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8.4.1 Pixel Classification 
• Pixel Classification - assigns each pixel to one of a 

number of “classes”: 
– such as road, rock, bush, grass, yellow paint, etc.  
– useful for picking out the road for road following and 

obstacles for obstacle avoidance. 
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8.4.1 Pixel Classification 
• Divide the environment into some number of classes and try to place a 

pixel in its appropriate class. 
• Examples of sets of classes: 

– road/nonroad 
– vegetation/mineral/animal 
– hazard/nonhazard 
– hazard/nonhazard/not sure 

• Each pixel is considered to be a vector of attributes or “features” which 
lives in a multidimensional space. 

• Regions in this space are supposed (conjectured) to correspond to 
classes. 

• Its typical to have to preprocess images to remove effects of shadows, to 
normalize for texture etc. 

• Sometimes each pixel is ascribed the properties of the region around it 
(e.g. texture). 
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8.4.1 Pixel Classification 
• For example, suppose that green stuff is soft 

vegetation, brown stuff is hard vegetation, and grey 
stuff is dirt road. 
 
 
 
 
 
 

• This result could be passed into a trail following 
control algorithm 
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8.4.1.1 Training the Classifier 
• Often, the regions are not known 

beforehand 
– Must be “learned”. 

• In supervised learning,                               
we hand label (provide                            
classes for) portions of                                 
images and use this data to 
determine the characteristics of 
the class. 

• One way to represent a class is in 
terms of its covariance matrix.. 
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8.4.1.1 Training the Classifier 
(Regions in Feature Space) 

• Training can be 
accomplished by 
labeling regions 
in either feature 
space or image 
space. 

• Near IR (NIR) is 
valuable for     
distinguishing                               
vegetation. 
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8.4.1.2 Decision Surfaces 
• Defines a rule to decide 

which class to which a 
pixel value belongs. 

• If Gaussians are used to 
define P(class|rgb) then… 

• MHD is a reasonable 
measure of proximity to 
the class mean. 

• These days, a matrix 
multiply for each pixel is 
feasible. 
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8.4.1.3 Fisher’s Linear Discriminant 
• Linear decision surface.  
• Fast to compute. 
• Define “within class” scatter: 

 
• Define the rank 1 “between 

class” scatter 
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8.4.1.3 Fisher’s Linear Discriminant 
• Want to maximize the 

ratio: 
• The solution is: 

 
• To classify a pixel, 

compute: 
 

•        represents the             
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Shape Inference 
• These methods compute the range and/or shape 

of objects in the environment. 
• Stereo - computes the range to all or some pixels 

in one of a number of images. 
• Structured Light - same as stereo but light is 

projected onto the scene. 
• Known Object - use known dimensions of object 

to determine range. 
• Exotics such as range from focus, photometric 

stereo etc have seen little use. 
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8.4.2 Stereo Vision 
• While there are other options for passive ranging, it usually 

takes the form of stereo vision on mobile robots today. 
– MER Rovers Spirit and Opportunity use stereo. 

• Structured light is a distant second. 
– The Mars Pathfinder Rover had a structured light system on 

board. 
• Ranging may be performed only at specific features (say, at 

vertical lines) or everywhere in the image (“dense” stereo). 
• Two-eyed (“binocular”) stereo is common but there are 

advantages to having more than two eyes. 
• Cameras normally have parallel orientations (no 

“vergence”) 
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8.4.2.1 Principle of Operation 
• Analogous to vision in primates. 
• Nearer objects have greater 

disparity. 
• Exploit this in reverse. 

 
 

• The hard part is the 
correspondences needed to get 
the disparity. 
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8.4.2.2 Search for Pixel Correspondences 
• For each pixel in left image, correlate region around it 

with a line of pixels in the right image. 
– Generates a curve of similarity versus disparity. 

• Find disparity of maximum correlation. 
• Image noise, distortions, poor calibration, and many 

other error sources conspire to make the correlation 
calculations unreliable. 
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8.4.2.2 Search for Pixel Correspondences 
(Horopter Stereo) 

• Scene shape affects the 
distortion of regions from 
eye to eye. 
– Highest when disparity 

gradient in image is highest. 

• Horopter technique assumes 
a reasonable disparity 
gradient based on flat 
terrain. 
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8.4.2.4 Advantages and Disadvantages 
(Advantages) 

• Passive.  
• Solid state. 
• Density.  

– Data is relatively dense  
– Though not necessarily of high angular resolution. 

• Cost. Now relatively inexpensive. 
• Appearance Registration.  

– Appearance and range data are inherently aligned. 
• Frame capture.  

– No distortion within an image due to vehicle motion.  
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8.4.2.4 Advantages and Disadvantages 
(Disadvantages) 

• Calibration.  
– Relies on pixel to pixel alignment of imagery.  

• Range resolution.  
– Resolution degrades quadratically with range. 

• Angular resolution. 
– Correlation processing acts as a low pass filter. Reduces res by order 

of magnitude. 
• Passive.  

– Stereo fails under near darkness, or no texture conditions. 
• Triangulation.  

– Increased baseline leads to increased distortion and missing parts 
problems. 

