Chapter 5
Optimal Estimation

Part 1

5.1 Random Variables, Processes and
~ Transformation

Carnegie Mellon

1 Mobile Robotics - Prof Alonzo Kelly, CMU Rl 'nllE ROBO“CS I



Outline

e 5.1 Random Variables, Processes and
Transformation

— 5.1.1 Characterizing Uncertainty

— 5.1.2 Random Variables

— 5.1.3 Transformation of Uncertainty
— 5.1.4 Random Processes

— Summary

Carnegie Mellon

2 Mobile Robotics - Prof Alonzo Kelly, CMU RI THE ROBOTICS INSTITUTE



Outline

e 5.1 Random Variables, Processes and
Transformation

— 5.1.1 Characterizing Uncertainty
— 5.1.2 Random Variables
— 5.1.3 Transformation of Uncertainty

— 5.1.4 Random Processes

— Summary

Carnegie Mellon

3 Mobile Robotics - Prof Alonzo Kelly, CMU RI THE ROBOTICS INSTITUTE



5.1.1 Characterizing Uncertainty

 Uncertainty =

— Not Known: Bias, scale systematic error

* E.g. Temperature sensitivity

— Not Knowable: Noise, randomness, unpredictability
e E.g. “drift”

 Fact of life:

— Some randomness is fundamental

— It can’t be measured.

e Humans do a good job coping...
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Modeling Uncertainty

An oxymoron?

Distributions are models. laebraic
. . . o L=>|eL?ua|?tion =>L °
Algebraic and differential

equations are models. A .=,|g{$jabg§§ =1\

We can “pass distributions

through” equations to get N P R
other distributions. W bquation |7 W]

— one point at a time, or...

“distribution Hifferential “distribution

— as a complete distribution of functions” ™" bquation of functions”
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5.1.1.1 Types of Uncertainty

 We usually consider it to be additive:

n Hat means
A

) 11 e 1T S . e -
tre X Xrne + &  estimate

X medas

* & may be zero, a constant, or a function of anything.

* & may be: "Random error is called
— Systematic (=“deterministic”) unbiased of it has a mean
— Random (= “stochastic”) \Of zero. J

— a combination of both.

e Most of all €is unknown. Otherwise we would take it
out.
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5.1.1.1 Real and Ideal Signals

e Below: bias, scale errors, and two “outliers”.

Carnegie Mellon

7 Mobile Robotics - Prof Alonzo Kelly, CMU RI THE ROBOTICS INSTITUTE



5.1.1.1 Real and Ideal Signals

 Below: Saturation, nonlinearity, deadband

t output

N ideal

v
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5.1.1.1 Real and Ideal Signals
e Might model the \deal

errors like so: 5 [ R <%
e =0+bdO0+N@ 0) 3
= |
 Note the appearance time
of model parameters \deal
of both kinds: | ¢/ Rea
— systematic (a,b) S
— stochastic (u,0) B VA
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Removing errors

e Systematic = calibration:
— Fit a line to the last graph

e Stochastic =2 filtering

— Smooth out the wiggles

e Correlation = differential measurement

— Reject the common component
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Know Your Model
* You can fit a line to anything.

A

Pretty good line
fit?
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Know Your Model
* You can fit a line to anything.

A

data is a perfect
parabola
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e Events that occur randomly
may nonetheless have a

Probability as Frequency Dist%ttion

knowable probability 8k One die
distribution. Z 56
< _
o
e Its not unusual to know the & 1/6 %%7 %%%
distribution but never be 14 ZA f f 6A

N\

able to perfectly predict an
individual event.

X

6/36 4 Sum of two dice
: T ~ v/
* Knowing one distribution éjgg _ ?f ,

allows you to compute S 2126 ?é 7

h N7 2 %%%
others. 2/36 %é %¢?
— Math on distributions is well 1/36 = %%%%%% %%

defined. 23456

789101112
X

Carnegie Mellon

15 Mobile Robotics - Prof Alonzo Kelly, CMU RI THE ROBOTICS INSTITUTE



Continuous Random Variable
e Pdf —probability density function.

