
Chapter 5 
Optimal Estimation 

Part 2 
5.2 Covariance Propagation and Optimal 
Estimation 
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State Estimation 
• Henceforth, reinterpret our “transformations” of 

uncertainty to cover recursive relationships. 
• Our goal is a set of recursive algorithms to track 

the state x, and its uncertainty P, of a dynamical 
system. 

• Define: 
– xk : state estimate at time k 

– Pk : (state) covariance estimate at time k 

– zk : measurement at time k 

– Rk : (measurement) covariance estimate at time k 
 

 
Mobile Robotics - Prof Alonzo Kelly, CMU RI 4 



5.2.1.2 Recursive Integration 
• Recall the result for a sum of iid 

RVs and reinterpret the 
“summing” as integration as it 
occurs in dead reckoning. In our 
new notation: 

• The summing process can be 
written: 
 

• Its covariance can be written 
recursively as: 
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Variance grows 
linearly wrt time. 



5.2.1.3 Variance of a Continuous Summing 
Process 
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5.2.1.4 Recursive Averaging 
• The averaging process can 

be written as: 
• Isolate the last estimate: 

 
 

• Simplifies to the recursive 
form: 

 
• Define the “Kalman Gain” 

K=1/k: 
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“Innovation” 



5.2.1.4 Recursive Averaging 
• Recall the result for an average 

of iid RVs. For k measurements: 
• Note that: 

 
• Which means: 

 
 
 

• So, variances add by reciprocals, 
just like conductances in electric 
circuits. 
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5.2.1.4 Recursive Averaging 
• Now because: 

 
• Substitute to get: 

 
 

• Substituting the Kalman gain 
(and adding 1 to k): 
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5.2.1.3 Variance of a Continuous Averaging 
Process 
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5.2.1.5 Measuring “Stability” 
• Refers to changes in effective 

(average) bias and scale errors. 
– Often quoted as change in bias or 

scale as a function of temperature 
or time.  
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Bias is unrelated to noise 
amplitude 
 
This gyro has about 0.4 deg/sec 
peak-to-peak variation. 
 
Average bias is < 20 deg/hr. 
 

From http://www.xbow.com 

Somehow, bias instability 
means the same as bias 
stability in this context. 

http://www.xbow.com/


Allan Variance (Measure of Bias Stability) 
• Average all measurements over some time period ∆t. 
• Asks how much the average (over ∆t ) can change over a 

period of time ∆t. 
• Take difference in average in successive bins. Square it. 
• Add up at least 9 of these and divide by 2(n-1) 
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Successive bins 
Intuitively: 

Variance in the Bias 
For given level of averaging 

What is the 2 for? 



Allan Variance 

• Compute the difference in average of successive 
bins. 
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Allan Variance 
• Variance drops 

initially as ∆t 
increases (effect of 
averaging). 
– Sensor noise 

dominates for small 
∆t (does not average 
out). 

– Rate random walk 
dominates for large ∆t 
(bias really is 
changing). 
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Inertial sensor manufacturers 
quote the minimum (equals best  
achievable result with active bias  
estimation and fully modeled sensor) 



Allan Deviation Graph 
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So What?: Recursive Form 
• Recursive processes are also of the form y = f(x1,x2). 
• Let y mean the new value xi+1 of some state variables 

that we are trying to estimate. 
• Let x1 mean the last estimate of state xi. 
• Let x2 mean the inputs ui that are required compute the 

state. 
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5.2.2.1 Discrete Stochastic Integration 
• Recall our result for covariance of a partitioned 

state vector: 
 

• In our new notation, this becomes: 
 
• In a more standard notation: 
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State 
Uncertainty 

Transition 
Matrix 

Input 
Uncertainty 

Input 
Jacobian 

Covariance 
Propagation 
in any 
Decorrelated 
Estimation 
Process. 

Pi 1+ ΦPiΦ
T ΓQ iΓ

T+=

Σy J1Σ11J 1
T J2Σ22J2

T+=

Σ i 1+ JxΣiJ x
T JuΣuJu

T+=

This is one of the 
Equations of the 
Kalman Filter 



5.2.2.2 Example: Dead Reckoning 
(With Odometer Error Only) 
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xi xi yi

T
=State: 

Update: 

ui li θi

T
=

xi 1+ f xi ui,( )
xi li θi( )cos+
yi li θi( )sin+

= =

Measurements: 



5.2.2.2 Example: Dead Reckoning 
(Jacobian) 
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Linearize: 

Φi xi∂
∂xi 1+ 1 0

0 1
= =

Jacobians are functions of the 
present estimate and the 
present measurements. 

Γ i ui∂
∂xi 1+ ci li– si

si lici

= =



5.2.2.2 Example: Dead Reckoning 
(Input Uncertainty) 

• The uncertainty in the current position and 
measurements is: 
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Pi
σxx σxy

σyx σyy i

=

Assume a perfect 
compass. 

