
Chapter 6 
State Estimation 

Part 3 
6.3 Inertial Navigation Systems 
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History 
• Historical roots in German 

Peenemunde Group. 
• Modern form credited to Charles 

Draper et al. @MIT. 
• 1940s Germany: 

– V2 program, gyroscopic guidance 
• 1950s Draper Labs, MIT: 

– Shuler tuned INS 
– Floated rate integrating gyros (0.01 

deg/hr) 
• 1960s DTGs  

– not floated or temp compensated 
• 1970s RLGs, USA 
• 1980s Strapdown INS 
• 1990s GPS 
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Introduction 
• Advantages 

– Most accurate dead reckoning available. 
– Useful in wide excursion (outdoor) missions. 
– Work anywhere where gravity is known. 
– Are jamproof - require no external information. 
– Radiate nothing - exhibit perfect stealth. 

• Disadvantages 
– Cannot sense accelerations of unpowered space flight. 
– Most errors exhibit Schuler oscillation (advantage?). 
– Most errors are time dependent. 
– Requires input of initial conditions. 
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6.3.2 Mathematics of Inertial Navigation 
(Concept) 

• Use Inertial Properties of Matter 
– Accelerometers 
– Gyros 

• Do “Dead Reckoning” 
– Integrate acceleration twice 
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6.3.2 Mathematics of Inertial Navigation 
(Naïve Concept) 

• Just integrating 3 accels will not 
work for a lot of reasons: 
– Accelerometers measure wrong 

quantity. 
– They measure it in wrong 

reference frame. 
– They represent it in wrong 

coordinate system. 

• The quest for ever better 
engineering solutions to these 
problems is the primary reason 
for the complexity of the 
modern INS. 
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6.3.2 Problem 1: Equivalence 
• Accelerometers don’t measure acceleration. 
• Specific force is: 
• Fix: must know gravity, then: 
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Problem 2: Inertial Frame of Reference 
• Now have inertial 

acceleration. 
– Want earth-referenced 

acceleration. 

• Fix: account for earth 
angular velocity: 
– “Apparent forces”. 
– “gravity”, not gravitation 
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Problem 3: Body Coordinates 
• Accelerometers are 

fixed to vehicle. 
– Want to integrate in the 

world frame. 

• Need to know 
instantaneous heading. 

• So…, track orientation 
– Use gyros. 
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6.3.2.1 First Fix: Specific Force to Acceleration 
• We know specific force is not 

acceleration. 
• The fundamental equation of inertial 

navigation is Newton’s 2nd law 
applied to the accelerometers: 

 
 
 
 
• Need to solve for acceleration…. 
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6.3.2.1 First Fix: Specific Force to Acceleration 
• Solving for acceleration: 

 
 
 

• Note: you need to know the 
gravitational field anywhere you 
want to do inertial navigation. 
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6.3.2.2 Second Fix: Remove Apparent Forces 
• Moving vehicle is a 

moving reference 
frame. 
– Hence, sensors on-

board will sense 
apparent forces. 

– Remove them with 
Coriolis law. 
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6.3.2.2 Second Fix: Remove Apparent Forces 
 

• Define Frames: 
 
– i: “inertial”, geocentric 

nonrotating. 
– e: “earth”, geocentric, rotating. 
– v: “vehicle”, fixed to accels. 

Also known as body frame. 
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6.3.2.2 Second Fix: Remove Apparent Forces 
• Define: 
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Position of vehicle measured in frame x 
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Acceleration of vehicle measured in frame x 



6.3.2.2 Second Fix: Remove Apparent Forces 
• Basic acceleration transformation under negligible 

angular acceleration: 
 
 
• Let “o” = v, “m” = e, and “f” = i:  

 
 

• The i and e origins are coincident. Hence: 
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6.3.2.2 Second Fix: Remove Apparent Forces 
• Also, let the earth sidereal rate be given by: 

 
• Now, moving the earth acceleration to the left 

hand side, we have: 
 

• Substituting for specific force: 
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• The quantity: 
 
• Is known as “gravity” and denoted 
• Finally, we have “the” equation of inertial 

navigation.  
 
