
Chapter 6 
State Estimation 

Part 1 
6.1 Mathematics of Pose Estimation 
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Pose Fixing vs Dead Reckoning 
• Two alternatives for 

determining pose of a 
robot. 

• Triangulation 
– Solve nonlinear 

transcendental or algebraic 
equations 

• Odometry 
– Solve (integrate) differential 

equations. 
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General Points 
• Can triangulate position, 

velocity or angle. 
– GPS triangulates Doppler to 

get velocity. 
• Can dead reckon position, 

velocity or angle. 
– Can integrate acceleration to 

get velocity. 
– Can integrate angular 

velocity to get angle. 
• Ultimately, need enough 

constraints to solve for the 
unknowns. 
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6.1.1.1 Complementarity 

Attribute Dead Reckoning Triangulation 
Trilateration 

Process Integration Algebraic 
Initial Conditions Required Not required 
Errors Time Dependent Position Dependent 
Update Frequency Determined by required 

accuracy 
Determined by 
availability 

Error Propagation History Dependent History Independent 
Requires Map No Yes 

Triangulation 
Dead Reckoning 

Opposites in Every Respect 

path 

1−kr


1−krd

kr


x 

y 
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Quality of Aiding 

Position Heading Attitude 

Position Heading Attitude 
Ranging Bearings Elevations 
Bearings ∆ Position Gravity 
Velocity Heading Rate Attitude Rate 

Acceleration 
Specific Force 

IMUs 

It Hurts to Lose GPS! 
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History 
• Roots in survey and cartography. 

– Egyptians 
– Sumarians 

• Called “pilotage” in marine applications. 
• Economic drivers were the same as those that 

drove writing and arithmetic. 
– Sound building construction 
– Accurate records of land holdings 
– Accurate records of business transactions 
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Triangles 
• Ancients knew the 3-4-5 triangle was a right 

angle. 
• All 3 parameter triangles but AAA are solveable.  
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6.1.2.1 Revisiting Nonlinearly Constrained Systems 

• It is always a question of 
satisfying constraints. 
– Navigation variables appear as 

unknowns. 
 

• It is not always a triangle. 
• Robot pose is the point where 

all constraints are satisfied. 
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6.1.2.1 Revisiting Nonlinearly Constrained Systems 
• No existence or uniqueness theorems in general. 
• Cannot use approximations in navigational contexts. 
• Analogous to manipulator kinematics. 
• Many issues: 

– inconsistency of equations (no solution) 
– redundancy (several solutions) 
– dependence of equations (poor conditioning) 
– singularity (poor conditioning) 
– (under/over)constraint (too many/too little) 

• 2D answers are clear from geometry but general 
higher D cases require math to solve. 
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6.1.2.1.1 Explicit Case 
• Rarely, we can write an explicit formula for 

determining the state                     from the 
measurements  
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6.1.2.1.2 Implicit Case 
• The inverse situation is more common  
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Compare with Kalman 
Filter Measurement 
Model 



Solving Implicit Case 
• Linearize with: 

 
• Solve iteratively with gradient descent, least squares, 

etc. Consider pseudoinverses: 
 
 
 
 

• Underdetermined is not common here. 
– But its common in a Kalman filter. 
– Helps to use uncertainty as weights.  
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m X 1 n X 1 

Overdetermined (m > n)  

Underdetermined (m < n)  

Left Pseudoinverse 

Right 
Pseudoinverse 

∆z H∆x=

∆x HTH( )
1–
HT ∆z=

∆x H T HHT( )
1–
∆z=



6.1.2.2 Bearing Observations with Known Yaw 
• Some sensor gives ψv directly 
• Relative bearings ψ1, ψ2 to 

landmarks are measured 
• Constraints are: 

 
 

 
 
• Solution except when 

determinant = 0: 
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6.1.2.3 Bearing Observations with Unknown Yaw 

• No heading sensor so 
use 3rd landmark. 

• Constraints are: 
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6.1.2.4 Circular Constraints 
• Ranges are observables. 
• Constraints are: 

 
 
 

• Degeneracy (singularity) not an issue for unique 
landmarks. 

