
Chapter 10
Motion Planning

Part 2
10.2 Representation and Search for
Global Motion Planning

Mobile Robotics - Prof Alonzo Kelly, CMU RI 1

Outline
• 10.2 Representation and Search for Global Motion

Planning
– 10.2.1 Sequential Motion Planning
– 10.2.2 Big Ideas in Optimization and Search
– 10.2.3 Uniform Cost Sequential Planning Algorithms
– 10.2.4 Weighted Sequential Planning
– 10.2.5 Representation For Sequential Motion Planning
– Summary

Mobile Robotics - Prof Alonzo Kelly, CMU RI 2

Solution Techniques
• Recall: Path planning is essentially an optimal

control problem.
• Three clear solution techniques for optimal

control:
– Parameterization (how we did trajectory generation)
– Variational (“geodesics”).
– Dynamic Programming

• Why not just use trajectory generation
algorithms?
– We shall see….

Mobile Robotics - Prof Alonzo Kelly, CMU RI 3

Outline
• 10.2 Representation and Search for Global Motion

Planning
– 10.2.1 Sequential Motion Planning
– 10.2.2 Big Ideas in Optimization and Search
– 10.2.3 Uniform Cost Sequential Planning Algorithms
– 10.2.4 Weighted Sequential Planning
– 10.2.5 Representation For Sequential Motion Planning
– Summary

Mobile Robotics - Prof Alonzo Kelly, CMU RI 4

10.2.1.1 Why Not Continuum Methods?
• Too Many Solutions…

– Scale is much larger. Many more solutions in some
funny continuum sense.

• Too many Constraints…
– Avoiding 1000 obstacles is 1000 constraints.

• Too many local minima.

Mobile Robotics - Prof Alonzo Kelly, CMU RI 5

S G

Two decisions, each with 2
choices leads to 4
homotopically distinct paths.

10.2.1.2 Discretization of Search Spaces
• Embed a network in space and search it (instead

of space itself)..

Mobile Robotics - Prof Alonzo Kelly, CMU RI 6

S G

10.2.1.2 Discretization of Search Spaces
(State Discretization)

• Discrete states may or may
not be regularly arranged.

• Join nearby states with
edges.

• Produces a graph embedded
in (i.e. a subset of)
workspace or C space.

• Planning paths …
– in the continuum

• … has become …
– reduced to a graph search

problem.
Mobile Robotics - Prof Alonzo Kelly, CMU RI 7

10.2.1.3 Sequential Decision Process
• The solution is a sequence

of small paths.
• Require, at each state

encountered, some options
for how to proceed.

• Each option transitions to a
new state:

Mobile Robotics - Prof Alonzo Kelly, CMU RI 8

3

2

1

1

1

1

2

2

2

xk 1+ f xk u,()=
Usually want these to
be feasible

Maybe want them to
avoid obstacles.

Sometimes, don’t even check the edges
for collision if they are short. Check
only states,

Discrete Motion Planning Formulation
• Given:

– a graph
– a start state
– a goal state

• Find a sequence of edges
(equivalently, states)
connecting start to goal.

• Some formulations have
multiple goals or goal regions.

• Some have multiple start
states (uncertainty).

Mobile Robotics - Prof Alonzo Kelly, CMU RI 9

S

G

10.2.1.4 World Model, C-Space, and Search Graph
(Discrete Representations)

• Convenient for performing sequential search.
• Abstract the continuum in two ways:
• 1) Discretize the state space
• 2) Discretize the motions so that they connect

only the (nearby) states.
• Sometimes we do this based on knowledge of:

– neither obstacle nor mobility (grid)
– mobility ignoring obstacles (state lattice)
– obstacles ignoring mobility (Voronoi diagram,

roadmaps)
Mobile Robotics - Prof Alonzo Kelly, CMU RI 11

10.2.1.4 World Model, C-Space, and Search Graph
(Grids & Lattices as Graphs)

• Search algorithms defined on
networks.