A () A “multimodal” distribution
) has more than one bump in it.

b

pla<x<b) = Jp(l-l)dl-{

a

- -
a b A
b

Littl
Hep T p(a< x<b) = jf(u)du

e Describes probability of each possible outcome of
a single experiment.
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Discrete Random Variable

e Pf—probability function.

4 P(x)

X
- -

Blg P— P(a<x<bh) = ZP(X )<Forthe sum to hold, the J

outcomes must be
kmutuallv exclusive.

e Describes probability of each possible outcome of
a single event.
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18

(Joint) 2D Distributions

p(as<x<baAac<y<d) = ”f(u,v)dudv

ca
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(Conditional) 2D Distributions ’o
u p(x,p)

p(as x<b|y) = ff(u,y)du/jf(u, y)du

—0Q0

. a .
e Take a slice and renormalize.
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20

Gaussian Pdf o

a b LL

v L (x—p)
p(x) = mgcw(— 2 2)
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N Dimensional Gaussian
e Formula:
_] _
p(x) = : em([EE]IC =i
e dd 2

e Mahalanobis distance:

[x-p] C[x—p]

e Cis “covariance matrix” defined later.
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5.1.2.2 Expectation

e For any function of x, this is just a weighted average
where the pdf is the weight.

o0

Exp[h(x)] = Jh(x)p(x)dx scalar-scalar continuous

—o0

(]

Exp[h(x)] = . h(x)p(x)dx vector-scalar continuous JNotation means l

= — Vvolume integral

o0
3

Explh(x)] = h(x)p(x)dx vector-vector continuous
n ;

Explh(x)] = Z h(u DP(U;) vector-vector discrete

i=1

e This is a functional or moment (with infinite limits of
integration) so you need the entire pdf to work it out.
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5.1.2.2 Expectation

* Properties inherited from integrals.

Explk] = k

Explkh(x)] = kExp[h(x)]

Explh(x) +g(x)] = Exp[h(x)] + Exp[g(x)]

4 N
Expectation Is a linear

operator over functions.
. y,
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5.1.2.2 Mean
e Set h(x) =2 x etc.

(v 8]

UL = Exp[x] = J[xp(x)]dx scalar continuous

W= Exp(x) = J xp(x)dx vector continuous
;cr;

B = Explx]| = Z-L-P (x;) vector discrete
i=1

e This is a property of the distribution of the
population.
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5.1.2.2 Mean and Most Likely Value [

| ! ‘ f(.}C)

Most Likely : : Expected
Value — o 1 'a—T Value
(“mode™) ! | (“average”)

| |
| |
| |
i i
| |
| |
- - >

E&x)

 Expected value is a centroid.
e [tis not always the most likely value to occur.
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Variance of a Random Scalar
e Set h(x) =2 [x-u]2.

o0

6 = [ [(x=p)" - p(x)]dx

—0

e Alternative notation: 2
G (X)

e Standard deviation defined as:

|
Q
N
X
'
|
a
X
X

O x
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Recall : “Outer” Product

 Opposite of “inner” or dot product.

X =

[xy 7

 Generates a symmetric matrix from a vector.

X
XX — y
—Z—

xy 7] =

27 Mobile Robotics - Prof Alonzo Kelly, CMU RI

XX XY XZ

yXyyyz
ZX 2y 2Z
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Co-Variance of a Random Vector |.°.

e Continuous and discrete cases.

