Chapter 10
Motion Planning
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10.3 Real Time Global Motion Planning
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10.3.1 Introduction

e Unknown and dynamic environments can be
treated similarly because a dynamic environment
is partially unknown.

e Unknown Environments
— Limited perception limits what you can know.
— Often, the only way to learn more is to move.

— You may eventually learn that the path you are on is
wrong.

* Dynamic Environments
— Limited prediction fidelity limits what you can know.
— Often, the only way to learn more is to wait.
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10.3.1 Introduction
(Thinking vs Doing)
e Often, it is possible to trade off the cost of
execution and planning.

— More planning time makes better use of available
information.

— More motion gathers more information.

e Sometimes its better to stop and think, other
times not.
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10.3.1.1 Unknown Environments
(Changing Strategy)

e |t is not unusual for a robot to continue to change
its mind as it learns new information.
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10.3.1 Introduction

(Four Techniques)
 Four techniques are available to deal with the real

time / limited computation issues:

1. Limited Horizon

e Don’t predict too far

2. Anytime Approaches

e Always have an answer available

3. Plan Repair

e Reuse elements of last plan.

4. Hierarchical Planning

 |gnore detail when possible
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10.3.2.1 Purely Reactive Planning
é P

e Search is conducted physically with the robot.
— Bias toward goal added

e However, the right answer (above) is to move away
from the goal for a while.

e Cyclic behavior is a common failure mode.
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10.3.2.2 Depth Limited Planning

Same as receding horizon
predictive control.

Propagate best child up the / \

tree ...

Then, takes the first step /\ /\

toward the best leaf.
and repeat.
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10.3.2.3 Real Time A* (Korf)

e MiniMin lookahead search:

Best
— Search forward some fixed Move °
depth determined by the
available computation. j

— Compute the “backed” up value e °
of each potential first move as \
the minimum heuristic value of

all of its children on the search @ @ @

frontier.
— Employ the principle of least

commitment by making a single  [Equivalent to simply finding the
move to the best child of the best leaf node and the first
current node move toward it.
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Real Time A* (Korf)

* |n RTA* we re-interpret g(X) to
mean the cost to get from the
current state to state X rather
than the cost from the original
initial state - which is
irrelevant once motion takes
place.

 Net effect is to permit physical
backtracking to an earlier
visited state if the benefit of
doing so outweighs the cost.

e This planner and all unknown
environment planners are h(x,) h(x,)
subject to strategy waffling
(cycles).

Carnegie Mellon

15 Mobile Robotics - Prof Alonzo Kelly, CMU RI THE ROBOTICS INSTITUTE



Outline

e 10.3 Real Time Global Motion Planning
— 10.3.1 Introduction
— 10.3.2 Depth Limited Approaches
— 10.3.3 Anytime Approaches - Skip
— 10.3.4 Plan Repair Approach: D* Algorithm
— 10.3.5 Hierarchical Planning

— Summary

Carnegie Mellon

16 Mobile Robotics - Prof Alonzo Kelly, CMU RI THE ROBOTICS INSTITUTE



Outline

e 10.3 Real Time Global Motion Planning
— 10.3.1 Introduction
— 10.3.2 Depth Limited Approaches
— 10.3.3 Anytime Approaches
— 10.3.4 Plan Repair Approach: D* Algorithm
— 10.3.5 Hierarchical Planning

— Summary

Carnegie Mellon

17 Mobile Robotics - Prof Alonzo Kelly, CMU RI THE ROBOTICS INSTITUTE



A* Replanning is Still Too Slow
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Replanning ight D* (Lite
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10.3.4 Plan Repair Approach: D* Algorithm

(Basic Approach) G
e Construct an initial
solution using A* (or O
whatever).
 Continuously maintain this
solution as....
D
— 1: New information arrives

— 2: The robot moves.
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10.3.4 Plan Repair Approach: D* Algorithm
(Basic Approach)

1: Compute initial path

up front.

2: Follow path until
something new is
learned.