• Redundancy (multiple solutions) is. 
– Use last known position? 
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6.1.2.5 Hyperbolic Constraints 
• Used in marine radio 

navigation. 
• Measure time of flight or 

phase differences. 
• Contours of constant range 

difference are hyperbolas. 
• Why a hyperbola? Put origin 

between landmarks. Then 
suppose: 
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r1 r2– 2b=

x a+( )2 y2+ x a–( )2 y2+– 2b=

x a+( )2 y2+ 2b x a–( )2 y2++=

b2 ax– b– x a–( )2 y2+=

x2

b2
----- y2

a2 b2–( )
---------------------– 1=

After squaring both 
sides. 
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6.1.3.1 First Order Response to Systematic Errors 

• Involves the same mathematics used to solve the 
nonlinear problem by linearization.  
– Linearization evaluates how errors in inputs project 

onto errors in outputs. 

• Analogous to differential kinematics of 
manipulators. 
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6.1.3.1 First Order Response to Systematic Errors 
(Direct Case) 

• Recall: 
 

• Linearize: 
 

• In detail: 
 
 
 

• Jacobian J normally depends on the state. 
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6.1.3.1 First Order Response to Systematic Errors 
(Indirect Case) 

• Now: 
 

• So: 
 

• If measurements determine or overdetermine the 
state, then: 
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z h x( )=

δx HTH( )
1–
HTδz=

δz Hδx=

Note: 
H, not J 



6.1.3.2 Geometric Dilution of Precision 

• If                            is the measurement covariance, 
then the covariance of least square estimate from 
last slide is: 
 
 

• So,               gives the pose error covariance when 
measurement errors are of unit magnitude.  
– So, it’s a measure of the capacity of the pose fixing 

process to magnify or attenuate error. 
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δx HTH( )
1–
HTδz=From Last Slide: 



6.1.3.2 Geometric Dilution of Precision 
• In GPS, the Geometric Dilution of Precision 

(GDOP) is: 
 

• By analogy, define the (simpler) dilution of 
precision (DOP). 
 
 

• For square H, this reduces to: 
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6.1.3.2.1 Mapping Theory (small bit) 
• Recall, the Jacobian determinant 

relates differential volumes to 
differential volumes. 
 

 
• Limit of DOP is (forward) Jacobian 

determinant: 
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δx
z∂
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 
  δz J δz= =

Note its J 
or 1/H 

u 
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du

dv dx

dy



Commentary on DOP 
• The DOP is in the range: 

 0 < DOP < infinity  
• Infinity is not uncommon, 

so we must understand it.  
• Fix error depends on both 

measurement error and 
DOP. 
– Good sensors can overcome 

poor conditioning in theory. 
– But not in practice when 

DOP is huge. 
 
 

Mobile Robotics - Prof Alonzo Kelly, CMU RI 27 



GDOP “Fields” 
• GDOP varies spatially like |J| 

– GDOP varies smoothly with 
space in real situations 

– GDOP goes to infinity where 
Jacobian is singular or its 
inverse has zero determinant 
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OK Here 
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Computing GDOP 
• Tricks  using coordinate transforms 
• Investigate with contour graphs 
• Only |J| is required 

– Not J explicitly 
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6.1.3.2.2 Implicit GDOP 
• Technique has roots in the implicit function theorem. 

Consider 2 constraints on 4 variables: 
 
 

• Arbitrarily choose x & y to be “independent”. 
• These define two implicit functions : 

– w(x,y)  and  z(x,y). 

• Take total differentials: 
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F x y, z w, ,( ) 0=
G x y, z w, ,( ) 0=

Fx δx Fyδy Fzδz Fw δw+ + + 0=
Gxδx Gyδy G zδz Gwδw+ + + 0=

2 constraints on 4 
variables means 2 
free dof are left. 



6.1.3.2.2 Implicit GDOP 
• These define 2 

simultaneous 
equations: 
 
 

• Using rules for 
determinants of 
products: 

 
 
• Can also go in opposite 

direction: 

Mobile Robotics - Prof Alonzo Kelly, CMU RI 31 

Fx δx Fyδy Fzδz Fw δw+ + + 0=
Gxδx Gyδy G zδz Gwδw+ + + 0=

fx[ ]δx fz[ ]δz–=

Fx Fy

Gx Gy

δx
δy

Fz Fw

Gz Gw
– δz

δw
=

Generates linear 
behavior without 
ever solving the 
equations F,G, 
explicitly. 