Assume 
Decorrelated 
errors. 

Qi
σ l

2 0
0 0

=



5.2.2.2 Example: Dead Reckoning 
(Answer) 
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Pi 1+ P i
ci

2σ l
2

cis iσl
2

cisiσ l
2 si

2σ l
2

+=

Note: Trace of  Pi+1 
increases monotonically 

Pi 1+ ΦPiΦ
T Γ iQiΓi

T+=



5.2.2.3.1 Variance of a Continuous Random Walk 

• Recall that for n summed iid random variables: 
 

• Suppose the x’es were velocities at time 1,2…n. 
Then: 
 

• But this means that 𝜎𝜎𝑦𝑦2 → ∞ as ∆𝑡𝑡 → 0 !!! 
• That cannot be right; it would require infinite 

power. 
• What is more realistic is variance that grows 

linearly wrt time: 
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5.2.2.3.2 Integrating Stochastic Differential 
Equations 

• Lets reinterpret our perturbative differential 
equation so mean a DE driven by random noise. 
 

• Define the covariances: 
 
 

• We might be tempted to solve this using the 
vector convolution integral: 
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White noise is 
uncorrelated 
in time. 

Noise 

Reimann 
says this 
integral does 
not converge 



Motivation for Stochastic Calculus 
• An integral is a limit of a sum of products. 
• The limit exists when the wiggles go away when you 

zoom in on a function: 
 
 
 
 

• For a white random signal, autocorrelation is zero, 
and the wiggles never go away at any zoom level. 

• The integral or derivative of a white signal is 
meaningless. 
– So what is “stochastic calculus”? 
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Deterministic Statistics 
• The statistics of a distribution of a random variables are 

deterministic quantities. 
• i.e. s has a time derivative because s is not random. 

 
 

 
 
 

• We will write differential equations for the statistics, not 
the random signals. 
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Individual random walk signal Variance of a zillion 
random walk signals 



5.2.2.3.2 Integrating Stochastic Differential 
Equations 

• Recall: we cannot integrate the following because 
it fails the Reimann condition. 

 
 

• Trick: Introduce a differential random walk 
process: 

 
• Now, integrate the following: 
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5.2.2.3.2 Integrating Stochastic Differential 
Equations 

• The integral of (squared expectation) of the last result is: 
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5.2.2.3.4 Linear Variance Equation 
• We can differentiate the last result to find the 

differential equation that is satisfied by: 
– The covariance matrix of a dynamical system 
– Driven by white noise 
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This term usually 
leads to unbounded 
growth 
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5.2.3.1 Maximum Likelihood Estimation 
• Consider the problem of optimally estimating 

state from a series of measurements: 
– Let 𝑥𝑥 ∈ ℜ𝑛𝑛 denote the state and 𝑧𝑧 ∈ ℜ𝑚𝑚 denote the 

measurements. 
– Measurements relate to the state by a measurement 

matrix: 
𝑧𝑧 = 𝐻𝐻𝑥𝑥+ 𝑣𝑣      𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤      𝑣𝑣 ∼ 𝑁𝑁 0,𝑅𝑅  

– The measurements are assumed to be corrupted by a 
noise vector of covariance: 

𝑅𝑅 = Exp(𝑣𝑣 𝑣𝑣𝑇𝑇) 
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5.2.3.1 Maximum Likelihood Estimation 
• The innovation 𝑧𝑧 − 𝐻𝐻𝑥𝑥   (= 𝑣𝑣) is Gaussian by assumption, so… 
• The probability of getting a measurement 𝑧𝑧 when the true state is 
𝑥𝑥 is: 

 
• This exponential will be maximized when the form in the exponent 

(without negative sign) is minimized: 
 
 

• If the system is overdetermined, the solution is simply the 
weighted left pseudoinverse: 

Mobile Robotics - Prof Alonzo Kelly, CMU RI 33 



5.2.3.1.1 Covariance of the MLE Estimate 
• The weighted left pseudoinverse is just a function that maps 𝑧𝑧 onto 
𝑥𝑥�∗, so lets define its Jacobian: 
 

• Therefore the covariance of the MLE result is: 
 
 
 

• Which simplifies to: 
 
 

• Note that this expression appears in the pseudoinverse:  
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Equation 5.80 



5.2.3.2 Recursive Estimation of a Random 
Scalar 

• Suppose: 
– Present state estimate 𝑥𝑥  has variance 𝜎𝜎𝑥𝑥2 
– Measurement 𝑧𝑧 has variance 𝜎𝜎𝑧𝑧2 

– Want to get new state estimate 𝑥𝑥′ and its variance 𝜎𝜎𝑥𝑥′
2  

• The trick to derive a Kalman filter is to pretend 
the present estimate comes in as a measurement 
with the same covariance. 