• Grids and lattices are just
regular arrangements of
states.

• ANY algorithm defined on a
network can be implemented
on a grid.

• Edges may be implicit but
they are always there.

Mobile Robotics - Prof Alonzo Kelly, CMU RI 12

=

10.2.1.5 Search Space Design
• Implicit edges defer the motion generation problem

post-planning.
– Works sometimes. System must be predictable.
– However, sometimes constraints must be represented to

avoid failure.
• Tradeoff is search convenience vs constraint

convenience.
• Discrete obstacles can be encoded in search space.

– by removing edges.
– Otherwise, need cost field.

• Often search space is generated on the fly but in rare
cases, like a real road network, its known
beforehand….

Mobile Robotics - Prof Alonzo Kelly, CMU RI 14

10.2.1.5.1 Road Networks
• Consider representing arbitrary free paths

– perhaps related in some network (joining at intersections).
– maybe not maximally distant from obstacles like Voronoi

• We impose constraints of allowable motions first, and
worry about obstacles second (as was done in some
forms of obstacle avoidance).

Mobile Robotics - Prof Alonzo Kelly, CMU RI 15

Pickup Dropoff

10.2.1.5.2 Workspace Lattices
• Search algorithms are defined on

networks.
• Grids and lattices are just regular

arrangements of states.
• ANY algorithm defined on a

network can be implemented on
a grid.

• Edges may be implicit but they
are always there.

 Mobile Robotics - Prof Alonzo Kelly, CMU RI 16

10.2.1.5.3 State Lattices
• Enforce differential constraints directly in the

searce space.
• For example, Reeds-Shepp car. Require heading

continuity across nodes.

Mobile Robotics - Prof Alonzo Kelly, CMU RI 17

10.2.1.5.4 Voronoi Diagrams
• Set of all points which are

equidistant from at least
two obstacle boundaries.

• Local maxima in the
proximity field.

• Can be generated from a
field representation with
the “distance transform”.

Mobile Robotics - Prof Alonzo Kelly, CMU RI 18

Goal

Obstacle Obstacle

Robot
Obstacle

Outline
• 10.2 Representation and Search for Global Motion

Planning
– 10.2.1 Sequential Motion Planning
– 10.2.2 Big Ideas in Optimization and Search
– 10.2.3 Uniform Cost Sequential Planning Algorithms
– 10.2.4 Weighted Sequential Planning
– 10.2.5 Representation For Sequential Motion Planning
– Summary

Mobile Robotics - Prof Alonzo Kelly, CMU RI 21

10.2.1.1 Principle of Optimality
(Bellman 60s)

• The basis of the famous and very useful Dynamic
Programming Algorithm.

• Applies to sequential (aka Markov) decision
processes (SDP).

Mobile Robotics - Prof Alonzo Kelly, CMU RI 22

“An optimal policy has the property that whatever the initial state and
initial decision are, the remaining decisions must constitute an optimal
policy with regard to the state resulting from the first decision.”

If the (whole) red
path is optimal …

the green one must
also be optimal.

Pittsburgh
Chicago

Detroit

Dayton

10.2.1.1 Principle of Optimality
(Bellman 60s)

• Dynamic Programming…
– A large class of programmimg algorithms that are

based on breaking a large problem down (if possible)
into incremental steps so that, at any given stage,
optimal solutions are known sub-problems.

Mobile Robotics - Prof Alonzo Kelly, CMU RI 23

If the (whole) red
path is optimal …

the green one must
also be optimal.

Pittsburgh
Chicago

Detroit

Dayton

10.2.1.1 Principle of Optimality
(Notion of Proof)

• Intuitively, the optimal solution to the entire
problem must be composed of optimal solutions
to the subproblems.
– This only true for SDPs.

• Easy to prove by contradiction…..
– Otherwise, you could substitute the optimal

subproblem and generate a better solution.