δx
δy

Fx Fy

Gx Gy

1–
Fz Fw

Gz Gw

– δz
δw

=

Can get the GDOP without even computing the explicit Jacobian !! 

H
Fx Fy

Gx Gy

F z Fw

G z Gw

⁄
fx
fz

---------= = J
Fz Fw

Gz Gw

Fx Fy

Gx Gy

⁄
fz
fx

---------= =



6.1.3.3 First Order Response to Random Error 
• Suppose the input errors are random. For inverse 

case: 
 

• The measurement covariance is clearly: 
 
 

• If least squares is used to solve for the state, then: 
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δz Hδx=

Cz HCxHT=

Cx HTCz
1– H( )

1–
=

Compare to 
Innovation 
Covariance 



6.1.3.4 Bearing Observations with Known Yaw 
• Write constraints like so: 

 
• Write total differentials: 

 
• Jacobian Determinant: 

 
 

• Written out: 
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J
c 1 x∆ 1 s1 y∆ 1+ 0

0 c 2 x∆ 2 s2 y∆ 2+

-s1 c1

-s2 c2
⁄=

x∆ 1 x1 x–( )=

y∆ 1 y1 y–( )=

x 

y vψ
2ψ

ψ

),( yx

),( 11 yx

),( 22 yx
1ψ

ψ subscripts 
not θ 



6.1.3.4 Bearing Observations with Known Yaw 
• But this is: 

 
 

• Etc., so: 
 

• GDOP: 
– Grows with distance squared. 
– Grows as lines become parallel. 

• Both happen at long range. 
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Contour Diagrams 
• Plot “level” curves of 

constraints: 
z1 = f (x,y) = k1,k2 

z2 = g (x,y) = c1,c2 

 
• Relative sizes of enclosed 

regions are meaningful 
– when spacing of contour values 

(f,g) is even.  
• Size and shape at vehicle 

position is meaningful. 
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6.1.3.4 Bearing Observations with Known Yaw 

• Contour diagrams 
explain this case: 
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For linear constraints with yaw 
known. Contours are lines 
emanating from landmarks. 
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6.1.3.6 Circular Constraints 
• Again, constraints are: 

 
 

• We use a trick. Investigate 
the inverse Jacobian 
 

• Take total differentials: 
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r1 x x1–( )2 y y1–( )2+=

r2 x x2–( )2 y y2–( )2+=

H J 1–=

δr1
x x1–( )

r1
-------------------δx

y y1–( )

r1
-------------------δy+=

δr 2
x x2–( )

r 2
-------------------δx

y y2–( )

r 2
-------------------δy+=



6.1.3.6 Circular Constraints 
• The determinant is: 

 
 

• Vector formulation: 
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J 1–

x x1–
r1

--------------
y y1–

r1
--------------

x x2–
r2

--------------
y y2–

r2
--------------

=

J 1– x x1–
r 1

-------------- 
  y y2–

r2
-------------- 

  y y1–
r1

-------------- 
  x x2–

r2
-------------- 

 –=

ψ is the angle between the lines to 
the landmarks. 

x 

y 
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),( 22 yx
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Eg: Circular Constraints 
 
 

• Only an implicit 
variation with range. 
q is small when R is 
large relative to 
spacing. 

• Again, singular on 
line between 
landmarks. 
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6.1.3.7 Hyperbolic Constraints 
• GDOP best near origin. 
• GDOP increases with 

distance from either axis. 
• No singularities except at 

infinity. 
• Exceptionally well 

behaved triangulation 
configuration. 
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Example: Laser Triangulation 
• NDC Automation 
• Mount laser emitter and detector 

on rotary degree of freedom 
– Install retroreflective “artificial 

landmarks” in work area 
– Measure angles to reflectors and 

triangulate 
– Math given earlier (need three 

bearings) 
• 50 meter range 
• 1 inch accuracy 
• Requires line of sight 
• Bar coded retroreflectors can 

permit easy identification 
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6.1.4.2 Radio Carrier Phase Triangulation 

