

Chapter 8 Perception

Part 4

8.4 Aspects of Geometric and Semantic Computer Vision

Outline

- 8.4 Aspects of Geometric and Semantic Computer Vision
 - 8.4.1 Pixel Classification
 - 8.3.2 Computational Computer Vision
 - 8.3.3 Obstacle Detection
 - Summary

Outline

- 8.4 Aspects of Geometric and Semantic Computer Vision
 - 8.4.1 Pixel Classification
 - 8.3.2 Computational Computer Vision
 - 8.3.3 Obstacle Detection
 - Summary

8.4.1 Pixel Classification

- Pixel Classification assigns each pixel to one of a number of "classes":
 - such as road, rock, bush, grass, yellow paint, etc.
 - useful for picking out the road for road following and obstacles for obstacle avoidance.

8.4.1 Pixel Classification

- Divide the environment into some number of classes and try to place a pixel in its appropriate class.
- Examples of sets of classes:
 - road/nonroad
 - vegetation/mineral/animal
 - hazard/nonhazard
 - hazard/nonhazard/not sure

- Each pixel is considered to be a vector of attributes or "features" which lives in a multidimensional space.
- Regions in this space are supposed (conjectured) to correspond to classes.
- Its typical to have to preprocess images to remove effects of shadows, to normalize for texture etc.
- Sometimes each pixel is ascribed the properties of the region around it (e.g. texture).
 ⁵ Mobile Robotics - Prof Alonzo Kelly, CMU RI
 Carnegie Melle THE ROBOTICS INSTITUT

8.4.1 Pixel Classification

 For example, suppose that green stuff is soft vegetation, brown stuff is hard vegetation, and grey stuff is dirt road.

• This result could be passed into a trail following control algorithm

8.4.1.1 Training the Classifier

- Often, the regions are not known beforehand
 - Must be "learned".
- In supervised learning, we hand label (provide classes for) portions of images and use this data to determine the characteristics of the class.
- One way to represent a class is in terms of its covariance matrix..

8.4.1.1 Training the Classifier

(Regions in Feature Space)

- Training can be accomplished by labeling regions in either feature space or image space.
- Near IR (NIR) is valuable for distinguishing vegetation.

8.4.1.2 Decision Surfaces

- Defines a rule to decide which class to which a pixel value belongs.
- If Gaussians are used to define P(class|rgb) then...
- MHD is a reasonable measure of proximity to the class mean.
- These days, a matrix multiply for each pixel is feasible.

$$d^{2} = (\underline{x} - \underline{m})^{T} S^{-1} (\underline{x} - \underline{m})$$

 $\underline{x} = pixel feature vector$ $\underline{m} = class mean$ S = covariance matrix

8.4.1.3 Fisher's Linear Discriminant

- Linear decision surface.
- Fast to compute.
- Define "within class" scatter:

Measures spread within classes

$$\mathbf{S}_{\mathbf{W}} = \mathbf{S}_1 + \mathbf{S}_2$$

 Define the rank 1 "between class" scatter

$$S_{\rm B} = (\underline{m}_1 - \underline{m}_2)(\underline{m}_1 - \underline{m}_2)^{\rm T}$$

Measures spread between classes

8.4.1.3 Fisher's Linear Discriminant

- Want to maximize the ratio: $J(\underline{w}) = \frac{\underline{w}^T S_B \underline{w}}{\underline{w}^T S_W \underline{w}}$ • The solution is:

$$\underline{\mathbf{w}} = \mathbf{S}_{\mathbf{W}}^{-1}(\underline{\mathbf{m}}_1 - \underline{\mathbf{m}}_2)$$

• To classify a pixel, compute: $g(\underline{x}) = \underline{w}^{T} \underline{x} + \underline{w}_{0}$

THE ROBOTI

• \underline{W}_0 represents the threshold on $\underline{w}^T \underline{x}$ which must be exceeded to make g(x) > 0and cause a choice of class 2 over class 1

Mobile Robotics - Prof Alonzo Kelly, CMU RI

Outline

- 8.4 Aspects of Geometric and Semantic Computer Vision
 - 8.4.1 Pixel Classification
 - 8.3.2 Computational Computer Vision
 - 8.3.3 Obstacle Detection
 - Summary

Shape Inference

- These methods compute the range and/or shape of objects in the environment.
- Stereo computes the range to all or some pixels in one of a number of images.
- Structured Light same as stereo but light is projected onto the scene.
- Known Object use known dimensions of object to determine range.
- Exotics such as range from focus, photometric stereo etc have seen little use.

