
Chapter 5 
Optimal Estimation 

Part 3 
5.3 State Space Kalman Filters 
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Rudolph. E. Kalman 
• Born in Budapest, Hungary, 

on May 19, 1930. 
• “Magnetic personality” 
• Did EE at MIT 
• Professor at Stanford U 
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Impact 
• One of the greatest and broadly applied 

discoveries in the history of statistical estimation 
theory. 

• Navigation and Guidance Applications 
– Robotics 
– Aircraft 
– Automobiles  
– Spacecraft orbit determination 
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Impact 
• Control and Estimation Applications 

– Continuous manufacturing processes (Power, 
Chemical) 

– Target tracking 
– Computer vision 
– Economic Forecasting 
– Stock Market Prediction !!! 
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Impact 
• Subsystems Within Robotics 

– Perception, 
– Localization 
– Control 

• Subproblems of Robotics 
– State estimation 
– Data association 
– Calibration, system identification 

• Trade studies 
– Built-in simulation 
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Characterization 
• Usually, the situation is more generic with 

measurements that are: 
– incomplete: related to some but not all of the 

variables of interest 
– indirect: related indirectly to the quantities of interest  
– intermittent: available at irregularly-spaced instants of 

time 

• Also, the state vector of interest may be  
– changing with respect to time. 

• The Kalman Filter can handle all of this. 
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Characterization 
• An algorithm. Not hardware. 
• Recursively estimates state of a dynamic system 

from noisy data. 
– System dynamics perturbed by white noise. 
– Measurements perturbed by white noise. 

• For optimal (or even correct) results, errors must 
be: 
– Unbiased (have zero mean for all time) 
– Gaussian (have a Gaussian distribution for all time) 
– White (contain all frequencies) 
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5.3.1 Introduction 
• Recall the form of state space model of a system: 
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5.3.1 Overall Operation 
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5.3.1 Additional Capabilities of SS KF 
• An SS KF can: 

– Predict state between and beyond the measurements. 
– Use rate measurements that are derivatives of 

required state variables. 
– Explicitly account for modeling assumptions and 

disturbances in a more precise way than just “noise”. 
– Identify a system (calibrate parameters) in real-time. 
– Correlations that it tracks make it possible to remove 

effects of historical errors once they become known. 
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5.3.1.1 Need for State Prediction 
• Let subscripts denote times thus: 

 
• Not all of the difference between x1 and x2 is now 

due to error. Some of it is motion. 
• Must compute x2 from x1 and then compare z2 to 

that. 
• That also involves predicting the error in the 

prediction  recall how error compounds in dead 
reckoning. 
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x1 x t1( )= z2 z t2( )=



5.3.1.3  Discrete Time System Model 
• Continuous Time: 

 
 

 
• Discrete Time: 
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Continuous form 
rarely used in practice 



Nomenclature 
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n = # states m = # measurements 



5.3.1.3 Noises 
• Assume: 

– Process and measurement noises are white 
(uncorrelated with themselves in time). 

– Uncorrelated with each other. 
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5.3.1.4 Transition Matrix 
• Converts continuous time ODEs to discrete time 

ones: 
• The time continuous, matrix ODE: 

 
 

• Can always be converted to: 
 
 

• But it may not be easy. 
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5.3.1.4 Matrix Exponential 
• When F(t) is actually time-independent (F): 

 
 

• Don’t panic! Its just adds and multiplies, ah…, 
forever. 

• For time varying F(t), even when ∆t is sufficiently 
small relative to system time constants, can use: 
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5.3.2.1 The Filter Equations – 2 Sets 
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+ means “after incorporation  
of measurement 
into estimate” 



5.3.2.2 Time and Updates 

• System model runs continuously (i.e. at high 
rates). 

• Kalman filter runs when measurements are 
available. 
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5.3.2.3 Interpreting Uncertainty Matrices 
• Qk: 

– you provide this  
– instantaneous uncertainty which corrupts the system 

model 
– random physical disturbances and process model errors 

• Rk: 
– you provide this too  
– instantaneous uncertainty which corrupts the 

measurement model 
– random errors in sensor outputs 

• Pk : 
– Filter mostly manages. You provide only P0 
– total integrated uncertainty in state estimate 
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Linearizing Nonlinear Problems 
• Full nonlinear model: 

 
 
 

• Linearize about a reference trajectory x*(t) 

Mobile Robotics - Prof Alonzo Kelly, CMU RI 26 

x· f x t,( ) g t( )w t( )+=
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∆x· x∂
∂f x* t,( )∆x g t( )w t( )+=

z h x* t,( )–
x∂
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Linear (Feedforward) Kalman Filter 
• Does not update the reference trajectory: 