3: Propagate the changes

through search tree.
4. Compute new path
5: Goto 2:

21 Mobile Robotics - Prof Alonzo Kelly, CMU RI

WNavigation Strategy

actual terrain

1 2 3

m ] ] =] =
[ [ o] =] =

After the 3rd Move After the 4th Move
: ; 3 . 1

1 2 1

]
m [ ] 1] =
(0] = ] =] =

lon

THE ROBOTICS INSTITUTE



10.3.4 Plan Repair Approach: D* Algorithm
(Search Graph Vs Tree)

Search Graph Search Tree

é}%\@

<$>
Downward arrows are Upward arrows are

graph elaboration backpointers

14 G 15 point parent = child point child = parent
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10.3.4 Plan Repair Approach: D* Algorithm

(Some Observations)

1. Only the path from here

G
(
(not from start) to the \

goal is needed.

2. Discoveries are generally
made close to the robot.

sunk cost
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10.3.4 Plan Repair Approach: D* Algorithm
(Propagating Cost Changes)

®

P

 Changes must propagate all the way to all
pertinent affected leaves of the search tree

— Original Change

Added

Deleted

Derived Change ]
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10.3.4 Plan Repair Approach: D* Algorithm

(Conclusions)
e Since changes to a search

tree must propagate all

(G
the way to the leaves to \

fully understand their
implications ......

e Search from the goal
BACKWARD to the robot.

— Root = Goal
— Leaf = Robot
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10.3.4 Plan Repair Approach: D* Algorithm
(Compute initial Path)

search tree but |
— h() is same as f() in A* ?
e DstarlLite: Work in terms of

e Use A* from G (goal) to R
(robot). Save f() values of  (Nowthe GOAL
every node opened. Is the root of the / \
e Dstar: Work in terms of h() | callit s for
and k() where: \_cleaner code. ?
— k() is the minimum value h()
has ever had since it was
placed on OPEN.
g() and rhs() where: O O

O—0—0

— g is same as before /
— rhs is best possible g RIGHT
NOW based on all possible @
neighbors This is the search tree = spanning

tree encoded in backpointers.
Carnegie Mellon
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10.3.4.1.2 Implications of Edge Changes

(Lowered Cost)
e Suppose an edge E gets

cheaper....

e Nodes W and Y may want to
abandon their parents in favor
of N

27
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This is the search tree = spanning
tree encoded in backpointers.
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10.3.4.1.2 Implications of Edge Changes

(Raised Cost)
e Suppose an edge gets

costlier.... /?\
* Node N may want a @
different parent. -

® O ©

S

©

This is the search tree = spanning
tree encoded in backpointers.
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10.3.4.1.2 Implications of Edge Changes

(Efficient Propagation)

(Almost) Brute force approach:

— Go back in time....

— Remove all nodes from OPEN or CLOSED for
which f(Node) > f(P).

— Mark remaining leaves as open
— Rerun Astar.
Efficient?

— Touches every node between P and G in the
solution tree.

— Many end up unchanged from last time.
Not efficient.

BUT: Placing affected nodes on OPEN is a
good idea.

— See next figure to visualize.
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10.3.4.1.2 Implications of Edge Changes

(D* Processing Wavefront)

jOptimaI Nodes
[Present N ]

E:Eg\r;est Changed Nodes

Val Not Known to be
N Optimal

A —9 / Nodes Previousl
Next Node — O O O or?Oe;EI{IeVIOUS y ]
To Check O
O O O
©
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10.3.4.1.4 Processing Multiple Changes
®

Rise /
2

Cost Drop ]

5

(e
O A %

* Propagate changes downward in one pass committing as you go
— Hence sort changed nodes (perhaps on OPEN? )

* Lowered states may need to move up the tree
— Their sort key is their new cost (move up before the slot closes)

* Raised states may need to move down the tree
— Their sort key is their old cost (move down before you get stuck)
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10.3.4.1.4 Propagating Cost Changes

(Will Rerunning Astar Work?)
 Place N on OPEN and propagate

changes downward (reopening
closed nodes) / \

 Does not work.
— In Astar, nodes on OPEN compete to E
be the parents of neighboring O O

nodes.

— The resulting subtree must have N
as its root (N is like start).

— So, every changed node will have a
path that goes through N. /
— No mechanism for M to route @

around N if Edge E increased in cost.
Carnegie Mellon
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e Node N is inconsistent if it does

ldea: Propagate Inconsistency

not point to its “best” parent.

e Remove this node and, if it is not
optimal, reinsert in O in correct
place.

33

00
01:
02

03:
04:

updateVertex (x) {
1f( x !'= 2

-A.S'.r-f”'.r)
if( xeO ) O.remove(x);
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getRhs (x)

AN

O O O

X
if( gx)#rhs(x) ) O .insertSorted(x); /
}

©
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Dstar Lite Goodies
e “Right Hand Side”

Detects
Inconsistent

Nodes

rhs(s) =

{ () if 5 = Sstart

Ming e predis)(g(s") + (s, s)) otherwise.