THE ROBOTICS IN

8.4.2 Stereo Vision

- While there are other options for passive ranging, it usually takes the form of stereo vision on mobile robots today.
 - MER Rovers Spirit and Opportunity use stereo.
- Structured light is a distant second.
 - The Mars Pathfinder Rover had a structured light system on board.
- Ranging may be performed only at specific features (say, at vertical lines) or everywhere in the image ("dense" stereo).
- Two-eyed ("binocular") stereo is common but there are advantages to having more than two eyes.
- Cameras normally have <u>parallel</u> orientations (no "vergence")

8.4.2.1 Principle of Operation

- Analogous to vision in primates.
- Nearer objects have greater disparity.
- Exploit this in reverse.

$$R = bf/d$$

The hard part is the correspondences needed to get the disparity.

8.4.2.2 Search for Pixel Correspondences

- For each pixel in left image, correlate region around it with a line of pixels in the right image.
 - Generates a curve of similarity versus disparity.
- Find disparity of maximum correlation.
- Image noise, distortions, poor calibration, and many other error sources conspire to make the correlation calculations unreliable.

8.4.2.2 Search for Pixel Correspondences (Horopter Stereo)

- Scene shape affects the distortion of regions from eye to eye.
 - Highest when disparity gradient in image is highest.
- Horopter technique assumes a reasonable disparity gradient based on flat terrain.

Input Intensity Image

Output Range Image

8.4.2.4 Advantages and Disadvantages (Advantages)

- Passive.
- Solid state.
- Density.
 - Data is relatively dense
 - Though not necessarily of high angular resolution.
- Cost. Now relatively inexpensive.
- Appearance Registration.
 - Appearance and range data are inherently aligned.
- Frame capture.
 - <u>No distortion</u> within an image due to vehicle motion.

8.4.2.4 Advantages and Disadvantages (Disadvantages)

• <u>Calibration</u>.

- Relies on pixel to pixel alignment of imagery.
- Range resolution.
 - Resolution degrades <u>quadratically</u> with range.
- Angular resolution.
 - Correlation processing acts as a low pass filter. Reduces res by order of magnitude.
- Passive.
 - Stereo fails under <u>near darkness</u>, or no texture conditions.
- Triangulation.
 - Increased baseline leads to increased distortion and missing parts problems.
- Processing.
 - Requires a <u>dedicated</u> high performance processor. Ladars do all that in hardware. No longer such a big deal.

Resolution

 Downrange resolution can be determined by differentiating Eqn A:

$$\Delta \mathbf{R} = (-\mathbf{b}\mathbf{f}/\mathbf{d}^2)\Delta \mathbf{d} = [-\mathbf{R}^2/(\mathbf{b}\mathbf{f})]\Delta \mathbf{d}$$

• Define normalized disparity:

$$\delta = d/f$$

Range resolution is now:

$$\Delta \mathbf{R} = [-\mathbf{R}^2/\mathbf{b}]\Delta \delta$$

• Crossrange resolution is linear:

 $\Delta n = R\Delta \delta$

Resolution

- In practice, stereo operates by matching regions of perhaps 10 X 10 pixels between imagery.
 - Range values become correlated

• These resolution numbers must be reduced by a factor of 10.

Commercial Stereo

Parameter	Point Grey BumbleBee & Triclops	SRI Small Vision System	Sa Ac Ste
Image Dimen- sions	640 X 480 (higher pending)	320 X 240	64
Frame Rate	30 Hz	20 Hz	60
Size	16 X 4 X 4 cm	6 X 2 X 2 inches	(u pli era
Baseline	12 cm	6.2 inches	(u: pli
Disparities	24	24	64

arnoff cadia ereo 40 X 480 0 Hz ser supies camas) ser supied) 4

Point Grey Bumble Bee

SRI Small Vision System

Sarnoff Acadia Board

• Target markets may favor higher frame rates but better data is more useful to a mobile robot.

8.4.2.5 Data Flow

Complexity

$f_{stereo} = (2K_1 + 2K_2 + K_5 + K_6)RC + (K_3 + K_4)RCD$

R = rowsC = colsD = disparities

• Bottom Line: Its RCD

Outline

- 8.4 Aspects of Geometric and Semantic Computer Vision
 - 8.4.1 Pixel Classification
 - 8.3.2 Computational Computer Vision
 - 8.3.3 Obstacle Detection
 - Summary

Obstacle Detection

- A wide variety of approaches have been tried.
 - Their success ranges from high to low based, mostly, on the difficulty of the environment.
- Under stationary environment assumption:
 - Dwell and evidence accumulation is possible if you measure ego-motion.
 - Evidence acquired from different perspectives may be important for resolving power (e.g. for wide beam sensors)
- When assumption is wrong, moving things are subject to motion smear and associated false positives and negatives.
- Mapping from sensor readings to map cells may be:
 - One to many sonar
 - Many to one ladar