 
 
 
 
 
 

• State vector is the errors. 
• Advantage: more responsive to dynamics (computed 

in reference trajectory). 
• Disadvantage: diverges more quickly. 
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Extended Kalman Filter 
• Does update the reference trajectory: 

 
 
 
 
 
 

• State vector is the state. 
• Disadvantage: less responsive to dynamics. 
• Advantage: diverges less quickly. 
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Extended Kalman Filter 
• Kalman Filter: 

– Jacobians: 
– Compute Kalman gain: 
– Update state estimate: 
– Update its covariance: 

 

• System Model: 
– Project state: 
– Project covariance: 
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These are the ones you will use for almost any filter. 



State Transition – Nonlinear Problems 
• When the system model is nonlinear: 

 
• The previous expression: 

 
• Is just code for “solve the ODE”. The “transition 

matrix” can be generated from time linearization: 
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Uncertainty Propagation – Nonlinear 
Problems 

• The state covariance propagation is: 
 
 

• This approximation can be used: 
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System Identification 
• A poorly known constant can be computed 

automatically if there are enough measurements 
to observe it. 

• Its “state equation” is: 
 

• Just add it to the state vector and make sure to 
update H to encode how measurement error 
depends linearly on its error. 

Mobile Robotics - Prof Alonzo Kelly, CMU RI 32 

x·i 0=



Outline 
• 5.3 State Space Kalman Filters 

– 5.3.1 Introduction 
– 5.3.2 Linear Discrete Time Kalman Filter 
– 5.3.3 Kalman Filters for Nonlinear Systems 
– 5.3.4 Simple Example: 2D Mobile Robot 
– 5.3.5 Pragmatic Information for Kalman Filters 
– 5.3.6 Other Forms of the Kalman Filter 
– Summary 

33 Mobile Robotics - Prof Alonzo Kelly, CMU RI 



5.3.4 2D Mobile Robot Filter 
• State Vector: 

 
 
 
 

• Measurements 
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5.3.4.1 System and Measurement Model  
(System Model) 

• Generally of the form: 
 

• Here, it is: 
 
 
 

• Assumes constant velocity between 
measurements, but no worries because: 
– Measurements can change velocity. 
– Measurements may arrive at 100 Hz. 
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5.3.4.1 System and Measurement Model  
(System Jacobian) 

• Recall: 
 

• “Clearly”: 
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5.3.4.2 Discretize and Linearize 
• Linearize: 

 
 
 
 
 
 
 

• This is a linearized 
(called “Euler”) 
approximation. 

• Express in matrix form: 
 
 
 
 
 
 
 

• Maybe its easier to 
code this. 
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5.3.4.2 Discretize and Linearize 
(State Uncertainty Propagation) 

• Recall, its of the form: 
• We approximate the transition matrix with: 

 
• Where: 
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Note difference from F 
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5.3.4.3 Initialization 
• Be careful with P0: 

– Too little P0 and measurements will be ignored. 
– Too much P0 and numerical problems. 

• Here assume: 
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Means: the matrix whose 
diagonal is this vector 



5.3.4.4 System Disturbances 
• Error growth between measurements 

 
• Use it to capture: 

– Incorrectness of flat terrain assumption. 
– Incorrectness of no Wheel slip assumption. 
– Incorrectness of constant velocity assumption. 

 
• Would like it to be larger for larger ∆t. 
• In the absence of real data, try something related to 

the Taylor remainder 
– First neglected term in dynamics linearization. 
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5.3.4.4 System Disturbances 
• Try: 

 
• But what is 𝐺𝐺𝑘𝑘 ? 
• Let 𝑘𝑘𝑥𝑥𝑥𝑥 and 𝑘𝑘𝑦𝑦𝑦𝑦 be interpreted in the body frame 

to allow asymmetric error magnitudes in direction 
of travel. 

• Then 𝐺𝐺𝑘𝑘 converts coordinates: 
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OK. Breathe. 
We’re 1/4 Done 

 
We have the dynamics … 



5.3.4.5.1 Transmission Encoder Measurement 
Model 

• “Velocity” encoder: 
 
 

• Always express measurements as a prediction 
based on: 
– The present state 
– No other measurements 

• If you are sure you can’t predict the 
measurements from the state, add more state 
variables til you can. 
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5.3.4.5.1 Transmission Encoder Measurement 
Model (Error Model) 

• Express uncertainty as “distance” 
dependent random walk. 

