
Chapter 5 
Optimal Estimation 

Part 1 
5.1 Random Variables, Processes and 
Transformation 
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5.1.1 Characterizing Uncertainty 
• Uncertainty = 

– Not Known: Bias, scale systematic error 
• E.g. Temperature sensitivity 

– Not Knowable: Noise, randomness, unpredictability 
• E.g. “drift” 

• Fact of life: 
– Some randomness is fundamental 
– It can’t be measured. 

• Humans do a good job coping… 

Mobile Robotics - Prof Alonzo Kelly, CMU RI 4 



Modeling Uncertainty 
• An oxymoron? 
• Distributions are models. 
• Algebraic and differential 

equations are models. 
• We can “pass distributions 

through” equations to get 
other distributions. 
– one point at a time, or… 
– as a complete distribution 
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5.1.1.1 Types of Uncertainty 
• We usually consider it to be additive: 

 
 

•  ε may be zero, a constant, or a function of anything. 
•  ε may be: 

– Systematic (=“deterministic”) 
– Random (= “stochastic”) 
– a combination of both. 

• Most of all ε is unknown. Otherwise we would take it 
out. 
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Random error is called 
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estimate 



5.1.1.1 Real and Ideal Signals 
• Below: bias, scale errors, and two “outliers”. 
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5.1.1.1 Real and Ideal Signals 
• Below: Saturation, nonlinearity, deadband 
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5.1.1.1 Real and Ideal Signals 
• Might model the 

errors like so: 
 
 

• Note the appearance 
of model parameters 
of both kinds: 
– systematic (a,b) 
– stochastic (µ,σ) 
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Removing errors 
• Systematic  calibration: 

– Fit a line to the last graph 

• Stochastic  filtering 
– Smooth out the wiggles 

• Correlation  differential measurement 
– Reject the common component 
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Know Your Model 
• You can fit a line to anything. 
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Know Your Model 
• You can fit a line to anything. 
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Probability as Frequency Distribution 
• Events that occur randomly 

may nonetheless have a 
knowable probability 
distribution.  
 

• Its not unusual to know the 
distribution but never be 
able to perfectly predict an 
individual event. 
 

• Knowing one distribution 
allows you to compute 
others. 
– Math on distributions is well 

defined. 
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• Pdf – probability density function. 
 
 
 
 
 
 
 

• Describes probability of each possible outcome of 
a single experiment. 

Continuous Random Variable 
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Little p 



• Pf – probability function. 
 
 
 
 
 
 
 

• Describes probability of each possible outcome of 
a single event. 

Discrete Random Variable 
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(Joint) 2D Distributions 
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(Conditional) 2D Distributions 

• Take a slice and renormalize. 
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Gaussian Pdf 
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N Dimensional Gaussian 
• Formula: 

 
 
 

• Mahalanobis distance: 
 
 

• C is “covariance matrix” defined later. 
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• For any function of x, this is just a weighted average 
where the pdf is the weight. 
 
 
 
 
 
 
 
 

• This is a functional or moment (with infinite limits of 
integration) so you need the entire pdf to work it out. 

5.1.2.2 Expectation 
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5.1.2.2 Expectation 
• Properties inherited from integrals. 
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Expectation is a linear 
operator over functions. 



5.1.2.2 Mean 
• Set h(x)  x etc. 

 
 
 
 
 
 

• This is a property of the distribution of the 
population. 
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5.1.2.2 Mean and Most Likely Value 

• Expected value is a centroid. 
• It is not always the most likely value to occur. 
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Variance of a Random Scalar 
• Set h(x)  [x-µ]2. 

 
 
 

• Alternative notation: 
 

• Standard deviation defined as: 
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Recall : “Outer” Product 
• Opposite of “inner” or dot product. 

 
 
 

• Generates a symmetric matrix from a vector. 
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Co-Variance of a Random Vector 
• Continuous and discrete cases. 