• ARC system 
• Identical to inverted Kinematic 

GPS in concept 
• VHF radio (40 MHz) used 

(wavelength ~ 7.5 meters) 
• HF & VHF do not require 

perfect line of sight 
• Carrier phase is direct 

measure of range 
 

• Remove technology and it is 
just range triangulation 

• Singular between antennae (as 
always) 

• Repeatability 3 cm, accuracy 
12 cm 

• 100 Hz update 
• 5 mile range (limited by FCC 

regs.) 
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Principle of Operation – Single Differencing 
• Radio wave (at Tx and Rx): 

 
• Antenna signal (at Tx and Rx): 

 
• Internal oscillator (at Rx): 

 
• Phase difference: 
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I r t,( ) I0 ωt κr+( )cos=

va t( ) v0 ωt κr+( )cos=

vo t( ) v1 ωt const+( )cos=

∆Φ t( ) Φa Φo– ωt κr+( ) ωt const+( )– κ r const–= = =
Phase difference is a 
constant plus an amount 
proportional to range 
from Tx antenna to vehicle.  

Differential phase measurements eliminate 
time but the 
Tx and Rx frequences must be identical. 



Principle of Operation – Double Differencing 
• Phase difference at two times: 

 
• Again: 

 
 

• Double difference: 
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Double difference proportional to range difference (range rate) and immune to 
frequency drift.  
If two different transmitters are used, you can similarly do hyperbolic navigation.  

∆Φ t1( ) Φa t1( ) Φo t1( )–=

∆Φ t2( ) Φa t2( ) Φo t2( )–=

∆Φ t1( ) ωa t1 κr 1+( ) ωot1 const+( )– ωa ωo–( )t1 κr 1 const–+= =
∆Φ t2( ) ωa t2 κr2+( ) ωot2 const+( )– ωa ωo–( ) t2 κr 2 const–+= =

∆2Φ t2( ) ∆Φ t1( ) ∆Φ t2( )– ωa ωo–( )∆t κ r1 r2–( )+= =

∆2Φ t2( ) κ r1 r2–( )≈

Very 
short 
time.  



Video Triangulation 
• Workhorse of motion capture in 

animated films. 
• Innovision Systems Reflex 

– 4 to 7 CCD cameras  
– Internal LED flashers 
– Specially sensitive to IR 
– Tape patches attached to subject 

(IR retroreflectors. Perfect 1 inch 
circles 

• Real time video processor 
determines centroids of patches 

• Angular resolution of 0.005% of 
camera field of view (1/200) 

• 30 meter range 
• 50 Hz sampling rate 
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6.1.5 Dead Reckoning 
• Roots in ancient marine course 

& speed “chart”, when mariners 
first strayed from sight of land. 

• Governed by mathematics of 
quadrature (basic integration - 
as distinct from solving DEs). 

• Can integrate differential 
position, or velocity or 
acceleration. 

• Can integrate differential angles 
or angular velocity to get 
attitude and/or heading. 
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General Case 
• Suppose a state x(t)         

depends on some 
inputs u(t) and 
parameters p: 
 

• We might also have 
some measurements: 
 

• Three such cases 
follow: 
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x· t( ) f x t( ) u t( ) p, ,[ ]=

z t( ) h x t( ) u t( ) p, ,[ ]=

Parameters 
involve kinematic 
mapping from 
inputs onto state 
rates. Think 
wheelbase, 
wheelradius, etc.   

World 

x 

y y 𝜓𝜓 x 



6.1.5.1.1 Direct Heading 
• Have a compass. 

 
 

• State and inputs: 
 
 

• Observer is trivial: 
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z t( ) u t( ) V t( ) θ t( )
T

= =

You can make ψ a 
state if you like, 
but its more work 
for no gain.   