• Processing. 
– Requires a dedicated high performance processor. Ladars do all that 

in hardware. No longer such a big deal. 
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Resolution 
• Downrange resolution can be determined by 

differentiating Eqn A: 
 

• Define normalized disparity: 
 

• Range resolution is now: 
 

• Crossrange resolution is linear: 
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Resolution 
• In practice, stereo operates by matching regions 

of perhaps 10 X 10 pixels between imagery. 
– Range values become correlated 
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Commercial Stereo 

• Target markets may favor higher 
frame rates but better data is 
more useful to a mobile robot. 
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8.4.2.5 Data Flow 
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Complexity 
 
 
 
 
 
 

• Bottom Line:      Its RCD 
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Obstacle Detection 
• A wide variety of approaches have been tried. 

– Their success ranges from high to low based, mostly, on the 
difficulty of the environment. 

• Under stationary environment assumption: 
– Dwell and evidence accumulation is possible if you measure 

ego-motion. 
– Evidence acquired from different perspectives may be 

important for resolving power (e.g. for wide beam sensors) 
• When assumption is wrong, moving things are subject to 

motion smear and associated false positives and negatives. 
• Mapping from sensor readings to map cells may be: 

– One to many – sonar 
– Many to one - ladar 
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Tradeoffs 
• When evidence is accumulated over time, some sort of 

map becomes necessary in order to: 
– Have a place to store (memory) intermediate data / results. 
– Compensate for the effects of vehicle motion (register 

readings). 
• False negatives can usually only be reduced by increasing 

false positives. 
– In the limit, the stationary robot will hit nothing. 

• Most approaches benefit from accumulating evidence but 
... 
– There may be strong real-time constraints - related to deciding 

its an obstacle before you hit it. 
– Hence, there is a strong response-resolution tradeoff. Good 

answers or fast answers - pick any one. 
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8.4.3.1 Evidence 
• The evidence of an obstacle can take many 

forms……. 
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8.4.3.1.1 Deviation from Expectations 
• When the world is boring, 

deviations from the norm are 
obstacles. 

• Easy to do this indoors with range 
imagery. 
– Even right in the disparity image in 

stereo. 
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8.4.3.1.2 Occupancy / Presence 
• Anything (other than me 

and floor) is bad. 
• Only works in simplest of 

environments. 
• Common approach when 

sensors have poor 
resolving power.  

• 2D and 3D grids are 
commonly used to 
accumulate evidence. 
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8.4.3.1.4 Density 
• Track ratio of: 

– hits/misses 

 
• Not truly density but 

related. 
• Helps distinguish rock from 

bush. 
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8.4.3.1.5 Slope 
• Sometimes slope is main attribute of interest. 
• Compute scatter matrix in map cells. 
• Best fit plane: 

 
• Fit data with: 
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Video 
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8.4.3.1.6 Shape 
• Virtually no work has 

been done on this 
problem. 

• Contemporary solution is 
to check the slope or 
height change. 
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Signature Recognition 
• If particular obstacles are prevalent, the problem 

can become simply recognition. 
• Consider ladar signature of a fallen tree.  
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8.4.3.2 Performance 
• Obstacles must be 

detected in time to 
react. 
– That means when they 

are far away. 

• The tradeoff between 
false positives and 
negatives leads to a 
“pick your poison” 
trade. 
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8.4.3.2.2 Vehicle Speed  
(Pathology: Speed Dependent Resolution) 

• Basic requirement: 
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8.4.3.2.3 Pathological Obstacles 
(Negative Obstacles) 

• In addition to obvious terrain self-occlusion, there 
are more subtle cases. 

• The front edge of a negative obstacle occludes 
most of the information required to determine 
that it is a negative obstacle. 
 

Mobile Robotics - Prof Alonzo Kelly, CMU RI 53 

Distinguishing a 
downslope from a 
ledge cannot be 
done until close 

enough (maybe too 
close to stop) 

θ

h

s

Lethal 
Ledge 

Gentle 
Slope 



8.4.3.2.3 Pathological Obstacles 
(Negative Obstacles) 

• Vehicle must be close enough 
to satisfy: 
 

• Substitute for stopping 
distance and solve for 
reaction time: 
 

• Increased resolution makes 
no difference. 
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Summary 
• Computer vision is now a very deep field independent of 

robotics.  
– Only some of it is highly relevant to mobile robotics. 

• Pixel classification is a rapid end-to-end transformation of 
sensed data onto domain relevant classes. 

• Stereo is great because its passive and because it gives co-
registered appearance data.  
– It requires a solution to the correspondence problem.  
– Dense stereo requires it at every point.  
– Computational load is proportional to rows X columns X depth levels. 

• Stereo is starting to become a commercial commodity. 
• Detecting features is an important process for mobile robots. It 

has uses in detecting shapes and for computing egomotion.  
• In indoor range data, curvature features like corners are a good 

source of localization information. 
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Summary 
• Many schemes have been used for obstacle 

detection with varying success.  
• Detecting small obstacles at high speeds or 

negative ones at any speed is a daunting 
challenge. 
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