
Chapter 10 
Motion Planning 

Part 2 
10.2 Representation and Search for 
Global Motion Planning 
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Solution Techniques 
• Recall: Path planning is essentially an optimal 

control problem. 
• Three clear solution techniques for optimal 

control: 
– Parameterization (how we did trajectory generation) 
– Variational (“geodesics”). 
– Dynamic Programming 

• Why not just use trajectory generation 
algorithms? 
– We shall see…. 
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10.2.1.1 Why Not Continuum Methods? 
• Too Many Solutions… 

– Scale is much larger. Many more solutions in some 
funny continuum sense.  

• Too many Constraints… 
– Avoiding 1000 obstacles is 1000 constraints. 

• Too many local minima. 
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10.2.1.2 Discretization of Search Spaces 
• Embed a network in space and search it (instead 

of space itself).. 
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10.2.1.2 Discretization of Search Spaces 
(State Discretization) 

• Discrete states may or may 
not be regularly arranged. 

• Join nearby states with 
edges. 

• Produces a graph embedded 
in (i.e. a subset of) 
workspace or C space. 

• Planning paths … 
– in the continuum  

• … has become … 
– reduced to a graph search 

problem. 
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10.2.1.3 Sequential Decision Process 
• The solution is a sequence 

of small paths.  
• Require, at each state 

encountered, some options 
for how to proceed. 

• Each option transitions to a 
new state: 
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Discrete Motion Planning Formulation 
• Given: 

– a graph 
– a start state 
– a goal state 

• Find a sequence of edges 
(equivalently, states) 
connecting start to goal. 

• Some formulations have 
multiple goals or goal regions. 

• Some have multiple start 
states (uncertainty). 

Mobile Robotics - Prof Alonzo Kelly, CMU RI 9 

S 

G 



10.2.1.4 World Model, C-Space, and Search Graph 
(Discrete Representations) 

• Convenient for performing sequential search. 
• Abstract the continuum in two ways: 
• 1) Discretize the state space 
• 2) Discretize the motions so that they connect 

only the (nearby) states. 
• Sometimes we do this based on knowledge of: 

– neither obstacle nor mobility (grid) 
– mobility ignoring obstacles (state lattice) 
– obstacles ignoring mobility (Voronoi diagram, 

roadmaps) 
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10.2.1.4 World Model, C-Space, and Search Graph 
(Grids & Lattices as Graphs) 

• Search algorithms defined on 
networks.  

• Grids and lattices are just 
regular arrangements of 
states. 

• ANY algorithm defined on a 
network can be implemented 
on a grid. 

• Edges may be implicit but 
they are always there. 
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10.2.1.5 Search Space Design 
• Implicit edges defer the motion generation problem 

post-planning. 
– Works sometimes. System must be predictable.  
– However, sometimes constraints must be represented to 

avoid failure. 
• Tradeoff is search convenience vs constraint 

convenience. 
• Discrete obstacles can be encoded in search space. 

– by removing edges. 
– Otherwise, need cost field. 

• Often search space is generated on the fly but in rare 
cases, like a real road network, its known 
beforehand…. 
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10.2.1.5.1 Road Networks 
• Consider representing arbitrary free paths 

– perhaps related in some network (joining at intersections). 
– maybe not maximally distant from obstacles like Voronoi 

• We impose constraints of allowable motions first, and 
worry about obstacles second (as was done in some 
forms of obstacle avoidance). 
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10.2.1.5.2 Workspace Lattices 
• Search algorithms are defined on 

networks.  
• Grids and lattices are just regular 

arrangements of states. 
• ANY algorithm defined on a 

network can be implemented on 
a grid. 

• Edges may be implicit but they 
are always there. 
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10.2.1.5.3 State Lattices 
• Enforce differential constraints directly in the 

searce space. 
• For example, Reeds-Shepp car. Require heading 

continuity across nodes. 
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10.2.1.5.4 Voronoi Diagrams 
• Set of all points which are 

equidistant from at least 
two obstacle boundaries. 

• Local maxima in the 
proximity field. 

• Can be generated from a 
field representation with 
the “distance transform”. 
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10.2.1.1 Principle of Optimality  
(Bellman 60s) 

• The basis of the famous and very useful Dynamic 
Programming Algorithm. 