Mobile Robotics - Prof Alonzo Kelly, CMU RI 24

Pittsburgh
Chicago

Detroit

Dayton

10.2.1.1 Principle of Optimality
(Dynamic Programming)

• Starting at the start node, the mouse has to pick
one of 3 and then one of (2 or 3) nodes…

• There are 7 possible paths of 3 edges (7 edges in
middle phase).

Mobile Robotics - Prof Alonzo Kelly, CMU RI 25

Cheese

1

3

2

3

1

1

3

2
3

3

4

4 5

Mouse

10.2.2.1.1 Backward Traversal
• To solve the problem, work backwards from the goal:

– Label each node with the cost of the best path to the goal from
there.

– Record a “backpointer” to the next node in the forward
direction.

– Move backward one level at a time.

Mobile Robotics - Prof Alonzo Kelly, CMU RI 26

Cheese

1

3

2

3

1

1

3

2
3

3

4

4 5

Mouse 4

5

3 6

5

6

7

10.2.2.1.1 Backward Traversal
• Notice:

– Brute force complexity is the number of distinct paths
times the length of the paths (= 21 ops).

– Dynamic programming complexity is the number of
edges (=13).

Mobile Robotics - Prof Alonzo Kelly, CMU RI 27

Cheese

1

3

2

3

1

1

3

2
3

3

4

4 5

Mouse 4

5

3 6

5

6

7

10.2.2.1.1 Backward Traversal
• Notice:

– Decisions on backpointers are final  commit as you
go.

– A spanning tree is constructed in the process of graph
traversal  each node can reach root on unique path.

Mobile Robotics - Prof Alonzo Kelly, CMU RI 28

Cheese

1

3

2

3

1

1

3

2
3

3

4

4 5

Mouse 4

5

3 6

5

6

7

10.2.2.1.1 Backward Traversal
• Notice:

– The nodes or states are a convenient place to store
both …

• “best cost so far”
• backpointers which record the sequential decisions.

Mobile Robotics - Prof Alonzo Kelly, CMU RI 29

Cheese

1

3

2

3

1

1

3

2
3

3

4

4 5

Mouse 4

5

3 6

5

6

7

Forward Traversal
• Branching factor may make one direction preferable.
• That will not happen in locally connected graphs like

those derived from grids.
• Here, “forward pointers” were remembered to make tree

look the same as last example. Either option is OK for
remembering the path.

Mobile Robotics - Prof Alonzo Kelly, CMU RI 30

Cheese

1

3

2

3

1

1

3

2
3

3

4

4 5

Mouse

2

3

1 3

3

5

7

10.2.2.2 Branch and Bound
• Provides a way to eliminate entire sections of the

search space.
• Relies on two ingredients:

– A mechanism to split up the search space (branching)
– A mechanism to quickly compute bounds on the

quality of a solution at a node.

Mobile Robotics - Prof Alonzo Kelly, CMU RI 31

10.2.2.2 Branch and Bound
• Suppose:

– looking for shortest path.
– each node has a max and a

min bound on total path
length if they are used.

• Node C opposite need
never be expanded
– because B’s worst case

beats C’s best case.

Mobile Robotics - Prof Alonzo Kelly, CMU RI 32

Can’t get any
worse than 5

Can’t get any
better than 6

A
max: -
min: -

B
max: 5
min:3

C
max:8
min: 6

10.2.2.3 Best First Search
• Maintain all unexplored nodes in a priority queue

and expand the most promising node next.
– Sort the queue for fast ID of best

• Provides a way to encode arbitrary search
strategies.

• Like Hill-climbing/steepest descent but:
– Systematic – will eventually try all options.
– May use smarter evaluation functions than local

gradients.

Mobile Robotics - Prof Alonzo Kelly, CMU RI 33

10.2.2.3 Best First Search
• Suppose:

– looking for shortest path.
– F(node) is an estimate of the total

path length if the node is used.

• Darker nodes are closed.
• Expand node E next.