 

6.3.2.2 Second Fix: Remove Apparent Forces 
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6.3.2.2 Second Fix: Remove Apparent Forces 
• The computed solution in coordinate system 

independent form is: 
 
 
 
 

• These are only valid if you integrate in the earth 
frame (i.e. in earth-fixed coordinates). 
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6.3.2.2.1 Vector Formulation 
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6.3.2.2 Gravity and Gravitation 
• Gravity is the force per unit mass 

required to fix an object wrt the 
Earth. It includes centrifugal force. 

• Gravitation is the force described in 
Newton’s law of gravitation. 
 
 
 

• Only at the equator and at the poles 
does gravity point toward the center 
of the earth. 
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6.3.2.3 Third Fix: Adopt a Coordinate System 
• The heart of the INS is the inertial measurement 

unit (IMU) containing 3 accelerometers and 3 
gyros. 

• The gyros are used to track the orientation of the 
vehicle wrt the earth. 

• You need orientation because: 
–      and      are known in earth coordinates, whereas…. 
–     and       are measured in body coordinates in a 

modern strapdown system. 
• Can’t add em up unless they are in the same 

coordinate system. 
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6.3.2.3.1 Third Fix: Euler Angles 
• Step 1: Integrate the gyros: 
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6.3.2.3.2 Third Fix: Direction Cosines 
• Step 1: Or, use direction cosine form (better): 
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6.3.2.3.3 Third Fix: Quaternions 
• Step 1: Or, use the quaternion form (best): 
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6.3.2.3.4 Third Fix: Earth Rate Compensation 
• When orientation aiding is 

rare (yaw aiding is typically 
rare), it may be useful to 
remove earth rate from the 
gyros: 
 
 

• .. Or its projection onto the 
yaw axis will be integrated. 
– Where is this projection 

greatest? 
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6.3.2.3 Third Fix: Adopt a Coordinate System 
• Step 2: Integrate the accels: 

 
 

• Step 3: Integrate the velocity: 
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6.3.3.1 Sensitivity 

• Acceleration is multiplied by the square of time. 
– 1 hour2 = 13 million secs2. 

• After 1 hour, the Coriolis (smallest) term accounts 
for over 9.5 Km of error. 
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Error Explosion 
• For a 10 m/s vehicle at 

the equator, the Coriolis 
term is tiny: 
– 1.5x10-4 g 

• Consider an error of this 
magnitude… 

• In one hour: 
– t2 = (3600)2 = 13 million 

!! 
• Position Error: 

– 9.5 Kilometers!!! 
 

Mobile Robotics - Prof Alonzo Kelly, CMU RI 32 



Error Dynamics: Gravity Feedback 

• Consider predictions of gravity direction based on position. 
• This is called a Shuler loop. 
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Step 2: Spring is  
Deflected this way. 

Step 1: Orientation 
error, (system thinks 
it is level). 

Step 3: Interpret  as  
Motion this way. 

Step 4: Which rotates  
gravity prediction  
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Here 
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Perturbative Analysis 
• If the accelerometer biases 

are constant, the solutions 
are:  
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6.3.3.2 Aided Inertial Mode 

• Used on mobile robots: 
– Zero velocity update 
– Odometry  
– GPS 
– Landmarks / Map 

matching 
– Magnetic heading 

 

• Used more generally: 
– Barometric altitude 
– Radar altimeters 
– Doppler radar velocity 
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Note: Net effect of velocity aiding is to convert error dynamics from that of free 
Inertial to that of odometry.  



6.3.3.3 Initialization 
• In self alignment, the INS is left stationary and: 

– Accels determine direction of gravity in process called 
levelling. 

– Gyros determine direction of earth’s spin vector in a 
process called gyrocompassing. 

• Latitude can also be estimated in this way but not longitude. 

