
Chapter 5 
Optimal Estimation 

Part 4 
5.4 Bayesian Estimation 
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Whats The Big Deal 
• Can handle arbitrary (non Gaussian) distributions, 
• Produces an arbitrary distribution as a result. 
• Hence, computes the probability the robot is in 

every place. Solves the “kidnapped robot” 
problem. 
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Thomas Bayes 
• Born London 1719 
• Educated Edinburgh 

– Logic / Theology  

• Known for tutorial on Newton’s “fluxions”. 
• Posthumously (1764) published “Essay Towards 

Solving a Problem in the Doctrine of Chances”. 
– Addresses “inverse probability” 
– Given some observations of a distribution, what can 

be said about the distribution. 
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Probability 
• Let A and B be discrete random 

variables. 
• So long as A is a variable, P(A) is 

a function: P(A) : A  [0,1]. 
• For a specific value of A, like 

“red”, P(red) is a number. By 
P(A=red) we mean  
– the probability that 
– the proposition that a red jelly 

bean was selected 
– is true. 
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Notation 
• If f(x) = x2, f(y) usually means y2.  
• Not so for probability. 
• P(A) means an unspecified function over the 

domain of A and P(B) means a different function 
over the domain of B. 
– Concentrate on what’s inside the ( ). 
– The A in P(A) determines the form of the function P. 

• Could have P(A) = 1-A and P(B) = B2 {not 1-B}. 
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Variables and Events 
• If A is a random variable, then an event is some 

statement about its value, like A=red. 
• The variable A has a probability mass function or 

distribution like e-x2. 
• The event A=red has a probability like 0.3. 
• Sometimes we talk about several: 

– events (statements about values of variables) 
– variables (different random processes) 
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Predicates and Functions 
• Sometimes P(A) means the probability that A 

takes a particular assumed value (like “true” if A is 
binary. 

• Then, its best to write P(A=true). 
• Other times P(A) means the entire distribution of 

probabilities for each possible value of A. 
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red grn blue 

P(A) 

A 



Negation 
• P(red) or P(¬A) is often used for the probability 

that the proposition a nonred bean was selected 
is true. 

• Always: 
– P(red) = 1 – P(¬ red) 
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Odds 
• Odds of event A: 

 
 

• Knowing any one of                                       
determines the other two. 
 

• Odds formulations and “log odds” = log[O(A)] 
can be very computationally efficient. 
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O A( ) P A( )
P A( )
------------ P A( )

1 P A( )–
--------------------- 1 P A( )–

P A( )
---------------------= = =

P A( ) P A( ) O A( )

One equation 
3 unknowns. Hmmmm 



Venn Diagrams 
• Imagine a process that selects 

one point in space with uniform 
probability. 

• Label some regions. 
– The event “A” occurs when the 

point ends up in circle A etc. 
• A point can only be in one place, 

so….. 
• How many “disjoint” events can 

you list. 
– When the circles do not overlap, 

there are 3 elemental possibilities.  
– When the circles do overlap, there 

are 4 elemental possibilities. 
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A B 

A B∧

A B 

A B∧

A B∧



A B 

A B∧

A B 

A B∧

A B∧

Disjunction (OR) 
• Probability of either A or B: 

 
• When A and B are mutually 

exclusive (disjoint): 
 

• Because:   
 
 

• Consider P(¬ grn v ¬ blu) 
– 2/3+2/3-1/3 = 1.  
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P A B∨( ) P A( ) P B( ) P A B∧( )–+=

Prevents double 
counting any 
overlap 

P A B∨( ) P A( ) P B( )+=

Exclusive means circles don’t 
overlap, so its impossible for 
both A and B to occur at same 
time for one point. 

P A B∧( ) 0=



Conjunction (AND) 
• When A and B are independent, the 

probability of both occurring is: 
 
 

• Which gives: 
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P A B∧( ) P A( ) P B( )×=

P A( ) P A B∧( )
P B( )

-----------------------=

P B( ) P A B∧( )
P A( )

-----------------------=



Dependence / Conditional 
• P(A | B) means prob of A occurring 

“given that” B has occurred. 
• Still talking about one point. 
• When the circles overlap, the two 

events are dependent. 
• If you know B is true, there is a 

slightly higher probability that A is 
true and vice versa.  

• Dependence means… 
 

• Independence means 
 

• Disjoint/Exclusive means: 
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P A B( ) P A( )=

P A B( ) P A( )≠

P A B( ) 0=

Its not about whether one point falls 
in A after another falls in B. 