• Applies to sequential (aka Markov) decision 
processes (SDP). 
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10.2.1.1 Principle of Optimality  
(Bellman 60s) 

• Dynamic Programming… 
– A large class of programmimg algorithms that are 

based on breaking a large problem down (if possible) 
into incremental steps so that, at any given stage, 
optimal solutions are known sub-problems.  
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10.2.1.1 Principle of Optimality  
(Notion of Proof) 

• Intuitively, the optimal solution to the entire 
problem must be composed of optimal solutions 
to the subproblems. 
– This only true for SDPs. 

• Easy to prove by contradiction….. 
– Otherwise, you could substitute the optimal 

subproblem and generate a better solution. 
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10.2.1.1 Principle of Optimality  
(Dynamic Programming) 

• Starting at the start node, the mouse has to pick 
one of 3 and then one of (2 or 3) nodes… 

• There are 7 possible paths of 3 edges (7 edges in 
middle phase). 
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10.2.2.1.1 Backward Traversal 
• To solve the problem, work backwards from the goal: 

– Label each node with the cost of the best path to the goal from 
there. 

– Record a “backpointer” to the next node in the forward 
direction. 

– Move backward one level at a time. 
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10.2.2.1.1 Backward Traversal 
• Notice: 

– Brute force complexity is the number of distinct paths 
times the length of the paths (= 21 ops). 

– Dynamic programming complexity is the number of 
edges (=13). 
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10.2.2.1.1 Backward Traversal 
• Notice: 

– Decisions on backpointers are final  commit as you 
go. 

– A spanning tree is constructed in the process of graph 
traversal  each node can reach root on unique path. 
 
 

Mobile Robotics - Prof Alonzo Kelly, CMU RI 28 

Cheese 

1 

3 

2 

3 

1 

1 

3 

2 
3 

3 

4 

4 5 

Mouse 4 

5 

3 6 

5 

6 

7 



10.2.2.1.1 Backward Traversal 
• Notice: 

– The nodes or states are a convenient place to store 
both …  

• “best cost so far” 
• backpointers which record the sequential decisions. 
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Forward Traversal 
• Branching factor may make one direction preferable. 
• That will not happen in locally connected graphs like 

those derived from grids. 
• Here, “forward pointers” were remembered to make tree 

look the same as last example. Either option is OK for 
remembering the path. 
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10.2.2.2 Branch and Bound 
• Provides a way to eliminate entire sections of the 

search space. 
• Relies on two ingredients: 

– A mechanism to split up the search space (branching) 
– A mechanism to quickly compute bounds on the 

quality of a solution at a node. 
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10.2.2.2 Branch and Bound 
• Suppose: 

– looking for shortest path. 
– each node has a max and a 

min bound on total path 
length if they are used. 

• Node C opposite need 
never be expanded 
– because B’s worst case 

beats C’s best case. 

Mobile Robotics - Prof Alonzo Kelly, CMU RI 32 

Can’t get any 
worse than 5 

Can’t get any 
better than 6 

A 
max: - 
min: - 

B 
max: 5 
min:3 

C 
max:8 
min: 6 



10.2.2.3 Best First Search 
• Maintain all unexplored nodes in a priority queue 

and expand the most promising node next. 
– Sort the queue for fast ID of best 

• Provides a way to encode arbitrary search 
strategies. 

• Like Hill-climbing/steepest descent but: 
– Systematic – will eventually try all options. 
– May use smarter evaluation functions than local 

gradients. 
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10.2.2.3 Best First Search 
• Suppose: 

– looking for shortest path. 
– F(node) is an estimate of the total 

path length if the node is used. 

• Darker nodes are closed. 
• Expand node E next. 
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10.2.2.4 Policy Storage 
• The path integral nature of 

path cost means the optimal 
path to/from anywhere can 
be stored in one compact 
structure. 