Tradeoffs

- When evidence is accumulated over time, some sort of map becomes necessary in order to:
 - Have a place to store (memory) intermediate data / results.
 - Compensate for the effects of vehicle motion (register readings).
- False negatives can usually only be reduced by increasing false positives.
 - In the limit, the stationary robot will hit nothing.
- Most approaches benefit from accumulating evidence but
 - There may be strong real-time constraints related to deciding its an obstacle before you hit it.
 - Hence, there is a strong <u>response-resolution tradeoff</u>. Good answers or fast answers - pick any one.

. . .

8.4.3.1 Evidence

• The evidence of an obstacle can take many forms......

8.4.3.1.1 Deviation from Expectations

- When the world is boring, deviations from the norm are obstacles.
- Easy to do this indoors with range imagery.
 - Even right in the disparity image in stereo.

8.4.3.1.2 Occupancy / Presence

- Anything (other than me and floor) is bad.
- Only works in simplest of environments.
- Common approach when sensors have poor resolving power.
- 2D and 3D grids are commonly used to accumulate evidence.

8.4.3.1.4 Density

- Track ratio of:
 - hits/misses

- Not truly density but related.
- Helps distinguish rock from bush.

8.4.3.1.5 Slope

- Sometimes slope is main attribute of interest.
- Compute scatter matrix in map cells.
- Best fit plane:

• Fit data with:

$$a'x + b'y + c'z = 1$$

Check normal direction relative to vertical to determine if cell is an obstacle

Video

8.4.3.1.6 Shape

- Virtually no work has been done on this problem.
- Contemporary solution is to check the slope or height change.

No Problem

Ouch!!!

Signature Recognition

- If particular obstacles are prevalent, the problem can become simply recognition.
- Consider ladar signature of a fallen tree.

8.4.3.2 Performance

- Obstacles must be 100 detected in time to react. 1 – true positives) % false positives That means when they good are far away. algorithm The tradeoff between better algorithm false positives and negatives leads to a % false negatives 100 (1 - true negatives)"pick your poison" trade.
 - Carnegie Mello THE ROBOTICS INSTITUT

8.4.3.2.2 Vehicle Speed

(Pathology: Speed Dependent Resolution

n pixels

• Basic requirement:

$$\delta = \frac{[h/Y(V)]}{n}$$

h

n=4 detects presence only, takes more for resolution of smallest

Sensor	Resolution (mrads)
Laser	3 (Typical)
Stereo	80
Radar	worse

8.4.3.2.3 Pathological Obstacles

(Negative Obstacles)

- In addition to obvious terrain self-occlusion, there are more subtle cases.
- The front edge of a negative obstacle occludes most of the information required to determine that it is a negative obstacle.

8.4.3.2.3 Pathological Obstacles

(Negative Obstacles)

2

1.5

0.5

0

-0.5

Reaction Time in Secs

Vehicle must be close enough to satisfy:

 $s = h / tan \theta$ Detection range

 Substitute for stopping distance and solve for reaction time:

$$\Gamma_{\text{react}} = \frac{(h/\tan\theta - V^2/(2\mu g))}{V}$$

 Increased resolution makes no difference.

At long range, a tiny bump can hide a vehicle sized hole!!

Mobile Robotics - Prof Alonzo Kelly, CMU RI

Physics induced speed

limit

THE ROBOTICS IN

Outline

- 8.4 Aspects of Geometric and Semantic Computer Vision
 - 8.4.1 Pixel Classification
 - 8.3.2 Computational Computer Vision
 - 8.3.3 Obstacle Detection
 - <u>Summary</u>

Summary

- Computer vision is now a very deep field independent of robotics.
 - Only some of it is highly relevant to mobile robotics.
- Pixel classification is a rapid end-to-end transformation of sensed data onto domain relevant classes.
- Stereo is great because its passive and because it gives coregistered appearance data.
 - It requires a solution to the correspondence problem.
 - Dense stereo requires it at every point.
 - Computational load is proportional to rows X columns X depth levels.
- Stereo is starting to become a commercial commodity.
- Detecting features is an important process for mobile robots. It has uses in detecting shapes and for computing egomotion.
- In indoor range data, curvature features like corners are a good source of localization information.

Summary

- Many schemes have been used for obstacle detection with varying success.
- Detecting small obstacles at high speeds or negative ones at any speed is a daunting challenge.