• Modern GPS aided systems do “moving base 
alignment” where the difference in GPS readings 
over time can be used to determine vehicle 
heading. 
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Initialization 
• Need to measure two 

non-collinear vectors. 
• Earth conveniently has 

two: 
– Gravity - easy 
– Earth spin – takes time, 

several minutes 
– Angle between them 

gives latitude. 
• Gives orientation wrt 

earth and latitude. 
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Smiths Industries INS 
• Without GPS 

– Static Heading: <0.1 deg. rms 
– Position: <0.35% DT 

Horizontal 
– Altitude: <0.25% DT Vertical 

• With GPS 
– Dynamic Heading: <0.1 deg. 

rms 
– Position: <10 meters CEP 
– Altitude Accuracy: <10 

meters VEP 
• Pitch and Roll Outputs: <0.05 

deg. rms 
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• Initialization Time – On-
the-Move: 1-3 minutes 



Watson Industries AHRS E304 
• Attitude: 

– 0.25% static, 2% dynamic 
• Heading: 

– 1% static, 2% dynamic 
• Angular Rate: 

– Scale factor 1% 
– Bias 0.02 deg/sec. 
– Bandwidth 25 Hz 

• Acceleration: 
– Scale factor 1% 
– Bias 5 mg 
– Bandwidth 20 Hz 
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Accuracy 
• Commercial cruise systems  

– Position: 0.2 nautical miles of error per hour of 
operation. 

• In some cases, position accuracy along the trajectory 
(alongtrack) and both normal directions (crosstrack and 
vertical) are distinguished. 

– Attitude (pitch and roll) : often accurate to 0.05°. 
– Heading: often accurate to 0.5°.  

• Land vehicle navigation systems: 
– Position: 0.2% to 2% of distance traveled. 
– Attitude: 0.1° 
– Heading to 0.5°. 
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6.3.4 Simple Odometry Aided AHRS 
• The AHRS is a degenerate form of inertial 

navigation system, using much of the same 
components: 
–  indicates orientation only.  

• Device uses a strapped down IMU today. 
– Accels indicate gravity and acceleration 
– Gyros indicate angular velocity 

• Distinguishing acceleration from gravity is still an 
issue - but less so. 
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6.4.3.1 Nav Eqns in Body Frame 
• Recall the inertial nav equation (Eq 6.46):  
 
• Lets express this in the body frame so that it 

becomes unnecessary to known orientation.  
• Use the Coriolis theorem: 
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6.4.3.1 Nav Eqns in Body Frame 
• Define the strapdown angular velocity:  

 
• Write the inertial navigation equation in the body 

frame: 
 

• For this purpose, earth rate can be neglected, so: 
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6.4.3.1 Nav Eqns in Body Frame 
• Solve for gravity:  

 
 
 
 
 

• Everything on right is known from measurements. 
g on left is known in world coordinates. 
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This vanishes on an Ackerman vehicle 
during periods of constant speed. 
Otherwise, differentiate numerically. 
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6.4.3.1 Nav Eqns in Body Frame 
• Write this in body coordinates: 

 
 
 

• Can solve this for attitude (not yaw) in the 
rotation matrix using inverse kinematics. 
– Rotation around g is not observable. 
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6.4.3.2 Solving for Attitude 
• To get the attitude, express in body frame: 

 
• Where: 

 
 

• The transpose converts from world to body, thus: 
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6.4.3.2 Solving for Attitude 
• The solution is: 

 
 

 
• To get the yawrate, solve: 
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Summary 
• Black magic ? 
• Hard to do well. 

– Costs big bucks. 

• Most accurate dead reckoning available. 
– Cruise: 0.2 nautical miles of error per hour of 

operation. 

• Indispensable on outdoor mobile robots. 
• Complementary technology to GPS. 
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Summary 
• Inertial navigation is based on Newton’s laws 

– Works everywhere that gravity is known. 
– It is stealthy and jamproof. 

• Modern “strapdown” systems 
– “computationally stabilized”. 
– no stabilized platform 

• Naive approaches are seriously flawed. Must 
compensate for 
– Gravity 
– inertial forces 
– body fixed coordinates. 
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Summary 
• Free inertial performs miserably…  

– 1 part in 10,000 acceleration error causes kilometers 
of position error after 1 hour of operation. 

• Interesting Error Dynamics 
– Horizontal errors bounded, oscillate every 84 minutes  
– Vertical position is unstable without damping devices 

• An AHRS unit can find attitude from 
accelerometers and gyros and odometry. 
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