 
 
 
 
 

• Integral of a matrix is the matrix of the integrals. 
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Sample Statistics 
• Mean: 

 
 

• Sample Covariance. 
 
 

• Elemental variances and co variances 
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5.1.2.3 Sampling Distributions and Statistics 
• “Batch” Methods: 

 
 
 
 
 

• Not feasible computationally for continuous 
update when N is large. 
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5.1.2.4 Computing Sample Statistics 
• “Recursive” Methods: 

 
 
 
 
 

• Related to the Kalman Filter. 
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Computing Sample Statistics 
• “Calculator” Methods use accumulators: 

 
 
 
 
 
 

• Used in … you guessed it … hand calculators. 

Mobile Robotics - Prof Alonzo Kelly, CMU RI 32 

xk 1+
Tk 1+
k 1+( )

-----------------=

Qk 1+ Qk xk 1+ µ–[ ] xk 1+ µ–[ ]T+=

mean

covariance

Tk 1+ Tk xk 1++=

Sk 1+
Qk

k 1+( )
-----------------=

when data arrives

when answer necessary

when data arrives

when answer necessary



Contours of Constant Probability 
• Consider the probability contained within a 

symmetric interval on the x axis. 
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5.1.2.6 Contours of Constant Probability 
• In 2D, consider contours of constant exponent. 

 
 
 
 
 

• These are ellipsoids in n dimensions: 
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Transformation 
• “Pass covariance through a function”: 
• Suppose y = 2x and x is random. 

– 1st point: if x is random, y must be random – even if “2” is 
not. 

– 2nd point: if we know cov(x) we can find cov(y). How? 
Here’s the hard way. 

 
 
 

• This works even for nonlinear functions y = f(x) but 
there is a simpler way. 
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Linearization 
• The Taylor series allows us to extend any 

function into a neighborhood around a given 
point if we know the derivatives at that point: 
 
 

• Error involved in truncation is related to 
magnitude of first neglected term. 

• We linearize like so: 
 
 

• Errors involved are “second order” 
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--------- …+ + +=
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5.1.3.1 Linear Transformation: Mean 
• Suppose we know µx and 

want µy where: 
• Because expectation is an 

integral and hence a linear 
operator: 

• In other words 
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5.1.3.1 Linear Transformation: Covariance 
• Suppose we know σx and 

want σy where: 
• Because covariance is an 

integral and hence a linear 
operator: 
 
 

• In other words 
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5.1.3.2 Variance of a Sum of RVs 
• Suppose there are n 

random variables xi of 
same distribution. 
 

• Define a new variable y 
as the sum of these: 
 
 

• What is the variance of 
y? 
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xi N µ σ,( )    ,   i∼ 1 n,=

Variance of x’es 
known and equal. 



5.1.3.2 Variance of a Sum of RVs 
• By our rules for uncertainty transforms: 

 
 

• Where, in this case: 
 

• Hence: 
 

• IOW: 
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5.1.3.3 Variance of an Average of RVs 
• Suppose there are n 

random variables xi of 
same distribution. 
 

• Define a new variable y 
as the average of these: 
 
 

• What is the variance of 
y? 
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xi N µ σ,( )    ,   i∼ 1 n,=

Variance of x’es 
known and equal. 



5.1.3.3 Variance of an Average of RVs 
• By our rules for uncertainty transforms: 

 
 

• Where, in this case: 
 

• Hence: 
 

• IOW: 
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5.1.3.4 Coordinate Transformations 

• Know covariance in one frame (because its easy to 
express there). 

• Want to know it in another frame. 
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5.1.3.4 Coordinate Transformations 

• If the transform between frames is: 
 

• The transformed mean and covariance are: 
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xa 

ya 

xb 

yb 
Translation part  
does not affect  
variance so its 
irrelevant 

xb R xa t+=

xb R xa t+= Σb R Σa RT=



5.1.3.5 Nonlinear Transformation: Mean 
• Suppose we know µx and 

want µy where: 
• Write x in terms of a 

deviation from a reference x’: 
• Can use Jacobian to linearize: 
• The mean of the distribution 

of y is…. 
• x’ is not random, so… 
• If e is unbiased, then………. 
• And if we choose ……… 
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y f x( )=

“to first order” 
“for unbiased error” 

x x ′ ε+=

x ′ µx=
Mean of the f() 
is the f() of the 
mean. 



