
Chapter 6 
State Estimation 

Part 2 
6.2 Sensors for State Estimation 
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6.2.1.1 Optical Encoders 
• Standard equipment on 

mobile robots. Used for 
wheel rotations, pan-tilt 
heads, etc. 
– Wheel slip issues mean 

super high accuracy 
encoders don’t make sense 
(for wheels). 

• A photodetector 
(photodiode) and 
phototransmitter (laser 
diode) are lined up to 
look through the holes in 
a grating. 
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6.2.1.1 Optical Encoders 
• Interrupted light source 

generates a series of pulses 
which are counted. 

• A second Tx/Rx pair can 
generate a second set of 
pulses 90 degree out of 
phase with first. 
– Permits sensing direction of 

motion. 
• 1000 to 10000 counts per 

revolution are typical. 
– Gear ratio and backlash 

sometimes affects output 
resolution. 
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6.2.1.2 Absolute Optical Encoders 
• Relative encoders (like the 

above) lose count when shut 
off. 

• Few solutions: 
– Drive physically to a home 

position after power is applied. 
– n concentric circles of gratings 

encoding binary numbers 
(opposite) and n recievers. 

• Up to 26 bits precision is 
available! 
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Field (Radiation) Sensors 
• Moving in a field of known characteristics is equivalent to 

having a map. 
• Cheap, low tech sensors for measuring attitude on the 

earth such as compasses and inclinometers rely on the 
earth’s fields (magnetic and gravitational). 

• This same principle is used in radio navigation but the field 
is generated artificially. 

• All vision-based navigation uses the same principle. 
• Attitude can be computed from the relative orientations of 

the vehicle body and two known non-collinear vectors. 
– Why Two? 
– Two are required because one does not constrain rotation 

about its direction. 
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6.2.1.1 Compasses and Magnetometers 
• Compass = a device that measures orientation with 

respect to the Earth’s poles.   
• Gyrocompasses have been used on ships  

– sense the true direction of the earth’s spin axis. 

• Only the magnetic compass is used on mobile robots.  
– sense earth’s magnetic field as an orientation reference  

• Often occur on mobile robots in the form of a 
(fluxgate) magnetometer.  
– sense the magnitude of the ambient magnetic field in one 

or more directions.  
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Fluxgate Magnetometer 
• Compare the drive-

coil current needed 
to saturate the core 
in one direction as 
opposed to the 
opposite direction. 

• Output the 
difference  
– Which is equal to 

external field 
magnitude. 

• Saturation detected 
as nonlinearity. 
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(2 axis) Magnetometer Response 

• Theta = atan2(y,x) 
• Real devices often have slow response. 
• Their alignment on the vehicle also needs 

to be calibrated. 

12 Mobile Robotics - Prof Alonzo Kelly, CMU RI 



Earth’s magnetic field: Variation 
• Flow of liquid ferromagnetic material in Earth’s 

core causes a very very weak field. 
• Mariners used to rely on it and have charted all its 

many quirks. 
– Not aligned with geographic north (direction to earth’s 

spin axis). Known as variation. 
– Magnetic north pole is in Canada, magnetic south pole 

is off cost of Australia. 
– Entire east coast of US is 15 degrees east variation.  

Mobile Robotics - Prof Alonzo Kelly, CMU RI 13 



Local Field: Deviation 
• Some metals have magnetic 

permeability which redirects the 
ambient field. 

• Permanent and electromagnets 
create fields which redirect the 
ambient field. 

• Some of these things are fixed to 
the robot and some are fixed to 
the ground. 
– Some may be fixed to other robots. 

• Can calibrate the vehicle field out 
by spinning in a circle and 
measuring difference from ground 
truth rotation. 
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6.2.2.2 Inclinometers 
• Measure direction of specific 

force. 
• Often work on identical 

principles as pendulous 
accelerometers. 
– Measure angle of proof mass 

deflection. 
– Cheap devices have bandwidths 

on the order or 2 Hz. 
– Rebalance devices are faster. 