= E((x-pllx-pl) = [ x-ullx-pl fodx

2= E([x-pllx—p]') = z[x uIx - ul' p(x)

1 =1

e Integral of a matrix is the matrix of the integrals.
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Sample Statistics KX
* Mean: )
v
X =L 2X ?
1 =1
* Sample Covariance. - \
S = 53 Dx-ulix ()"
=1

e Elemental variances and co variances
n n
1 1
Sii = = D= mlIXi—ml sy = 1) DX —wlx— 1y
i=1 =1
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5.1.2.3 Sampling Distributions and Statistics
e “Batch” Methods:

 Not feasible computationally for continuous
update when N is large.
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5.1.2.4 Computing Sample Statistics

e “Recursive” Methods:

- (KXt X q)

Xk+1 ~ (K+ 1)
T
s - KSi + [ Xy 1~ BIX 4 g — 1]
k+ 1 (k'l'l)

e Related to the Kalman Filter.
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Computing Sample Statistics

e “Calculator” Methods use accumulators:

= —+ ;
mean The1 = Tt Xy when data arrives
y Tk+1
X —
2k+ 1 (k + 1) when answer necessary

_ T
covariance Q, ., = Q t[X, 1~ H][)—(k +1 7 E]Nhen data arrives

Qxk

when answer necessa
(k+ 1) Y

Sk+1 —

e Usedin ... you guessed it ... hand calculators.

. _ Carnegie Mellon
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Contours of Constant Probability

e Consider the probability contained within a
symmetric interval on the x axis.
- 99.73% >

- 95.45% >

I~-nl—68.|27 %—--I

|

|

|

|

|

|

|

|

|

|

|
* | | T T 1 1
30 20 o o 20 3o
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5.1.2.6 Contours of Constant Probability

* In 2D, consider contours of constant exponent.

e These are ellipsoids in n dimensions:

(X —WTE-1(x —p) = k2(p)
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Transformation

“Pass covariance through a function”:

Suppose y = 2x and x is random.

— 1st point: if x is random, y must be random — even if “2” is
not.

— 2nd point: if we know cov(x) we can find cov(y). How?
Here’s the hard way.

Turns out
> -— Oy = 2 Gy
Oy

Oyx

°o oo [>time32:> o oo

. X . . y
This works even for nonlinear functions y = f(x) but
there is a simpler way.
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Linearization —
Anglytlc_ }
The Taylor series allows us to extend any @‘Uaﬂon”

function into a neighborhood around a given
point if we know the derivatives at that point:

2
f(x + Ax) = F(X) + f'(X)AX + f"(x)%— + ..

Error involved in truncation is related to
magnitude of first neglected term.

We linearize like so:
f(X +AX) = f(X)+ T'(X)AX
Errors involved are “second order”

Carnegie Mellon
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5.1.3.1 Linear Transformation: Mean
* Suppose we know L, and
want Ly where: y = Fx  Findependent of x
 Because expectation is an i ]
integral and hence a linear
operator: n, = Exp(Fx) = FExp(x)

* |n other words

w, = Fu

X
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5.1.3.1 Linear Transformation: Covariance

* Suppose we know o, and
want Gy where: v = Fx  Findependent of x

e Because covariance is an
integral and hence a linear
operator:
I T I\ I
2., = Exp(Fxx' F") = FExp(xx")F

 |n other words s =y fl

VvV XX

Carnegie Mellon
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5.1.3.2 Variance of a Sum of RVs

e Suppose there aren
random variables x, of
same distribution.

 Define a new variable y
as the sum of these:

e What is the variance of

y?

40
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XiNN(Hac) , | = 19n

Variance of x’es
known and equal.

n
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5.1.3.2 Variance of a Sum of RVs

By our rules for uncertainty transforms:

z, =FZ F

Where, in this case: F = [1 ] 1]

Hence:

IOW:

41
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5.1.3.3 Variance of an Average of RVs

e Suppose there aren
random variables x, of  x;~N(u,o) , i = 1,n
same distribution. Variance of x"es

known and equal.

e Define a new variabley :
as the average of these: b, = iZY
. i
n

i=1
e What is the variance of
y?

Carnegie Mellon
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5.1.3.3 Variance of an Average of RVs

By our rules for uncertainty transforms:

z, =FZ F

/
: : . F =%
Where, in this case: H[J ... ﬂ

Hence:

IOW:

43

H

/ 2
- 520
14

i =1
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5.1.3.4 Coordinate Transformations

2 O

 Know covariance in one frame (because its easy to
express there).

e Want to know it in another frame.

