights)
- Every modality cares about ambient radiation:
 - Sonar is sensitive to ambient noise.
 - IR lasers are sensitive to ambient illumination.
 - Radars sensitive to radio sources.

Here

• This is test test

Outline

- 8.2 Physics and Principles of Radiative Sensors
 - 8.2.1 Radiative Sensors
 - 8.2.2 Techniques for Range Sensing
 - 8.2.3 Radiation
 - 8.2.4 Lenses, Filters, and Mirrors
 - Summary

(Descartes Lensmaker's Formula)

- Based on Snell's law of Refraction.
- Lenses both transmit, and refract light.
- Descartes: All rays emanating from P₀ meet again at image point P_i.

$$\frac{1}{x_{Po}} - \frac{1}{x_{Pi}} = (n-1)\left(\frac{1}{x_{Co}} - \frac{1}{x_{Ci}}\right)$$

 $\frac{1}{x_{Fi}} = -(n-1)\left(\frac{1}{x_{Co}} - \frac{1}{x_{Ci}}\right)$

When object is at infinity, we get the distance to the image focal point Fi.

 (focal length)
 Substitute second formula into first to get the thin lens formula (where f = x_{Fi} is called the focal length of the lens):

(Magnification)

 Define the magnification as ratio of image size to reality.

$$M = z_i / z_o = x_{S_i} / x_{S_o}$$

Manipulating, we can derive the basic camera model.

(Depth of Field)

- Objects at <u>different ranges</u> form images at <u>different distances</u> behind lens, so one or the other will be blurred.
- Depth of field is the motion of the image plane that produces a 1 pixel blur circle (on either side of perfect focus distance).
 - Larger depth of field means more of image is in focus.
 - Depth f field increases if you reduce aperture (and light entering lens).

8.2.4.3 Mirrors

- These bend or distort the path of a laser or the field of view of a camera – which can be useful.
- Omnicams can be constructed from a camera and a hyperbloidal mirror.
 - Great for seeing in all directions.
 - Great for distinguishing translation from rotation in visual odometry.

8.2.4.3 Mirrors

(Omnicam Example)

Actual Image

Rectified Cylindrical Image

Outline

- 8.2 Physics and Principles of Radiative Sensors
 - 8.2.1 Radiative Sensors
 - 8.2.2 Techniques for Range Sensing
 - 8.2.3 Radiation
 - 8.2.4 Lenses, Filters, and Mirrors
 - <u>Summary</u>

Summary

- Radiative sensors are the basic mechanism by which mobile robots see what is around them.
- Processing sensor data involves inverting models of radiation, so the physics of radiation must be understood.
- Many effects including beam properties, medium and object physical properties, and geometry at all scales influence behavior of sensors.
- Proximity sensors are a simple and inexpensive means of ranging.