Mobile Robotics - Prof Alonzo Kelly, CMU RI 34

A
f: 3.2

B
f: 3.4

C
f: 3.7

D
f: 3.6

E
f: 3.5

A B

E D C ˳˳˳

10.2.2.4 Policy Storage
• The path integral nature of

path cost means the optimal
path to/from anywhere can
be stored in one compact
structure.

• Store optimal potential or
its gradient.

Mobile Robotics - Prof Alonzo Kelly, CMU RI 35

G

1 1 1
1 S 1
1 1 1

10.2.2.4 Policy Storage

Mobile Robotics - Prof Alonzo Kelly, CMU RI 36

G

2 2 2 2
2 1 1 1
2 1 S 1
2 1 1 1

10.2.2.4 Policy Storage

Mobile Robotics - Prof Alonzo Kelly, CMU RI 37

G

3 3
2 2 2 2
2 1 1 1

3 2 1 S 1
3 2 1 1 1

10.2.2.4 Policy Storage

Mobile Robotics - Prof Alonzo Kelly, CMU RI 38

G
4 4 4

3 3
2 2 2 2

4 2 1 1 1
4 3 2 1 S 1
4 3 2 1 1 1

10.2.2.4 Policy Storage

Mobile Robotics - Prof Alonzo Kelly, CMU RI 39

G 5 5 5 5
5 4 4 4

3 3
5 5 2 2 2 2
5 4 2 1 1 1
5 4 3 2 1 S 1
5 4 3 2 1 1 1

10.2.2.4 Policy Storage
• Goal is at distance 7 from

start.
• Now know optimal path

from anywhere to the start.
– Or from start to anywhere.

Mobile Robotics - Prof Alonzo Kelly, CMU RI 40

8 7 6 6 6 6 6
8 8 7 6 5 5 5 5
7 7 7 5 4 4 4
6 6 6 3 3
6 5 5 2 2 2 2
6 5 4 2 1 1 1
6 5 4 3 2 1 S 1
6 5 4 3 2 1 1 1

6

9

Outline
• 10.2 Representation and Search for Global Motion

Planning
– 10.2.1 Sequential Motion Planning
– 10.2.2 Big Ideas in Optimization and Search
– 10.2.3 Uniform Cost Sequential Planning Algorithms
– 10.2.4 Weighted Sequential Planning
– 10.2.5 Representation For Sequential Motion Planning
– Summary

Mobile Robotics - Prof Alonzo Kelly, CMU RI 41

Uniform Cost Edges
• Groundrules for the rest of this section…
• “Length” of the path is defined as the

number of edges required to reach it.
– Edges have equal length or cost.

Mobile Robotics - Prof Alonzo Kelly, CMU RI 42

Reminder: Desiderata
• Complete:

– Find a path if it exists
– Report failure otherwise (i.e. terminate)

• Sound / Feasible:
– Meet all constraints

• Optimal:
– Produce optimal solution if any.

Mobile Robotics - Prof Alonzo Kelly, CMU RI 43

10.2.3.1 Wandering Motion Planner
• Virtues:

– Stays on graph
– Discovers graph
– Fixed memory

• Problems:
– Nonsystematic

• May never terminate in
practice

– Certainly not optimal
• May generate cyclic

solutions
– Does not remember the

path for later execution.

Mobile Robotics - Prof Alonzo Kelly, CMU RI 44

Aimless Wandering Planner

“Do random stuff (in simulation)
until you stumble on the goal”

“Expand”
the node

10.2.3.2 Systematic Motion Planner
(Busting Cycles)

• Paths with cycles are better
with cycles removed.

• Remember where you’ve
been!!

• Side effect: filling up potential
“wells”.

• Systematic planners are
complete.

• That takes at least some
memory.
– … e.g. a horizon.

Mobile Robotics - Prof Alonzo Kelly, CMU RI 45

S

G

S

G

S G

10.2.3.2 Systematic Motion Planner
(Basics of Search)

• Build a spanning tree of the graph until you hit
the goal.