• Ideal solution for mobile robots 
that don’t move ;) 

• Why? 
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6.2.3 Inertial Frames 
• Simply, a frame where Newton’s laws hold. 
• Don’t those laws hold everywhere in the universe? 

– Nope. 
– F only = ma in an inertial frame of reference. 

• Remember the moving observer stuff? There were 
two accelerations measured. Which is right? 
– Both are. 
– But the a times the m only equals the F if the observer is in 

an inertial frame. 
– Otherwise the motion seems inconsistent with the F due 

to apparent other forces. 
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6.2.3 Inertial Frames 
• A frame which is: 

– Far removed from any massive object (no gravitation), or... 
– Under no net gravitational force, or... 
– Free to move under the influence of gravitation (freefall) 

• Third case subsumes the other two. 
• Examples include: 

– Intergalactic space (far removed) 
– Center of the earth (no net g’s) 
– Spacecraft in orbit (why are you “weightless” if you are 

being held in orbit by the earth’s gravity?) 
– Aircraft in freefall (NASA trains astronauts in these) 

• Anything that rotates wrt the stars is not inertial. 
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6.2.3.1 Apparent Forces 
• Reverse our classical acceleration transform… 

 
 

• If the f frame is inertial, only the �⃑�𝑎0
𝑓𝑓 term can be 

explained by applied forces. 
• Yet, the moving observer sees motion that indicates 

other forces are being applied. 
– What “force” pushes you against the wall of a car in a 

turn? 
– The other terms are said to be caused by apparent forces. 
– 4 terms inside the brackets above are, in order, Einstein, 

Coriolis, Euler, Centrifugal 
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• Earth-fixed observer says table reaction 
equals mg. 
 

• Inertial observer says table reaction is 
slightly less – explains circular motion. 
 
 

• Therefore ! 
• Gravity (g) is more than gravitation (G). 

– Contains apparent forces ! 
• BTW: g depends on latitude 

6.2.3.2 Noninertial Earth Fixed Frame of Reference 
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6.2.3.2.1 Effect of Earth’s Rotation 
• The surface of the earth is 

not an inertial frame. 
• Almost every f=ma you wrote 

in high school was wrong. 
• Instruments can detect this. 

Some examples: 
– Gyroscope at equator 

pointing “up” rotates once 
per day. 

– Faucault pendulum in UN 
building in New York. 

– Objects don’t fall in straight 
lines. 

– Gyrocompass oscillates due 
to earth’s rotation. 
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6.2.4 Inertial Sensors 
• Higher tech sensors such as accelerometers and 

gyroscopes are based on inertial principles. 
• Accelerometers and inclinometers can each do 

the other’s job: 
– accelerometers can provide attitude (w.r.t gravity) 

when acceleration is known. 
– inclinometers can provide acceleration when attitude 

is known. 
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6.2.4.1 Inertial Sensor Performance 
• Devices are sensitive to temperature, shock, and 

vibration. 
• A simple model of performance is: 

 
 
 

• Because autocalibration is the rule, it’s the 
stability of bias and scale factors that matters 
most. 
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Measuring Noise 
• Can be characterized in terms of the spectral 

amplitude: 
– For gyros get “density” in deg/sec/Hz1/2 or (deg/sec)2/Hz 

• Angle Random Walk (ARW): Describes the error 
magnitude expected from integrating a noisy rate 
measurement. 
– After removing effects of bias and scale. 
– Slope of the integrated velocity noise process curve in 

deg/root(hr) (stdv) or deg^2/hr (variance). 

• Velocity Random Walk: Integral of an assumed 
acceleration white noise term. 
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6.2.4.2 Accelerometers 

• Accelerometers are typically divided into two classes, depending 
upon their intended use.  

• Guidance accelerometers are those intended for use in 
measuring the steady state accelerations of rigid bodies. One 
might use a guidance accelerometer for measuring the 
acceleration of an automobile. 