6.1.5.1.2 Integrated Heading 
• Have a heading state. 

 
 

• State and inputs: 
 
 
 

• Observer is trivial again. 
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6.1.5.1.3 Differential Heading 
• Two wheel rates determine yaw rate. 
• Same dynamics 

 
 

• State and inputs: 
 

• Observer is not trivial: 
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Recall: Solution Integrals 
• Systematic Error: 

 
 
 

• Random Error: 
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Validation 
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6.1.5.2.2 Input Transition Matrix 
• The product of the transition matrix and the input 

Jacobian is: 
 
 

• Governs propagation of both systematic and 
random error in odometry. 

• Integrals of … 
– a) its columns and of  
– b) outer products of its columns  

•  … are the canonical error propagation modes. 
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G and L are two 
different conventional 
names for same matrix 
in the system dynamics. 



6.1.5.2.3 Moments of Error 
(Systematic) 

• The vector convolution integral can be written: 
 
 
 
 

• Hence, the error in pose: 
– is the sum of the contributions of each input error source. 
– where each contribution is an integral or moment which 

depends on the trajectory followed. 

• Integrals mean errors are generally path dependent. 
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ith column 
Individual 
error 
sources 



6.1.5.2.3 Moments of Error 
(Stochastic) 

• The matrix convolution integral can be written: 
 
 
 
 
 

• The same sum of moments interpretation applies 
but now the moments are matrix-valued. 
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Outer 
product 
of two 
columns. 

Individual 
error 
covariances 



6.1.5.3 Integrated Heading Odometry 
(Linearized Dynamics) 

• Dynamics are: 
 

• System and Input Jacobians: 
 
 

• Hence, linearized dynamics are: 
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td
d x t( )

y t( )
θ t( )

V t( ) θ t( )cos
V t( ) θ t( )sin

ω t( )

=

F t( )
0 0 V– sθ
0 0 Vcθ
0 0 0

= G t( )
cθ t( ) 0
sθ t( ) 0

0 1

=

td
d δx t( )

δy t( )
δθ t( )

0 0 V– sθ
0 0 Vcθ
0 0 0

δx t( )
δy t( )
δθ t( )

cθ t( ) 0
sθ t( ) 0

0 1

δV t( )
δω t( )

+=

Change θ to ψ  
Everywhere on  
This slide 



6.1.5.3 Integrated Heading Odometry 
(Transition Matrix) 

• If you can find a matrix Ψ such that: 
 
 

• Then Ψ is the transition matrix! 
• A good candidate is: 
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Ψ t τ,( )F t( ) F t( )Ψ t τ,( )=

Matrix R is  
defined here. 



6.1.5.3 Integrated Heading Odometry 
(Transition Matrix) 

• This case will satisfy: 
• So                is the transition matrix. 
• To get it, form:  

 
• Where: 

 
• The transition matrix is then: 
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Ψ t τ,( )F t( ) F t( )Ψ t τ,( )=

Ψ t τ,( )

R t τ,( )
0 0 V– sθ
0 0 Vcθ
0 0 0

ζd
τ

t

∫
0 0 ∆y t τ,( )–
0 0 ∆x t τ,( )
0 0 0

= =

∆x t τ,( ) x t( ) x τ( )–[ ]=

∆y t τ,( ) y t( ) y τ( )–[ ]=

Ψ t τ,( ) R t τ,( )[ ]exp I R+
1 0 ∆y t τ,( )–
0 1 ∆x t τ,( )
0 0 1

= = =

Change θ to ψ  



6.1.5.3 Integrated Heading Odometry 
(Systematic Error Result) 

• Hence, the input transition matrix is: 
 
 

• So, the general solution for systematic error 
propagation in integrated heading odometry is: 
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Projection of δV onto 
world x, y axes 

Moment arm 
multiplies δω. 

Φ
˜

t τ,( ) Φ t τ,( )G τ( )
cθ τ( ) ∆ y t τ,( )–
sθ τ( ) ∆x t τ,( )

0 1

= =



6.1.5.3 Integrated Heading Odometry 
(Visualization) 

 
 
 
 
 

• Solution simply adds up the impact of every 
historical error to produce the present error. 

• Dead reckoning never forgets an error. 
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1: Angular error 
that that happened 
here at time τ 

2: Causes this 
position error later 
at time t 

),( τtx∆

),( τty∆

Vrδ

ωδr



6.1.5.3 Integrated Heading Odometry 
(Moment Form) 

• In moment form, the solution is: 
 
 
 

• Where: 
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Contribution of δV 
to state error 

Contribution of 
δω to state error. 