Mobile Robotics - Prof Alonzo Kelly, CMU RI 46

S

1 2

3 5

4

6

7

9 10

G
11

12

8 14

13 15

S G

1

4

3

2

7

5

8

6

9

10

11

12
13

14

15

SEARCH GRAPH
Usually elaborated on the fly to save memory

SEARCH TREE
Usually encoded in “backpointers”

Wavefront
a.k.a.
OPEN list

Expanded
CLOSED list

10.2.3.2 Systematic Motion Planner
• Remembers all visited

states.
– Set O is the “open”

(active) frontier.
– Set C is the “closed”

(inactive) set.

Mobile Robotics - Prof Alonzo Kelly, CMU RI 47

Move state
behind frontier

Terminate on
failure

S G

Systematic Planner
• Remember parent

pointers to enable
path extraction.

• Unique parents
creates spanning tree.
– = acyclic cover

• Now need memory for
O and C.

• Complete.
• However, not optimal.

– Unless you sort the O
set.

Mobile Robotics - Prof Alonzo Kelly, CMU RI 48

Markers in each state are an efficient
alternative to using the set C

10.2.3.1 Systematic Motion Planner
(Node Expansion)

• Node expansion algorithm is similar in all of the
algorithms here.

Mobile Robotics - Prof Alonzo Kelly, CMU RI 49

State is new. Put
it on frontier

Solution !

Record
Backpointer

10.2.3.3 Optimal Motion Planner
(BFS / Grassfire)

• Sorted O set. Code
looks identical but…

• Set O becomes
(ordered) FIFO queue.

• Removed at the front.
• Inserted at the back.

Mobile Robotics - Prof Alonzo Kelly, CMU RI 50

Insert at
Back

10.2.3.3 Optimal Motion Planner
(BFS / Grassfire)

• Called breadth first search on graphs.
• Called grassfire on grids.
• Generally, the cost of optimality is the sorting.

– But sorting is trivial (FIFO) when edges are uniform cost.

Mobile Robotics - Prof Alonzo Kelly, CMU RI 51

Insert at
back

Remove at
front

“Wavefront optimality principle” =
expand closest node to start.

10.2.3.3 Optimal Motion Planner
(BFS / Grassfire)

• Generate all paths of length one edge.
• Then all paths of length two edges…
• Each node is encountered first on the path which has

least edges.

Mobile Robotics - Prof Alonzo Kelly, CMU RI 52

Insert at
back

Remove at
front

“Wavefront optimality principle” =
expand closest node to start.

10.2.3.3 Optimal Motion Planner
(BFS / Grassfire)

Mobile Robotics - Prof Alonzo Kelly, CMU RI 53

Wavefront
a.k.a.
OPEN list

Expanded
CLOSED list

World Search Graph
(backpointers)

Outline
• 10.2 Representation and Search for Global Motion

Planning
– 10.2.1 Sequential Motion Planning
– 10.2.2 Big Ideas in Optimization and Search
– 10.2.3 Uniform Cost Sequential Planning Algorithms
– 10.2.4 Weighted Sequential Planning
– 10.2.5 Representation For Sequential Motion Planning
– Summary

Mobile Robotics - Prof Alonzo Kelly, CMU RI 55

Nonuniform Cost Edges
• So far

– ….“length” of the path was defined as the number of
edges required to reach it.

• More generally let each edge have a variable,
nonnegative cost.

Mobile Robotics - Prof Alonzo Kelly, CMU RI 56

10.2.4 Weighted Sequential Planning
(Definitions)

Mobile Robotics - Prof Alonzo Kelly, CMU RI 57

xs
xg

x

Cost to come g(x)

Cost to go h(x)

10.2.4.1 Optimal Weighted Sequential Planner
(Dijkstra’s Algorithm)

• O becomes a priority
queue sorted based
on costs-to-come.