• The measurement relationship for (both) 
measurements is: 
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5.2.3.2 Recursive Estimation of a Random 
Scalar 

• That means the associated measurement and 
covariance matrices are: 
 

• So, the weighted least squares solution is: 
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5.2.3.2 Recursive Estimation of a Random 
Scalar 

• This simplifies to: 
 
• And, the uncertainty in the new estimate is (from 

Equation 5.80): 
 
• Which is the same as saying the new information 

is the sum of that of the measurement and state: 
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Equation 5.8.1 

Equation 5.8.3 



5.2.3.3 Example: Estimating Temperature 
from Two Sensors 

• An ocean-going robot has to measure water 
temperature using two sensors. 

• One of the measurements is 𝑧𝑧1 = 4 with variance 
𝜎𝜎𝑧𝑧1
2 = 22. Therefore 𝑝𝑝(𝑥𝑥|𝑧𝑧1) is as shown: 
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5.2.3.3 Example: Estimating Temperature 
from Two Sensors 

• Suppose the other measurement is 𝑧𝑧2 = 6 with 
variance 𝜎𝜎𝑧𝑧2

2 = (1.5)2. Therefore 𝑝𝑝(𝑥𝑥|𝑧𝑧2) is as 
shown: 
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5.2.3.3 Example: Estimating Temperature 
from Two Sensors 

• Application of Eqns 5.81 and 5.83 gives: 
 
• The result is denoted graphically as follows: 
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5.2.3.2 Recursive Estimation of a Random 
Vector 

• Suppose: 
– Present state estimate 𝑥𝑥  has variance 𝑃𝑃 
– Measurement 𝑧𝑧 has variance 𝑅𝑅 
– Want to get new state estimate 𝑥𝑥′  and its variance 𝑃𝑃′ 

• The measurement relationship for (both) 
measurements is: 
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5.2.3.2 Recursive Estimation of a Random 
Vector 

• That means the associated measurement and 
covariance matrices are: 
– 𝐻𝐻′ = 𝐻𝐻 𝐼𝐼 𝑇𝑇           𝑅𝑅′ = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑([𝑅𝑅 𝑃𝑃])            

• Having any measurement means the system is 
overdetermined.  

• So, the weighted least squares solution is: 
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5.2.3.2 Recursive Estimation of a Random 
Vector 

• Invert the covariance matrix on the right: 
 
 

• Simplify the quadratic form on left: 
 
 

• Multiply out the product on right: 
 

• This looks like an inverse covariance weighted 
average. 
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5.2.3.4.1 Efficient State Update 
• Apply the Matrix Inversion Lemma which states: 

 
• Substituting: 

 
• Where we define the innovation covariance:  

 
• Define the Kalman Gain: 
• Which gives the famous result: 
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Equation A 



Information Weighted Average 
• Once again, the result is: 

 
 
• Multiply that by 𝑃𝑃𝑃𝑃−1 to get: 

 
 

• So, the Kalman Filter is computing an information 
weighted average of the prior state and the 
innovation. 
 

Mobile Robotics - Prof Alonzo Kelly, CMU RI 45 



5.2.3.4.2 Covariance Update 
• Recall the MLE covariance: 
• Consider again: 
 
 
• So, the first part in brackets is just: 
• Substitute the Kalman Gain into Equation A: 

 
• To get, the final form of covariance update: 
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Equation 5.80 

Equation 5.85 

[𝑯𝑯𝑻𝑻          𝑹𝑹−𝟏𝟏        𝑯𝑯]−𝟏𝟏 



5.2.3.4.3 Covariance Update for Direct 
Measurements 

• When H=I the sensor measures the state directly, 
so... 
 
 

• Suppose: 
 

• Consider the sequence of measurements: 
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Information Adds Directly 



5.2.3.4.3 Covariance Update for Direct 
Measurements 

• Regardless of the measurements themselves 
(linear case), the covariance evolves as follows: 
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5.2.3.5 Nonlinear Optimal Estimation 
• When the measurements are related to the state 

nonlinearly: 
 

• We simply use nonlinear weighted least squares. That 
means, we simply make one substitution: 
 
 

• Whereupon the Kalman Filter becomes the Extended 
Kalman filter. 
– Which is no longer optimal, but is nonetheless super useful 
– Easily the estimation equivalent of PID control. 
– KF is just a special case of EKF. 
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Summary 
• Compounding (adding) noisy measurements leads 

to a result with more noise. 
• Merging (filtering) noisy redundant 

measurements leads to a result with less noise. 
• Kalman Filters are just recursive weighted least 

squares estimators. 
– That and matrix inversion Lemma is all it takes to 

derive it. 
– We will shortly see that they are applicable to 

dynamical systems. 
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