6.1.5.3 Integrated Heading Odometry 
(Stochastic) 

• Likewise, the general solution for stochastic error 
is: 
 
 

• Where: 
• Or: 
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Change ψ to θ 



6.1.5.3 Integrated Heading Odometry 
(Stochastic) 

• Where: 
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6.1.5.3.2 Error Models 
• Getting specific results requires: 

– Specific assumed input errors 
– Specific (reference) trajectories 

• For systematic error, assume: 
 
 

• For random error, assume: 
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δV δVv V×  =
δω const=

Notation 

σvv σvv
v( ) V=

σωω cons t= σvω 0=

Distance dependent random walk 



6.1.5.3.2 Error Models 
• Now the general solution on any trajectory is: 
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6.1.5.3.2 Error Models 
Trajectories 

• Finally, must select trajectories because 
everything is path dependent. 

• For a straight line: 
• Trajectory: 

 
• Systematic error: 

 
• Random error: 
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ω t( ) 0= V t( ) arbitrary=

x t( ) s t( )= y t( ) 0= θ t( ) 0=

δx t( )
1 0 0
0 1 s
0 0 1

δx 0( )
δy 0( )
δθ 0( )

δVv

s
0
0

δω
0

st 2⁄
t

+ +=

P t( ) ICs σvv
v( )

s 0 0
0 0 0
0 0 0

σωω

0 0 0

0 s
2
t( ) 3⁄ st( ) 2⁄

0 st( ) 2⁄ t

+ +=

Linear in 
distance 

Not linear in 
distance 



6.1.5.3.2 Integrated Heading 
Arbitrary Trajectory 
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Notes 
• Maybe next year add the derivation of box 6.5 

and perhaps delete the following content on 
insights. 
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6.1.5.3.3 Insights 
Path Independence 

Sc
θcos sd

0

s

∫ x s( )= =
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• Errors which propagate with the first Fourier 
Excursion Moment  (e.g. velocity scale errors) 
vanish on closed trajectories. 

• The wrong way to 
check your encoder 
scale factor !!! 



6.1.5.3.3 Insights 
Symmetry 

Sx sx s( ) x ξ( ) ξd

0

s

∫– s x s( ) x s( )–[ ]= =
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• Errors which propagate with the first Spatial 
Excursion Moment  (e.g. gyro bias) vanish at the 
centroid of the trajectory. 

• The wrong way to 
check your gyro bias 



6.1.5.3.3 Insights 
Monotonicity 

Txx
∆x2 τd

0

t

∫ x t( ) x τ( )–[ ]2 τd

0

t

∫= =

sd
d Scc

( )
sd

d θcos 2[ ] sd

0

s

∫
 
 
 
 

θcos 2 0≥= =
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• Many stochastic error behaviors are monotone. 

• However, some (gyro bias effects) are NOT!!. 

 <Is not monotone for an excursion to (1,0) and 
back> 



6.1.5.3.3 Insights 
Further Insights 

• Superposition: 
– Response to input errors is always the (path 

dependent) sum of one moment for each error source. 

• Path Independence: 
– Response to initial conditions (initial pose errors) is 

always path independent. 
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Outline 
• 6.1 Mathematics of Pose Estimation 

– 6.1.1 Pose Fixing versus Dead Reckoning 
– 6.1.2 Pose Fixing 
– 6.1.3 Error Propagation in Triangulation 
– 6.1.4 Real Pose Fixing Systems 
– 6.1.5 Dead Reckoning 
– 6.1.6 Real Dead Reckoning Systems - Skip 
– Summary 
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Outline 
• 6.1 Mathematics of Pose Estimation 

– 6.1.1 Pose Fixing versus Dead Reckoning 
– 6.1.2 Pose Fixing 
– 6.1.3 Error Propagation in Triangulation 
– 6.1.4 Real Pose Fixing Systems 
– 6.1.5 Dead Reckoning 
– 6.1.6 Real Dead Reckoning Systems 
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Summary 
• Dead reckoning and triangulation behave very 

differently. 
• Linearization provides the basic mapping between  

systematic and random input and output error. 
• The Geometric Dilution of Precision is often 

illuminating and easily computed. 
• Different forms of triangulation have different 

sensitivity behaviors. 
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Summary 
• Odometry uses integration to generate pose. 
• Errors in odometry propagate according to 

integrals. If we linearize (perturb) the equations, a 
general solution can be found. 