5.1.3.5 NonLinear Transformation: Covariance 
• Rewriting: 

 
• By definition: 

 
• Which is: 
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Jε 

ε 
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y 



Linearization: Again 
• Whenever you write: 

 
 

• Unless all derivatives beyond J vanish (i.e unless 
the mapping from x to y really is linear) 
– You have written an approximation. 
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5.1.3.6 Covariance with Partitioned Inputs 
• Suppose we have: 

 
• Partition the Jacobian and the Covariance: 

 
 

• We already know that the covariance of y is: 
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Σ11 Σ12
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J1
T

J2
T

=



Uncorrelated Partitioned Inputs 
• Suppose we have: 

 
 
 
 

• Hence: 
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Uncertainties of 
uncorrelated 
inputs add to 
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output uncertainty 
in y=f(x1,x2) 

Σ12 Σ21 0[ ]= =

Σyy J1 J2
Σ11 0

0 Σ22

J 1
T

J 2
T

=∴

Σy J1Σ11J 1
T J2Σ22J2

T+=



Box 5.1 Formulae for Transformation of Uncertainty 
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5.1.3.7 Example : Azimuth Scanner 
Transforming Uncertainty from ‘s’ to ‘w’ 
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Step 1: From i to s 

• Differentiate: 
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Rcosψcosθ 

Step 1: Transformation 
• Assume we know: 

 
 

• Diagonal = “uncorrelated”. 
 

• So…… 
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T
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Step 2: From s to w 
• Ts matrix relates s to w. 
• Translation part is additive 

and irrelevant, so…. 
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5.1.3.8 Example: Attitude from Terrain Map 

• Find uncertainty in computed pitch angle given 
uncertainty in terrain 
– Which came from uncertainty in sensor. 
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5.1.3.8 Example: Attitude from Terrain Map 
• Suppose the uncertainty 

in elevation is: 
• Variance of computed 

pitch angle is: 
• Where the Jacobian in 

this case is a gradient: 
• The result is: 
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--- 1
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Σz
σf

2 o

0 σr
2
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Σθ JΣzJT=



5.1.3.9 Example: Range Error in Rangefinders 
• Where do the input 

variances come from? 
• Variance in measured 

range depends on Range 
(R) reflectance (r) and 
incidence angle (a). 
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5.1.3.9 Example: Range Error in Rangefinders 
(Real Data) 

• Normal incidence, 
various 
reflectance. 

• Dark surfaces are 
10 X noisier 

• Fit lines of the 
form: 
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σR k1 ρ( )R2=



5.1.3.9 Example: Range Error in Rangefinders 
(Real Data) 

• White target, 
various ranges. 

• Fit lines of the 
form: 
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σR
k2 R( )

αcos
--------------=



5.1.3.10 Example: Stereo Vision 
• From similar triangles: 

 
• Subtract: 

 
• Hence: 
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-------
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5.1.3.11 Example: Stereo Uncertainty 
• Define the normalized disparity: 

 
• Now triangulation looks like: 

 
• Uncertainty transformation: 

 
• Jacobian is the scalar: 

 
• Variance goes with 4th power of 

range: 
• Standard deviation with the square 

of range. 
– Famous result. 
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Summary 
• There are many kinds of error. 

– They can be removed with calibration, filtering. 

• Covariance measures spread. Level curves are 
ellipsoids. 

• Covariance is transformed with a matrix quadratic 
form. 

• Variance of a random walk process grows linearly 
with time. 

• Stochastic Diff Eqs are almost as easy to solve as 
deterministic ones. 
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