• In continuous time: 
 
 

• Multiply by ∆𝑡𝑡𝑒𝑒 to get: 
 
 

• Produces a position variance that 
grows linearly with distance 
between measurements. 
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Why | | ? 

That is, when integrated 
wrt time, grows linearly 

wrt distance because  
Vdt = ds 



5.3.4.5.2 Gyro Measurement 
Model/Uncertainty 

• Gyro measurement: 
 
 

• For R, go with time dependent random walk: 
 
 

• To convert to discrete time (multiply by ∆𝑡𝑡𝑔𝑔). 
• Makes the variance of angle rate constant while 

variance of computed angle grow linearly with 
time. 
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1/2 DONE 
 
 

now have:  
z = h(x) 

& H 
& R 



Time for a Few Good Z’s 
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Dead Reckoning 
• So far, we have a lot of code 

that does this: 
• Any process that only 

integrates noisy velocities 
must eventually (quickly?) 
get lost. 

• Without pose “fixes”, even 
an optimal estimate is not 
much use. 
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Landmarks 
• Suppose: 

– A map of where the landmarks are in the 
world. 

– A sensor which measures landmark 
positions relative to itself. 
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Note: The book presents a 
“forced formulation” which is 
better but not consistent with 
the homework assignment, so 
these slides cover an unforced 
formulation – where velocities 
remain in the state vector. 



5.3.4.6.1 Forced Formulation 
• Can treat velocity measurements as inputs u 

rather than measurements z. 
• Errors in the velocities are then modeled in Q 

rather than R. 
• The state vector is smaller: 

 
• System Model: 
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5.3.4.6.1 Forced Formulation 
• System model in matrix form: 

 
 
 

• System Jacobian: 
 
•  Φk matrix: 

 
• State Uncertainty Propagation: 
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5.3.4.6 Incorporating a Map 
(Landmark Measurement Model) 

• This is of the form z 
= h(x) where: 
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5.3.4.6 Incorporating a Map 
(Landmark Measurement Model) 

• Jacobian w.r.t robot 
pose: 
 
 

• Jacobian w.r.t 
landmark pose: 
 

Mobile Robotics - Prof Alonzo Kelly, CMU RI 53 

Hx
z

ρd
s∂

∂z 

 
 
 

ρd
b∂

∂ρd
s

 
 
 

ρb
w∂

∂ρd
b

 
 
 

H sd
z Hbd

sd Hx
bd= =

Hwm
z

ρd
s∂

∂z 

 
 
 

ρd
b∂

∂ρd
s

 
 
 

ρd
w∂

∂ρd
b

 
 
 

ρm
w∂

∂ρd
w

 
 
 

Hsd
z Hbd

sd Hwd
bd Hwm

wd= =

w 

m 

d 

r 

𝛼𝛼 

xm 



5.3.4.6.2 Observer and Jacobian 
• A real sensor does not measure in Cartesian 

coordinates. Polar is more likely: 
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5.3.4.6.3 Sensor Referenced Observation 
 
 

• Nothing here but tons of math…… 
• Recall: 
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5.3.4.6.4 Body To Sensor 
 
 

• We need: 
• Inverse is: 
• Compound-Right Pose 

Jacobian! 
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5.3.4.6.5 World to Body: First Jacobian 
 
 

• We need: 
• Inverse is: 

 
• Compound-Right 

Pose Jacobian 
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5.3.4.6.5 World to Body: Second Jacobian 
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5.3.4.6.6 Model to World 
 
 

• We need: 
• Compound-Left Pose Jacobian 
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Total Measurement Model: Point 
Features 

• Compute it like this: 
 
 
 

• Jacobians 
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3/4 DONE! 
 

now have some really good z’s 



Still 



Not 



Done ! 
 



Data Association 
• The Achilles Heel of the Kalman Filter. 
• There are lots of landmarks out there. How do 

you know which ones you are looking at? 
• One mistake and its all over: 

– A potentially massive change in the vehicle pose will 
occur. 

– This will cause more wrong associations and fewer or 
no right ones. 