• Cost of states
expanded increases
monotonically
– Added states must

exceed cost of parent.
– Queue is sorted.

• Invoke wavefront
optimality principle.

Mobile Robotics - Prof Alonzo Kelly, CMU RI 58

10.2.4.1 Optimal Weighted Sequential Planner
(Dijkstra’s Algorithm)

• New issues:
– Cost of nodes added

is no longer
monotone.

– Therefore, costs of
nodes added may
not be optimal.

• So…..

Mobile Robotics - Prof Alonzo Kelly, CMU RI 59

xnext.g

10.2.4.1 Optimal Weighted Sequential Planner
(Dijkstra’s Algorithm)

• 1: Do actual
sorting.

• 2: Delay* test for
goal to make sure
its optimal.

• 2a: It used to be
inside here for
UCSP.

Mobile Robotics - Prof Alonzo Kelly, CMU RI 60

* Its earlier in the code but it
 occurs later in time.

10.2.4.1 Optimal Weighted Sequential Planner
(Dijkstra’s Algorithm)

• 3: permit
revisiting nodes
– Update costs
– Redirect parent

pointers as
necessary.

– Remove and
reinsert to keep O
sorted.

Mobile Robotics - Prof Alonzo Kelly, CMU RI 61

xnext.g

10.2.4.1 Optimal Weighted Sequential Planner
(Backpointer Redirection on Open List)

Mobile Robotics - Prof Alonzo Kelly, CMU RI 62

2: Expansion of
node g=6 finds
better path to
node g=8

1: In these
diagrams, drawn
nodes contain g()
values.

3: Update g()
and redirect
backpointer

S

6 1 5

6 1

8

1 8

9

3

Original Edge

Back Pointer

n Open Node

n Closed Node

S

6 1 5

6 1

7

1 8

9

3

5 5

10.2.4.1 Optimal Weighted Sequential Planner
(Dijkstra’s Algorithm)

• Summary…
• Preserving

optimality under
nonuniform costs
requires 3 things:
– 1: Really sorting the

queue.
– 2: Delaying test for

success.
– 3: Tolerating and

managing revisited
nodes.

Mobile Robotics - Prof Alonzo Kelly, CMU RI 63

xnext.g

10.2.4.1 Optimal Weighted Sequential Planner
(Dijkstra’s Algorithm)

Mobile Robotics - Prof Alonzo Kelly, CMU RI 64

Dyjkstra = (sorta) Grassfire For Nonuniform Edge Cost

10.2.4 Weighted Sequential Planning
(Reminder: Definitions)

Mobile Robotics - Prof Alonzo Kelly, CMU RI 65

xs
xg

x

Cost to come g(x)

Cost to go h(x)

10.2.4.2 Heuristic Optimal Weighted Sequential Planner
(A* Algorithm)

• An estimate of the cost-to-go makes it possible to
be more efficient and visit less states than
Dijkstra’s algorithm

• Now, we store three values in each node, called f()
, g() , and h() where:
– is the exact known optimal cost-to-come as it is

in Dijkstras algorithm.
– is an estimate of the cost-to-go from state to the

goal state.
– is an estimate (because its based on) of the

optimal path cost from the start to the goal through
state computed as follows:

 Mobile Robotics - Prof Alonzo Kelly, CMU RI 66

g x()

ĥ x()

f̂ x() ĥ x()

x

10.2.4.2 Heuristic Optimal Weighted Sequential Planner
(Achieving Focus in A* Algorithm)

Mobile Robotics - Prof Alonzo Kelly, CMU RI 67

xs
xg

x

Cost-to-come

Cost-to-go estimate

g x()

ĥ x()

f̂ x()Cost estimate

f̂ x() g x() ĥ x()+=

10.2.4.2 A* Algorithm: Optimality

• The priority queue is now
sorted based on f().
– Amounts to exploring paths

in order of least estimated
cost until the goal is reached.