• Vibratory or seismic accelerometers are those intended to 
measure sinusoidal accelerations. They are used to measure 
vibrations in applications as varied as structural testing, and 
earthquake and tsunami detection.  
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6.2.4.2.1 Operating Principle 

• All accelerometers operate on the same principle, that of measuring the relative 
displacement of a small mass, called a proof or seismic mass, constrained within 
an accelerating case.  
– An accelerometer is therefore a physical manifestation of Einstein’s famous box from 

general relativity. 
• The restraint 

– may be elastic, viscous, or electromagnetic.  
– is a transducer that returns a signal proportional to the displacement of the proof 

mass. 
• Typically, the mass is only allowed a single degree of freedom which may be 

either linear or rotary. 
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6.2.4.2.2 Specific Force 
• Accelerometers measure specific 

force, not acceleration and there is 
nothing we can do about it. 

• Case 1: When the case is 
accelerated, the spring will deflect - 
allowing us to measure the 
acceleration.  

• Case 2: When the case is placed 
upright on a table, it will measure 
the influence of gravitation because 
the spring will deflect with the 
weight of the mass.  
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6.2.4.2.2 Specific Force 
(Subtleties) 

• The deflection of the elastic restraint is directly 
influenced by the tension in the spring - not by the 
mass’s acceleration. 

• From Newton’s Second Law; the inertial acceleration of 
the mass (ai) is proportional to the total force applied 
to the mass - in this case, the gravitational force (Fg) 
and the elastic restraining force (T). 
 
 

• Specific force: 
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6.2.4.2.2 Specific Force 
(Equivalence of Gravitation and Acceleration) 

• An accelerometer cannot tell the difference 
between these two effects. 
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6.2.4.2.2 Specific Force 
(Accelerometers as Dynamic Systems) 

• All accelerometers have some stiffness and some 
damping. 
– Modulating enables tuning the response. 
– Guidance accelerometers are low pass. 
– Vibratory accelerometers are bandpass. 

• Devices with rebalance loops actively oppose 
motion and report the effort (current) required to 
do so. 
– These generally have much faster response times. 
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6.2.4.3 Gyroscopes 
• Word coined by Foucault in 

1852. 
• A spinning rotor 

– Rotor => has an axis of 
symmetry  

– Spinning => you know 
• Two properties of interest 

– Rigidity: Angular momentum 
means hard to rotate 

• Not useful 
– Precession: Angular 

momentum means attempts 
to rotate one way cause 
rotations another way. 
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6.2.4.3.1 Mechanical Gyroscope 
(Precession) 

• Consider Euler’s 
equation: 
 
 

• Inertia is diagonal so.  
 
 

• Hence ω (not the disk) 
must rotate in the 
direction of N ! 
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6.2.4.3.1 Mechanical Gyroscope 
(Gyro Configurations)  

• Some forms of drift are reduced by 
high ω so rpms are usually very 
high. 

• Rebalance loops used in precision 
devices. 

• Packaging of one or more: 
– “rate” gyros: high spring, low 

damping (rate in -> rate out) 
– “integrating” gyros: low spring, high 

damp (angle in-> angle out) 
– “directional” gyros hold their 

azimuth, indicate heading (not 
gyrocompasses) 

– “vertical” gyros indicate pitch and 
roll (from gimbals) by staying vertical 
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6.2.4.3.3 Optical Gyroscopes 
• Are replacing mechanical ones in most applications. 

– Used on all new civil transport aircraft (757, 767, Airbus 
310) 

– FOGs becoming common on robots. 
• Based on Sagnac Effect discovered in 1913. 

– Considered obscure at the time. 
• Characteristics: 

– solid state or nearly so  
– More reliable, rugged 
– Good in harsh environments 
– Linearity of parts per billion 
– Large dynamic range 
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6.2.4.3.3 Optical Gyroscopes 
(Types) 

• Ring Laser Gyros (RLGs) 
– Not solid state yet. 
– Becoming very popular 
– Will replace most inertial mechanical gyros 

• Fiber Optic Gyros (FOGs) 
– Solid state 
– Newer to the market. 
– Will ultimately replace both mechanical and RLG’s 
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6.2.4.3.3 Optical Gyroscopes 
(Sagnac Effect) 

• While optical measurement of 
inertial translation is impossible 
(Michelson-Morely), optical 
measurement of inertial 
rotation is possible. 