• Store optimal potential or 
its gradient. 
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10.2.2.4 Policy Storage 
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10.2.2.4 Policy Storage 
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10.2.2.4 Policy Storage 

Mobile Robotics - Prof Alonzo Kelly, CMU RI 38 

G 
4 4 4 

3 3 
2 2 2 2 

4 2 1 1 1 
4 3 2 1 S 1 
4 3 2 1 1 1 



10.2.2.4 Policy Storage 
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10.2.2.4 Policy Storage 
• Goal is at distance 7 from 

start. 
• Now know optimal path 

from anywhere to the start. 
– Or from start to anywhere. 
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Uniform Cost Edges 
• Groundrules for the rest of this section… 
• “Length” of the path is defined as the 

number of edges required to reach it.  
– Edges have equal length or cost. 
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Reminder: Desiderata 
• Complete: 

– Find a path if it exists 
– Report failure otherwise (i.e. terminate) 

• Sound / Feasible: 
– Meet all constraints 

• Optimal: 
– Produce optimal solution if any. 
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10.2.3.1 Wandering Motion Planner 
• Virtues: 

– Stays on graph 
– Discovers graph 
– Fixed memory 

• Problems: 
– Nonsystematic 

• May never terminate in 
practice 

– Certainly not optimal 
• May generate cyclic 

solutions 
– Does not remember the 

path for later execution. 
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10.2.3.2 Systematic Motion Planner 
(Busting Cycles) 

• Paths with cycles are better 
with cycles removed. 

• Remember where you’ve 
been!! 

• Side effect: filling up potential 
“wells”. 

• Systematic planners are 
complete. 

• That takes at least some 
memory. 
– … e.g. a horizon. 
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10.2.3.2 Systematic Motion Planner 
(Basics of Search) 

• Build a spanning tree of the graph until you hit 
the goal. 
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10.2.3.2 Systematic Motion Planner 
• Remembers all visited 

states. 
– Set O is the “open” 

(active) frontier. 
– Set C is the “closed” 

(inactive) set. 
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Systematic Planner 
• Remember parent 

pointers to enable 
path extraction. 

• Unique parents 
creates spanning tree. 
– = acyclic cover 

• Now need memory for 
O and C. 

• Complete. 
• However, not optimal. 

– Unless you sort the O 
set. 
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10.2.3.1 Systematic Motion Planner 
(Node Expansion) 

• Node expansion algorithm is similar in all of the 
algorithms here. 
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10.2.3.3 Optimal Motion Planner 
(BFS / Grassfire) 

• Sorted O set. Code 
looks identical but… 

• Set O becomes 
(ordered) FIFO queue. 

• Removed at the front. 
• Inserted at the back. 
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10.2.3.3 Optimal Motion Planner 
(BFS / Grassfire) 

• Called breadth first search on graphs. 
• Called grassfire on grids. 
• Generally, the cost of optimality is the sorting. 

– But sorting is trivial (FIFO) when edges are uniform cost. 
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10.2.3.3 Optimal Motion Planner 
(BFS / Grassfire) 

• Generate all paths of length one edge. 
• Then all paths of length two edges… 
• Each node is encountered first on the path which has 

least edges. 
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10.2.3.3 Optimal Motion Planner 
(BFS / Grassfire) 
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Nonuniform Cost Edges 
• So far 

– ….“length” of the path was defined as the number of 
edges required to reach it. 

• More generally let each edge have a variable, 
nonnegative cost. 
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10.2.4 Weighted Sequential Planning 
(Definitions) 
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10.2.4.1 Optimal Weighted Sequential Planner 
(Dijkstra’s Algorithm) 

• O becomes a priority 
queue sorted based 
on costs-to-come. 

• Cost of states 
expanded increases 
monotonically 
– Added states must 

exceed cost of parent. 
– Queue is sorted. 

• Invoke wavefront 
optimality principle. 
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10.2.4.1 Optimal Weighted Sequential Planner 
(Dijkstra’s Algorithm) 

• New issues: 
– Cost of nodes added 

is no longer 
monotone. 

– Therefore, costs of 
nodes added may 
not be optimal. 

• So….. 
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10.2.4.1 Optimal Weighted Sequential Planner 
(Dijkstra’s Algorithm) 

• 1: Do actual 
sorting. 

• 2: Delay* test for 
goal to make sure 
its optimal. 

• 2a: It used to be 
inside here for 
UCSP. 
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10.2.4.1 Optimal Weighted Sequential Planner 
(Dijkstra’s Algorithm) 

• 3: permit 
revisiting nodes 
– Update costs  
– Redirect parent 

pointers as 
necessary. 