• Error propagation can be reduced to computing 
moments of arc on the trajectory. 

• Many unusual error behaviors result from the 
dynamic behavior of odometry.  
– They include path independence, response to 

symmetric inputs, reversibility, monotonicity, etc. 

Mobile Robotics - Prof Alonzo Kelly, CMU RI 84 


	Chapter 6�State Estimation
	Outline
	Outline
	Pose Fixing vs Dead Reckoning
	General Points
	6.1.1.1 Complementarity
	Quality of Aiding
	Outline
	History
	Triangles
	6.1.2.1 Revisiting Nonlinearly Constrained Systems
	6.1.2.1 Revisiting Nonlinearly Constrained Systems
	6.1.2.1.1 Explicit Case
	6.1.2.1.2 Implicit Case
	Solving Implicit Case
	6.1.2.2 Bearing Observations with Known Yaw
	6.1.2.3 Bearing Observations with Unknown Yaw
	6.1.2.4 Circular Constraints
	6.1.2.5 Hyperbolic Constraints
	Outline
	6.1.3.1 First Order Response to Systematic Errors
	6.1.3.1 First Order Response to Systematic Errors (Direct Case)
	6.1.3.1 First Order Response to Systematic Errors (Indirect Case)
	6.1.3.2 Geometric Dilution of Precision
	6.1.3.2 Geometric Dilution of Precision
	6.1.3.2.1 Mapping Theory (small bit)
	Commentary on DOP
	GDOP “Fields”
	Computing GDOP
	6.1.3.2.2 Implicit GDOP
	6.1.3.2.2 Implicit GDOP
	6.1.3.3 First Order Response to Random Error
	6.1.3.4 Bearing Observations with Known Yaw
	6.1.3.4 Bearing Observations with Known Yaw
	Contour Diagrams
	6.1.3.4 Bearing Observations with Known Yaw
	6.1.3.6 Circular Constraints
	6.1.3.6 Circular Constraints
	Eg: Circular Constraints
	6.1.3.7 Hyperbolic Constraints
	Outline
	Example: Laser Triangulation
	6.1.4.2 Radio Carrier Phase Triangulation
	Principle of Operation – Single Differencing
	Principle of Operation – Double Differencing
	Video Triangulation
	Outline
	6.1.5 Dead Reckoning
	General Case
	6.1.5.1.1 Direct Heading
	6.1.5.1.2 Integrated Heading
	6.1.5.1.3 Differential Heading
	Recall: Solution Integrals
	Validation
	6.1.5.2.2 Input Transition Matrix
	6.1.5.2.3 Moments of Error�(Systematic)
	6.1.5.2.3 Moments of Error�(Stochastic)
	6.1.5.3 Integrated Heading Odometry�(Linearized Dynamics)
	6.1.5.3 Integrated Heading Odometry�(Transition Matrix)
	6.1.5.3 Integrated Heading Odometry�(Transition Matrix)
	6.1.5.3 Integrated Heading Odometry�(Systematic Error Result)
	6.1.5.3 Integrated Heading Odometry�(Visualization)
	6.1.5.3 Integrated Heading Odometry�(Moment Form)
	6.1.5.3 Integrated Heading Odometry�(Stochastic)
	6.1.5.3 Integrated Heading Odometry�(Stochastic)
	6.1.5.3.2 Error Models
	6.1.5.3.2 Error Models
	6.1.5.3.2 Error Models�Trajectories
	6.1.5.3.2 Integrated Heading�Arbitrary Trajectory
	Notes
	6.1.5.3.3 Insights�Path Independence
	6.1.5.3.3 Insights�Symmetry
	6.1.5.3.3 Insights�Monotonicity
	6.1.5.3.3 Insights�Further Insights
	Outline
	Outline
	Summary
	Summary