— It’s the cost a node would have if one level of

lookahead was resolved. ﬁorts
roperly
“ Y For One Pass
) Key (f Value) —\_Resolution

imin(g(s), rhs(s)) + h(s, sgoar); min(g(s), rhs(s))]
— Cost a node will have as soon as its neighbors are told
they need to change.

— Break ties with second key.
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ldea: Propagate Inconsistency

* Check all neighbors of hodes on open.

00: computeShortestPath (x) {

01: while ( f]O.peek()] <:f(3_€gmﬂ | g':?_fgmgj # rhs(g:gom} )

02: X,.er = Opop() ; Remove from O

03: (0 gQyen) > 1hs(x,..) ) { g is too high

04: g(x, ) = rhs(x,,.) ; Correct it, don’t put it back on O ? ? ?
0o for (each, g € Pred(Xnes)) check all neighbors ? @ ?
06: updateVertex (x Xneigh ) ;

06 - } else { g is OK or too low ‘

07: g(x,...) = o Forceiton O with key based on rhs()

08: for (eachx”moh e pred(X, )V {X, 001 ) O O O

09: updateVertex (x,,.,,) ; Checkall neighbors /
10: }

o ®
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Termination

e Terminate when:

— lowest f() on OPEN > f(robot) /ﬁ)\
— Robot node is then optimal. ? ? ?
E

e Often need to compensate for
roundoff: ? C? ?
— lowest f() on OPEN > f(robot) + e O O O

S

©
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38

Entire Algorithm

procedure CalcKev(s)

{01} return [min{g(s), rhs{s)) + h(sstare. s); min{gis), rhs(s))]:
procedure Initialize( )

027}y U7 = @;

{03 }forall s € S5 rhe(=) = g(s) = oo,

{04} rhs(sgoar) =0

105" } Ulnsert(s goar , CalcKey( sg0a1 ) ):

procedure UpdateVertex ()

106"} if (v & sgoar) rhs{u) = ming Sueepy el s' V4 gls" )
{07°} if (w £ U') URemove(u):

{087} if (g(w) # vhs(w)) Ulnsert(w, CalcKey(w)):

procedure ComputeShortestPath()

{DD"} while [U.TﬂpK&}'[j«:':jCache}'[ssmﬂ VOR rha({=atart ) & 9 8atart )]
{1107} w = . Pop(};

{ll"} if (glu) = rhs(u))

"} glu) = rhslu);

'} for all = £ Pred|w) UpdateVertex(s):
b oelse

'} glu) = oo;

'}

for all s £ Pred(w) U {u} UpdateVertex(s):

rocedure Main()
{177} Initialize();

Pt et b et
G\'-.ﬂ-l—h '-..‘-'llu'l

{
{
{14
{
{
P

187} Compute’ihorrestPal‘hlj
0 F while (sapart & _gm,;j
Fif {glsatart ) = oo) then there 15 no known path */
Sstart = argmin Esmc[sstaﬂj[c[sgtuﬂ, s"Y+ gls"));
Move to satart;

For Sorting OPEN

Initialize

Perception Info

Plan Paths

Initial A* - Like call

'}

'}

) «
“} Scan graph for changed edge costs;

“} if any edge costs changed

“} for all directed edges (w, v) with changed edge costs
} Update the edge cost ofwu, v);

“} UpdateVertex(u);

} forall s € U

} U Update( s, CalcKey(s));

} ComputeShortestPath( )

IViobile Robotics - Prot Alonzo Kelly, CMU RiI
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{
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{
{
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Ll fod Ped Ped Pod Ped Pad Pod Bed Pod fod =

D‘-DGCI'--JG\'-J1-I-'-}JI\.'I '—‘D

Move, Percieve, Replan
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Beware

 Code switches GOAL and START for Dstar only.

e That means they are switched relative to the
DstarlLite paper.
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Random Observations

e Runtime is not constant

e The alternative is worse.
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Summary

 The real motion planning problem is that of
planning in dynamic and uncertain environments.

— Maps are never completely accurate.

e Computational techniques are mature in the
abstract case of grids.

 The real motion planning problems therefore

become:
— Understanding mobility
— Adequate perception
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