– Remove and 
reinsert to keep O 
sorted.  
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10.2.4.1 Optimal Weighted Sequential Planner 
(Backpointer Redirection on Open List) 

Mobile Robotics - Prof Alonzo Kelly, CMU RI 62 

2: Expansion of 
node g=6 finds 
better path to 
node g=8 

1: In these 
diagrams, drawn 
nodes contain g() 
values. 

3: Update g() 
and redirect 
backpointer 

S 

6 1 5 

6 1 

8 

1 8 

9 

3 

Original Edge 

Back Pointer 

n Open Node 

n Closed Node 

S 

6 1 5 

6 1 

7 

1 8 

9 

3 

5 5 



10.2.4.1 Optimal Weighted Sequential Planner 
(Dijkstra’s Algorithm) 

• Summary… 
• Preserving 

optimality under 
nonuniform costs 
requires 3 things: 
– 1: Really sorting the 

queue.  
– 2: Delaying test for 

success. 
– 3: Tolerating and 

managing revisited 
nodes.  
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10.2.4.1 Optimal Weighted Sequential Planner 
(Dijkstra’s Algorithm) 
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10.2.4 Weighted Sequential Planning 
(Reminder: Definitions) 
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10.2.4.2 Heuristic Optimal Weighted Sequential Planner 
(A* Algorithm) 

• An estimate of the cost-to-go makes it possible to 
be more efficient and visit less states than 
Dijkstra’s algorithm 

• Now, we store three values in each node, called f() 
, g() , and h() where: 
–           is the exact known optimal cost-to-come as it is 

in Dijkstras algorithm. 
–           is an estimate of the cost-to-go from state  to the 

goal state.  
–           is an estimate (because its based on          ) of the 

optimal path cost from the start to the goal through 
state       computed as follows: 
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10.2.4.2 Heuristic Optimal Weighted Sequential Planner 
(Achieving Focus in A* Algorithm) 
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10.2.4.2 A* Algorithm: Optimality 

• The priority queue is now 
sorted based on f().  
– Amounts to exploring paths 

in order of least estimated 
cost until the goal is reached. 

• When h() is an 
underestimate for all x, the 
algorithm is optimal.  

• When the goal is removed 
from the queue, we know 
that an underestimate of the 
cost of all other paths is 
greater than the actual cost 
of the present solution, so 
its optimal. 
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10.2.4.2 Heuristic Optimal Weighted Sequential Planner 
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10.2.4.2 Heuristic Optimal Weighted Sequential Planner 
(Re Adding Nodes to “Open”) 

• A handy routine to save writing it three times. 
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10.2.4.2 Heuristic Optimal Weighted Sequential Planner 
(A* Facts) 

• “Admissability” (implies optimality) 
– Let h*(x) mean the true optimal cost to the goal from 

state x. 
– h(x) is “admissible” if it is always an underestimate of 

the true cost to the goal. 
• h(x) <= h*(x) always 

• Not supposed to call the algorithm A* if h(x) is not 
admissable. (Call it simply A) 
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10.2.4.2 Heuristic Optimal Weighted Sequential Planner 
(A* Facts) 

• “Informed” (relates to efficiency) 
– h1(x) is more informed than h2(x) if: 

• h1(x) > h2(x) and … 
• both are admissable 

• A search based on h1(x) will open a subset of the 
nodes opened using h2(x) 

• Hence h1(x) is more efficient. 
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10.2.4.5 Monotonicity of Total Cost for Consistent Heuristics 

• h(x) is “monotone” if it satisfies the 
triangle inequality: 
– for any arc (n, n') we have  
–  h(n) <= h(n')+c(n, n') 

• Any monotone heuristic is 
admissable. 

• For the sequence of nodes n1 n2 .. 
Opened under these circumstances, 
we have: 
– f(n1) <= f(n2) <= ..  
– The f values grow monotonically. 
– A node will never be moved from 

closed to open. 
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Summary 
• When vehicles are not omnidirectional, even 

planning without obstacles is hard. 
• Planning in the continuum is not usually 

attempted: 
– when there are significant obstacles or  
– interesting cost fields. 
– Instead, convert the problem to an SDP 

• For SDPs, techniques of substantial elegance exist. 
– Sorting a priority queue 
– Heuristics 
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