A B 

A B∧

A B∧



Interpretation as a Staged Experiment 
• P(A=red) means the 

prob a red bean is 
selected from any 
barrel. 

• Stage 1: 
– P(B) means prob of 

selecting each barrel of 
jelly beans. 

• Stage 2: 
– P(A=red|B) means prob 

of selecting a red bean 
from a specific barrel. 
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rgb 
Mostly 
blue 

Mostly 
red 

Three conditional prob functions 
 
P(A|rgb) 
P(A|mostly blue) 
P(A| mostly red) 



Interpretation as a Slice 

• Variable y ceases to be random once its known.  
• Then p(x) depends on it deterministically. 
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After  
Normalization 



Interpretation as an Estimation Process 
• Let A be the state of a system denoted  x and let B be 

a measurement denoted z. 
• Then: 

– p(x) means the likelihood of the system being in state x. 
– p(z) means the likelihood that a particular measurement is 

observed. 
– p(x|z) means the likelihood of the system being in the 

state x if the measurement z is observed. 
– p(z|x) means the likelihood of a measurement z being 

observed if the state is x 
– p(x,z) means the likelihood of the system being in a state x 

and measurement z is observed. 
• Every one of these is a different number 0<n<1. 
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Total Probability and Marginalization 
• Suppose n mutually exclusive events (like n different 

values of the variable B). 
 

• If we know one (unknown) of these events Bi has 
occurred, then the probability of A is: 
 

• Consider: one of grn…blu has occurred.. 
 
 
 
 

• Integrates out a dimension in the PDF. 
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B1 …Bn

P A B1 …Bn( ) P A B1( )P B1( ) P A B2( )P B2( ) … P A Bn( )P Bn( )+ + +=

P(¬ red|grn…blue)=P(¬ red|grn)P(grn)+ P(¬ red|blue)P(blu) 
P(¬ red|grn…blue)=(1)(1/2)+ (1)(1/2) = 1 

Not 1/3 
Only grn or blu 
were possible 



Marginalization 
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P(A,B) A ¬A 
 

B A&B 
0.1 

¬A&B 
0.2 

¬B A&¬B 
0.2 

¬A&¬ B 
0.5 

This col is 
0.3P(B|A) 
P(A) = 0.3 

This row is 0.3P(A|B) 
P(B) = 0.3 

This row is 0.7P(A| ¬ B) 
P(¬B) = 0.7 

4 Mutually 
Exclusive Events 
All 4 add to 1 

This col is 
0.7P(B| ¬ A) 
P(¬ A) = 0.7 



Different Views 
• P(A|B) – conditional, A variable, B fixed 

– I happen to know B 
– Based on Bs value, how likely is each value of A. 

• P(A,B) – joint, A,B variable 
– Probability of each different pair of values (a,b) 

• P(A) – prior, A variable, B irrelevant 
– Probability of each value (a) if we knew nothing 

(“prior” to knowing something) about B. 
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Bayes Rule 
• We can compute P(A|B). 
• Given B has occurred, the random point is either 

in the overlap or not in it. 
• If all points in B are equally likely…. 

– Ratio of overlap to area of B is the relative frequency 
of falling in the overlap. 
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A B 
A B∧

A B 
A B∧

P A B( ) P A B∧( )
P B( )

-----------------------=

A B∧



Other Forms 
• Recall: 

 
• By symmetry: 
• Eliminate common expression: 

 
• Rearrange: 

 
 

• Computes P(X|Y) from P(Y|X). 
• We care about: 

– P(x|z)  P(state | measurements) 
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P A B( ) P A B∧( )
P B( )

-----------------------=

P B A( ) P A B∧( )
P A( )

-----------------------=

P A( ) P B A( )× P B( ) P A B( )×= “Prior” 
prob of A 

“Posterior” prob 
of A 

P A B( )
P B A( )

P B( )
------------------- P× A( ) P A B∧( )

P B( )
-----------------------= =

Relates “Inverse” 
Probabilities 



Normalization 
• In estimator notation: 

 
• Can compute P(Z) using the total probability 

theorem. 
 