Carnegie Mellon
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5.1.3.4 Coordinate Transformations
. C D
> Translation part
X, Yb\/ does not affect
X variance so Its

Irrelevant

e |f the transform between frames is:

"X =R *x+1

* The transformed mean and covariance/are:

b b

X = R%x +1 s = R%R'

Carnegie Mellon
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5.1.3.5 Nonlinear Transformation: Mean

Suppose we know L, and
want p, where: y = f(X)

Write x in terms of a
deviation from a reference x’: X = X'+ ¢

Can use Jacobian to linearize: y = flx) = fix'+¢e)~ fix") +Je
The mean of the distribution u, = Exp(y)~ Exp[f(x")] + Exp(Je)

of y is.... _~
x’ is not random, so... Exp[fix")] 7(x")

If e is unbiased, then.......... Exp(Je) = JExp(g) = 0
And if we choose ......... X" = py

IS the f() of the
mean.

[Mean of the f()ﬁ o = Exp(y) = fli) “to M'order”

“for unbiased error”

Carnegie Mellon
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5.1.3.5 NonLinear Transformation: Covariance

V= fl) = fix'+e) < fix') + e

* Rewriting: 4

y-y = Je
e By definition: _ 7 , 17
Y X, = Exp([y-y'1ly-»'1)
. . _ I
e Which is: 2, = Exp(Jeg J)
A
Zw = JZJ_:.}*JT

47
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Linearization: Again

 Whenever you write:

> =Jr. J

vy xx

e Unless all derivatives beyond J vanish (i.e unless
the mapping from x to y really is linear)

— You have written an approximation.

Carnegie Mellon
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5.1.3.6 Covariance with Partitioned Inputs

e Suppose we have: y = f(x) X7 [>_<1 >_<2:|T

 Partition the Jacobian and the Covariance:

J, = [31 32] s = 211 217
XX 2 Z
“21 <22
 We already know that the covariance of y is:
D ERN
T _ 11 ~12| |Y1
oo =12 1 = Xy = |J; ]

yy X< XXX yy [ 1 2] -221 222- J-Zl-

Carnegie Mellon
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Uncorrelated Partitioned Inputs

e Suppose we have:

219 = 2y = [0]

uncorrelated
Inputs add to
produce the

in y=Ff(x;,x,)

fUncertainties of \

output uncertainty

J

> 0 |]af
s =13 3 11 1
Yy 1 VY2
[ ]_0 ) 1
e Hence:
_ T T

Carnegie Mellon
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Box 5.1 Formulae for Transformation of Uncertainty

For the following nonlinear transformation relating random vector x to random vector
V-

y=A

The mean and covariance of y are related to those of x by:

= fl 1) X, = JE_._IJT

)

€
|

Remember that, when using this result, unless all derivatives beyond J vanish (unless
the original mapping really was linear), the result 1s a linear approximation to the true
mean and covariance.

When x can be partitioned mto two uncorrelated components, then:

S, = JZndi+ 2,05

(i,

Carnegie Mellon
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5.1.3.7 Example : Azimuth Scanner
Transforming Uncertainty from ‘s’ to ‘w’

-0

z R Know This

h Want to Know This
+Z,, (world coords)

Carnegie Mellon
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Step 1: Fromitos

e Differentiate:

53

cycO —RsycH —Rcwsﬁ_

—CysO Rsysb —Rcyco)

Xs RcwycO
= ys = —RS\|!

Z, —RcysO
R 1 0

—Rcy 0

Mobile Robotics - Prof Alonzo Kelly, CMU RI
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Step 1: Transformation

e Assume we know: -

GRR O 0
2i =1 0 o4 O z
i 0O O Sy
e Diagonal = “uncorrelated”. g
X

54

Mobile Robotics - Prof Alonzo Kelly, CMU RI

Oxx Oxy Oxz
Oxy Oyy Oyz

0) o)

0)
XZ 7z 277 , .
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Step 2: From sto w

* T.'matrix relates s to w.

* Translation part is additive
and irrelevant, so....