• When h() is an
underestimate for all x, the
algorithm is optimal.

• When the goal is removed
from the queue, we know
that an underestimate of the
cost of all other paths is
greater than the actual cost
of the present solution, so
its optimal.

Mobile Robotics - Prof Alonzo Kelly, CMU RI 68

xnext.f

10.2.4.2 Heuristic Optimal Weighted Sequential Planner

Mobile Robotics - Prof Alonzo Kelly, CMU RI 69

Open Node

Closed Node

New Node

A* = Heuristic Focused Dijkstra xnext.f

10.2.4.2 Heuristic Optimal Weighted Sequential Planner
(Re Adding Nodes to “Open”)

• A handy routine to save writing it three times.

Mobile Robotics - Prof Alonzo Kelly, CMU RI 70

10.2.4.2 Heuristic Optimal Weighted Sequential Planner
(A* Facts)

• “Admissability” (implies optimality)
– Let h*(x) mean the true optimal cost to the goal from

state x.
– h(x) is “admissible” if it is always an underestimate of

the true cost to the goal.
• h(x) <= h*(x) always

• Not supposed to call the algorithm A* if h(x) is not
admissable. (Call it simply A)

Mobile Robotics - Prof Alonzo Kelly, CMU RI 73

10.2.4.2 Heuristic Optimal Weighted Sequential Planner
(A* Facts)

• “Informed” (relates to efficiency)
– h1(x) is more informed than h2(x) if:

• h1(x) > h2(x) and …
• both are admissable

• A search based on h1(x) will open a subset of the
nodes opened using h2(x)

• Hence h1(x) is more efficient.

Mobile Robotics - Prof Alonzo Kelly, CMU RI 74

Its just like the
“THE PRICE IS RIGHT!”

10.2.4.5 Monotonicity of Total Cost for Consistent Heuristics

• h(x) is “monotone” if it satisfies the
triangle inequality:
– for any arc (n, n') we have
– h(n) <= h(n')+c(n, n')

• Any monotone heuristic is
admissable.

• For the sequence of nodes n1 n2 ..
Opened under these circumstances,
we have:
– f(n1) <= f(n2) <= ..
– The f values grow monotonically.
– A node will never be moved from

closed to open.

Mobile Robotics - Prof Alonzo Kelly, CMU RI 75

n n’

g Think of:
n = parent
n′ = child

s

Going straight to g from n must
be cheaper than going from n to
n’ to g.

Outline
• 10.2 Representation and Search for Global Motion

Planning
– 10.2.1 Sequential Motion Planning
– 10.2.2 Big Ideas in Optimization and Search
– 10.2.3 Uniform Cost Sequential Planning Algorithms
– 10.2.4 Weighted Sequential Planning
– 10.2.5 Representation For Sequential Motion Planning
– Summary

Mobile Robotics - Prof Alonzo Kelly, CMU RI 78

Outline
• 10.2 Representation and Search for Global Motion

Planning
– 10.2.1 Sequential Motion Planning
– 10.2.2 Big Ideas in Optimization and Search
– 10.2.3 Uniform Cost Sequential Planning Algorithms
– 10.2.4 Weighted Sequential Planning
– 10.2.5 Representation For Sequential Motion Planning
– Summary

Mobile Robotics - Prof Alonzo Kelly, CMU RI 79

Summary
• When vehicles are not omnidirectional, even

planning without obstacles is hard.
• Planning in the continuum is not usually

attempted:
– when there are significant obstacles or
– interesting cost fields.
– Instead, convert the problem to an SDP

• For SDPs, techniques of substantial elegance exist.
– Sorting a priority queue
– Heuristics