• Common notation is: 
 
 

• Note that knowing P(Z|X) and P(X) completely 
determines P(Z). 
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P X Z( )
P Z X( )
P Z( )

------------------ P× X( )=

P Z( ) P Z X( )P X( )
all x
∑ P X Z∧( )

all x
∑= =

η Z( ) 1
P Z( )
------------= “Normalizer” 



Outline 
• 5.4 Bayesian Estimation 

– 5.4.1 Definitions 
– 5.4.2 Bayes’ Rule 
– 5.4.3 Bayes’ Filters 
– 5.4.4 Bayesian Mapping 
– 5.4.5 Bayesian Localization 
– Summary 

28 Mobile Robotics - Prof Alonzo Kelly, CMU RI 



Example Museum Tour Guide Robot 
• Robot has sonar sensors.  
• Sits idle until it detects someone in the room. 
• Room has noisy fan nearby which corrupts sonar 

readings. 
• Some visitors stand still for long periods. 
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Notation  
• Use values of variables to imply the variables 

themselves. 
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P X visitor=( ) P vis( )↔
P X visior¬=( ) P vis¬( )↔

P Z motion=( ) P mot( )↔
P Z  motion¬=( ) P  mot¬( )↔



Prior on X 
• Room is empty 90% of the time. 
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X P(X) 

vis 0.1 

¬ vis 0.9 



Sensor Model P(Z|X) 
• Fan noise makes the sensor barely effective. 
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P(Z|X) 

Z 

mot ¬ mot 

 
X 

vis 0.7 0.3 

¬ vis 0.6 0.4 

0.7 only slightly 
higher than 0.6 

0.3 only slightly lower 
than 0.4 



Process First Measurement 
• Bayes Rule: 
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P X Z1( )
P Z1 X( )

P Z1( )
--------------------- P× X( )=

P(Z|X) 

Z 

mot ¬ mot 

 
X 

vis 0.7 0.3 

¬ vis 0.6 0.4 

X P(X) 

vis 0.1 

¬ vis 0.9 

P(X|Z1)*P(Z1) or P(Z1|X)*P(X) 

Z 

mot ¬ mot 

 
X 

vis (0.7)(0.1) (0.3)(0.1) 

¬ vis (0.6)(0.9) (0.4)(0.9) 

Normally, only one column needs 
to be computed. The one for the Z 
you measured. 

Vector dot product ! 



Normalizer 
• Normalizer: 

 
 
 
 
 
 
 

• Represents the prior likelihood of each sensor 
reading. What you would get if you: 
– measured continuously for a month, 
– paid no attention to whether there were visitors 

in the room or not,  and  
– computed averages. 
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Z1 P(Z1) 

mot 0.61 

¬ mot 0.39 

P Z1( ) P Z1 X( )P X( )
all x
∑=

P(X|Z1)*P(Z1) or P(Z1|X)*P(X) 

Z 

mot ¬ mot 

 
X 

vis (0.07) (0.03) 

¬ vis (0.54) (0.36) 

Add up 
the 
columns 



Normalize First Measurement 
• Bayes Rule: 
• Divide by normalizer: 

 
 
 
 
 
 

• Normally only one column is computed. 
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P X Z1( )
P Z1 X( )

P Z1( )
--------------------- P× X( )=

P(X|Z1) or P(Z1|X)*P(X)/ P(Z1)  

Z 

mot ¬ mot 

 
X 

vis 0.11 0.08 

¬ vis 0.89 0.92 

Prior on X is bumped up or down 
slightly to get P(X|Z1). 

P(X|Z1)*P(Z1) or P(Z1|X)*P(X) 

Z 

mot ¬ mot 

 
X 

vis (0.07) (0.03) 

¬ vis (0.54) (0.36) 

Z1 P(Z1) 

mot 0.61 

¬ mot 0.39 

0.9 

0.1 



Recursive Bayesian Update 
• First measurement is processed with: 

 
 

• Suppose there is another measurement. P(X|Z1)  
(old posterior) becomes the new prior: 
 
 

• Put a Z1 after the | everywhere. 
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P X Z1( )
P Z1 X( )

P Z1( )
--------------------- P X( )×=

P X Z1 Z2,( )
P Z2 X Z1,( )

P Z2 Z1( )
------------------------------P X Z1( )=

Baye’s Rule for second 
measurement 



Markov Assumption 
• Last slide had: 
• Assume Z2 is independent of Z1 when X is known 

(for any particular value of X). 
 
 
– Intuitively, Z2 depends on X, but not on Z1. 