– The filter will diverge, and the system will rapidly get 
lost. 
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Innovation Covariance 
• This is the expression: 

 
 

• in the Kalman Gain calculation. 
• Represents the covariance of the innovation z-

h(x). 
– I.E. how does the state error P [in h(x)] and the 

measurement error R [in z] combine to give the error 
in my prediction right now. 
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Validation Gates 
• Recall the Mahalanobis distance - multidimensional 

deviation from the mean: 
 

• Compute this for every landmark giving n d’s to look at. 
• It turns out if the innovation is Gaussian, then the MHD is 

Chi square distributed. Confidence thresholds can be 
derived: 
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Validation Gates 
• This leads to some good ideas for data 

association:  
– Require that any candidate association have a MD < 

“about 3”. 
– Require that there be no other candidate association 

with an MD < 6 or an even bigger number. 
– Require that an association be stable for several cycles 

before it is actually used. 
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Done ! 
 
 

This has been a ...  
really really useful … 

Kalman Filter 



Outline 
• 5.3 State Space Kalman Filters 

– 5.3.1 Introduction 
– 5.3.2 Linear Discrete Time Kalman Filter 
– 5.3.3 Kalman Filters for Nonlinear Systems 
– 5.3.4 Simple Example: 2D Mobile Robot – Harder 

Example 
– 5.3.5 Pragmatic Information for Kalman Filters 
– 5.3.6 Other Forms of the Kalman Filter 
– Summary 

71 Mobile Robotics - Prof Alonzo Kelly, CMU RI 



Just Kidding! 
• Here are some graphs of a 3D filter. 
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3D AHRS Filter Results 
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3D AHRS Filter Results 
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3D AHRS Filter Results 
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Outline 
• 5.3 State Space Kalman Filters 

– 5.3.1 Introduction 
– 5.3.2 Linear Discrete Time Kalman Filter 
– 5.3.3 Kalman Filters for Nonlinear Systems 
– 5.3.4 Simple Example: 2D Mobile Robot 
– 5.3.5 Pragmatic Information for Kalman Filters 
– 5.3.6 Other Forms of the Kalman Filter 
– Summary 
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Sequential Measurement Processing 
• All measurements do 

not have to come in at 
the same rate.  

• Just process ‘em when 
you have ‘em after 
predicting state for 
their time of arrival. 
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State_Update() /* enter every 
cycle */ 

{ 

systemModel(dt); 

 

if( Doppler measurement available) 

 run Kalman() on Doppler; 

if( Encoder measurement avail
  

 run Kalman() on encoder; 

if( AHRS measurement available) 

 run Kalman() on AHRS;  

if( Steering measurement 
available) 

 run Kalman() on steering; 

 } 

Kalman() 

 { 

 } 
  



Single Measurement Efficiency: Kalman 
Gain  

• Recall: 
 

• Suppose only one direct measurement: 
 

• Measurement Jacobian is: 
• Define: 
• Then, Kalman Gain is a scalar times s’th column of 

P: 
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K 1
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Uncertainty Propagation 
• The formula: 
• takes n2(1+m)+n3   flops 

– [1200 for n=10,m=1] 

• Can be computed more efficiently as: 
 

• which takes n2(1+m) + mn2 flops 
– [300 for n=10,m=1] 
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Uncertainty Propagation  
• For a scalar measurement, recall: 

 
 

• KHP is just a constant times the outer product: 
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R matrix and cycle time 
• It is slightly better to have every element of R be 

proportional to dt. This tends to make your 
filter behave appropriately if you change the time 
step.  

• If not, you can get wierd behaviors like 
a filter which produces worse answers if you run it 
faster (because you are adding up more random 
numbers of the same variance).  
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Outline 
• 5.3 State Space Kalman Filters 

– 5.3.1 Introduction 
– 5.3.2 Linear Discrete Time Kalman Filter 
– 5.3.3 Kalman Filters for Nonlinear Systems 
– 5.3.4 Simple Example: 2D Mobile Robot 
– 5.3.5 Pragmatic Information for Kalman Filters 
– 5.3.6 Other Forms of the Kalman Filter - SKIP 
– Summary 
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Outline 
• 5.3 State Space Kalman Filters 

– 5.3.1 Introduction 
– 5.3.2 Linear Discrete Time Kalman Filter 
– 5.3.3 Kalman Filters for Nonlinear Systems 
– 5.3.4 Simple Example: 2D Mobile Robot 
– 5.3.5 Pragmatic Information for Kalman Filters 
– 5.3.6 Other Forms of the Kalman Filter 
– Summary 

83 Mobile Robotics - Prof Alonzo Kelly, CMU RI 



Summary 
• A SS KF is conceptually two sets of equations. 
• Most cases require linearization. The “extended” 

form is the most useful. 
• Handles the tricky issue of integration dead 

reckoning and position fixes automatically. 
• Most measurements are scalar and we often 

assume decorrelation. Leads to processing 
efficiencies. 
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