 Mobile Robotics - Prof Alonzo Kelly, CMU RI 80

	Chapter 10�Motion Planning
	Outline
	Solution Techniques
	Outline
	10.2.1.1 Why Not Continuum Methods?
	10.2.1.2 Discretization of Search Spaces
	10.2.1.2 Discretization of Search Spaces�(State Discretization)
	10.2.1.3 Sequential Decision Process
	Discrete Motion Planning Formulation
	10.2.1.4 World Model, C-Space, and Search Graph�(Discrete Representations)
	10.2.1.4 World Model, C-Space, and Search Graph�(Grids & Lattices as Graphs)
	10.2.1.5 Search Space Design
	10.2.1.5.1 Road Networks
	10.2.1.5.2 Workspace Lattices
	10.2.1.5.3 State Lattices
	10.2.1.5.4 Voronoi Diagrams
	Outline
	10.2.1.1 Principle of Optimality �(Bellman 60s)
	10.2.1.1 Principle of Optimality �(Bellman 60s)
	10.2.1.1 Principle of Optimality �(Notion of Proof)
	10.2.1.1 Principle of Optimality �(Dynamic Programming)
	10.2.2.1.1 Backward Traversal
	10.2.2.1.1 Backward Traversal
	10.2.2.1.1 Backward Traversal
	10.2.2.1.1 Backward Traversal
	Forward Traversal
	10.2.2.2 Branch and Bound
	10.2.2.2 Branch and Bound
	10.2.2.3 Best First Search
	10.2.2.3 Best First Search
	10.2.2.4 Policy Storage
	10.2.2.4 Policy Storage
	10.2.2.4 Policy Storage
	10.2.2.4 Policy Storage
	10.2.2.4 Policy Storage
	10.2.2.4 Policy Storage
	Outline
	Uniform Cost Edges
	Reminder: Desiderata
	10.2.3.1 Wandering Motion Planner
	10.2.3.2 Systematic Motion Planner�(Busting Cycles)
	10.2.3.2 Systematic Motion Planner�(Basics of Search)
	10.2.3.2 Systematic Motion Planner
	Systematic Planner
	10.2.3.1 Systematic Motion Planner�(Node Expansion)
	10.2.3.3 Optimal Motion Planner�(BFS / Grassfire)
	10.2.3.3 Optimal Motion Planner�(BFS / Grassfire)
	10.2.3.3 Optimal Motion Planner�(BFS / Grassfire)
	10.2.3.3 Optimal Motion Planner�(BFS / Grassfire)
	Outline
	Nonuniform Cost Edges
	10.2.4 Weighted Sequential Planning�(Definitions)
	10.2.4.1 Optimal Weighted Sequential Planner�(Dijkstra’s Algorithm)
	10.2.4.1 Optimal Weighted Sequential Planner�(Dijkstra’s Algorithm)
	10.2.4.1 Optimal Weighted Sequential Planner�(Dijkstra’s Algorithm)
	10.2.4.1 Optimal Weighted Sequential Planner�(Dijkstra’s Algorithm)
	10.2.4.1 Optimal Weighted Sequential Planner�(Backpointer Redirection on Open List)
	10.2.4.1 Optimal Weighted Sequential Planner�(Dijkstra’s Algorithm)
	10.2.4.1 Optimal Weighted Sequential Planner�(Dijkstra’s Algorithm)
	10.2.4 Weighted Sequential Planning�(Reminder: Definitions)
	10.2.4.2 Heuristic Optimal Weighted Sequential Planner�(A* Algorithm)
	10.2.4.2 Heuristic Optimal Weighted Sequential Planner�(Achieving Focus in A* Algorithm)
	10.2.4.2 A* Algorithm: Optimality
	10.2.4.2 Heuristic Optimal Weighted Sequential Planner
	10.2.4.2 Heuristic Optimal Weighted Sequential Planner�(Re Adding Nodes to “Open”)
	10.2.4.2 Heuristic Optimal Weighted Sequential Planner�(A* Facts)
	10.2.4.2 Heuristic Optimal Weighted Sequential Planner�(A* Facts)
	10.2.4.5 Monotonicity of Total Cost for Consistent Heuristics
	Outline
	Outline
	Summary