55

AW wi T
ZW - Rs ZS(Rs)

2y = R\sNJiSZi(JiS)T(R\sN)T

Mobile Robotics - Prof Alonzo Kelly, CMU RI

Wo_
T, = Trans(0, 0, h)Roty (0)

1000][co 000
w lo1oollo 100
S

001h||-s60 00
0001/[0 00 1]
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5.1.3.8 Example: Attitude from Terrain Map

_&mE)
0= L
z,
$ |
< .

* Find uncertainty in computed pitch angle given
uncertainty in terrain

— Which came from uncertainty in sensor.
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5.1.3.8 Example: Attitude from Terrain Map

* Suppose the uncertainty 52 0
in elevation is: S
* Variance of computed 3, = JZZJT

pitch angle is:

 Where the Jacobian in J = [89 89] - [1 _1}
this case is a gradient: |

e The result is: cg = L[G]§ + GE]

Carnegie Mellon
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5.1.3.9 Example: Range Error in Rangefinders

e Where do the input
variances come from?

R
* Variance in measured o U
range depends on Range IFov
|

(R) reflectance (r) and i
incidence angle (a).

o]

GROC
pCcosa

Carnegie Mellon
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[}
Ly |

5.1.3.9 Example: Range Error in Rangefinders
(Real Data)

e Normal incidence,

— ] [gu] L
m = m =

Standard Deviation (crm)

—
=

O White -/ ~ . | various
<= 1 8le s VoY 1 reflectance.
Grey S
';f i—“"E'DDE e Dark surfaces are
B L daC lI.-"I ] . .
———k=9.41e005 / 10 X noisier
/s A
1 * Fitlines of the
form:
_ O O _ o~ = k ( )R2
R~ F1(P
ff _,'-"'@ ! 0
_.,.f.e-"; Mfﬁ .
S __';-" fh.wsd—_%__@'___| ] ] 1 I
100 200 a0 A0 S00 GO0 F00 a0
Range (cm)

Carnegie Mellon
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5.1.3.9 Example: Range Error in Rangefinders

=tandard Deviation {cm)

(Real Data)

 White target,

various ranges.

 Fitlines of the
form:

|

H K,(R
¢ »(R)

coSa

Carnegie Mellon

45 I .
& 1580 cm
a0+ k=064
300 crn
35 k- k=229 |
& 480 cm
Nk k=423 -
2 BOO cm
250 | k=712 i
‘i;!
0 e
15 F / -
S v
10} L A -
o0 O A
5 ¥ K A -
Pl Ly — —_
E - o - & g e T
0 10 200 20 A0 = b0 /0 a0
Angle of Incidence [degrees)
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5.1.3.10 Example: Stereo Vision

* From similar triangles:

Yo Yo oY% Yr_Yr_Y
X, X f Xy, X f

e Subtract:

X -
YL_YR — [le Xr]
e Hence:
_ bf _ Xd
X = E b = -
Leﬂ* b Ri..lgIlt
CEIII]EI’EI Camem

Carnegie Mellon

61 Mobile Robotics - Prof Alonzo Kelly, CMU RI THE ROBOTICS INSTITUTE



5.1.3.11 Example: Stereo Uncertainty

Define the normalized disparity:
Now triangulation looks like:
Uncertainty transformation:

Jacobian is the scalar:

i
oZ)

N

t

Variance goes with 4th power of
range:

Standard deviation with the square ¥: NG
Oyxx ~ [_:|688 - |:_:|686‘

of range. >
b

84
— Famous result.
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Summary

 There are many kinds of error.
— They can be removed with calibration, filtering.

e Covariance measures spread. Level curves are
ellipsoids.

e Covariance is transformed with a matrix quadratic
form.
s : I ! ; |

Py S'I-r\r Actic DLWff E
C\WUGVGITUJDLUINGS A1 | -

c aro Almaoact Ac v o ecnlvio Ac
w I o UATTTIVJVJDU UJD \—UJY C\WJ JIVVIVOG UJ

e |
\.1
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