• Physical rotation of the ring 
interferometer gives rise to an 
apparent path length difference 
for two counter-rotating 
coherent beams of light. 

• Effect can be understood in 
terms of: 
– different time of flight 
– different path length 
– different Doppler shifts 

 

Mobile Robotics - Prof Alonzo Kelly, CMU RI 42 

start/finish

Interference 
Fringes

Rectangular Ring Interferometer



6.2.4.3.3 Optical Gyroscopes 
(Sagnac Effect : Intuitive Derivation) 

• Transit times for each 
beam in terms of itself: 
 

• Solve for times and take 
difference: 
 

• For practical values of r:                
so: 
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6.2.4.3.3 Optical Gyroscopes 
(Sagnac Effect : Intuitive Derivation) 

• So time difference is proportional 
to Ω. 
 

• Alternatively, the path length 
difference is: 
 
 

• For rotation of 1 degree/sec and r 
= 0.1 meter, the Sagnac effect 
gives 1/100 nanometer (1X10-11 
m) of deviation.  
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6.2.4.3.3 Optical Gyroscopes 
(Sagnac Effect : Amplification) 

• Two modern technologies amplify the Sagnac 
effect: 

• Development #1: lasers 
– RLG converts Sagnac path length difference into a beat 

frequency. 

• Development #2: fiber optics 
– FOG increases Sagnac path length by using several 

miles of fibre optic cable coiled into small package. 
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6.2.4.3.3 Optical Gyroscopes 
(Ring Laser Gyros) 

• Place a lasing medium in the 
path of the light beams. 
– It’s a laser and a gyro in one 

package. 

• Cavity resonance condition 
determines the laser 
wavelength: 
– End up with two different 

frequency lasers when rotating.  
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6.2.4.3.3 Optical Gyroscopes 
(Ring Laser Gyros) 

• Resonance condition: 
 

• Resonant frequency: 
 

• Frequency difference is now: 
 

• Light frequencies ω are in the 
5x1014 range. 
– Gives ∆ω of 50 KHz! 
– Easy to measure beat frequency. 
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6.2.4.3.3 Optical Gyroscopes 
(Fiber Optic Gyros) 

• Writing the earlier path length difference as a phase 
difference: 
 

• This is multiplied by N if we coil the fiber optic cable 
N times. 
– Simpler and more robust technology than RLGs but not yet 

equal in performance.  
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6.2.4.3.4 MEMS Gyros 

• Cheap, and becoming useful. 
• Tuning fork concept is common: 

– Light grey areas are driven to oscillate left and right. 
– They vibrate out of plane when device rotates around 

sensitive axis due to Coriolis force. 
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6.2.4.4. Inertial Measurement Units 
• Typically 3 accels and 3 

gyros (2 magnetometers) in 
one package. 

• Price / Performance 
– 100 deg / hr = $1K 
– 1 deg / hr = $10K 
– 0.01 deg / hr = $100K 

• Single chip IMUs have just 
happened or are about to 
happen. 
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Accelerometer Grades 
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Impact on Nav Error 
• 1 deg/hr attitude error rate is 60 mph (100 Km/hr) 

position error rate. 
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Summary 
• Inertial frames are tricky to define. 
• Accelerometers and inclinometers operate on similar 

principles 
– neither can distinguish gravitation from acceleration. 

• Compasses indicate the local magnetic field. 
– not geographic north 
– Some error sources can be calibrated out. 

• Gyros measure inertial rotation.  
– optical forms based on the Sagnac effect will be the ones 

used in the future. lasers and fiber optics made em 
practical. 

– MEMS devices are now very practical.  
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