• Baye’s Rule becomes: 
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P X Z1 Z2,( )
P Z2 X Z1,( )

P Z2 Z1( )
------------------------------P X Z1( )=

P X Z1 Z2,( )
P Z2 X( )

P Z2 Z1( )
-----------------------P X Z1( )=

P Z2 X Z1,( ) P Z2 X( )=

Now, we don’t need a 
different table for every 
possible sensor measurement 
sequence. 

The Famous 
Markov 
Assumption 



Process Second Measurement 
• Bayes Rule: 
• Consider only case of Z2=Z1 to 

avoid a 3D table. 
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P(Z2|X)=P(Z|X) (same) 

Z2 

mot ¬ 
mot 

 
X 

vis 0.7 0.3 

¬ vis 0.6 0.4 

P(X|Z1,Z2)*P(Z2|Z1) or P(Z2|X)*P(X|Z1) 

Z1,Z 

mot2 ¬ mot2 

 
X 

vis (0.7)(0.11) (0.3)(0.08) 

¬ vis (0.6)(0.89) (0.4)(0.92) 

Normally, only one column needs 
to be computed. The one for the Z 
you measured. 

P X Z1 Z2,( )
P Z2 X( )

P Z2 Z1( )
-----------------------P X Z1( )=

P(X|Z1) (last result)  

Z1 

mot ¬ mot 

 
X 

vis 0.11 0.08 

¬ vis 0.89 0.92 

Multiply these 
two element by 
element 



Normalizer 
• Normalizer: 

 
 
 
 
 
 

• Unchanged to 2 sig figs from last normalizer but 
different in general. 
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Z1, Z2 P(Z2|Z1) 

mot2 0.61 

¬ mot2 0.39 Add up the 
columns 

P(X|Z1,Z2)*P(Z2|Z1) or 
P(Z2|X)*P(X|Z1) 

Z1,Z 

mot2 ¬ mot2 

 
X 

vis 0.08 0.02 

¬ vis 0.53 0.37 

P Z2 Z1( ) P Z2 X( )P X Z1( )
all x
∑=



Normalize Second Measurement 
• Bayes Rule: 
• Divide by normalizer: 

 
 
 
 
 
 

• Normally only one column is computed. 
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Prior on X is bumped up or down 
slightly MORE. 

P(X|Z1, Z2) or P(Z2|X)*P(X|Z1)/ P(Z2|Z1)  

Z 

mot2 ¬ mot2 

 
X 

vis 0.13 0.06 

¬ vis 0.87 0.94 

P(X|Z1, Z2)*P(Z2|Z1) or 
P(Z2|X)*P(X|Z1) 

Z 

mot2 ¬ 
mot2 

 
X 

vis 0.08 0.02 

¬ vis 0.53 0.37 

0.9 

0.1 

P X Z1 Z2,( )
P Z2 X( ) P X Z1( )×[ ]

P Z2 Z1( )
------------------------------------------------------=

Z1, Z2 P(Z2|Z1) 

mot2 0.61 

¬ mot2 0.39 



Ad Infinitum 
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0.0

0.2

0.4
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Number of Measurements 

P(vis|mot^n)

P(-vis|mot^n)

P(vis|-mot^n)

P(-vis|-mot^n)



Multiple Measurements 
• Last result is easy to generalize 

– Move all measurements so far after the | 

• Denote all measurements so far as: 
 

• Bayes Rule in the multiple measurement form: 
 

• With Markov assumption: 
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Z1 n, Z1 Z2 … Zn, , ,=

P X Z1 n,( )
P Zn X Z1 n 1–,,( )

P Zn Z1 n 1–,( )
-----------------------------------------P X Z1 n 1–,( )=

P X Z1 n,( )
P Zn X( )

P Zn Z1 n 1–,( )
---------------------------------- P X Z1 n 1–,( )=



Multiple Measurement Normalizer 
• Prior on Z is: 

 
• Used in this form with Markov Assumption: 

 
 

• Can unwind the recursion to get this impressive 
result: 
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P Zn Z1 n 1–,( ) P Zn X Z1 n 1–,,( )P X Z1 n 1–,( )
all x
∑=

P Zn Z1 n 1–,( ) P Zn X( )P X Z1 n 1–,( )
all x
∑=

P X Z1 n,( )
P Zk X( )

P Zn X( )P X Z1 n 1–,( )
all x
∑
---------------------------------------------------------------

k 1=

n

∏
 
 
 
 
 
 
 

P X( )=

Π means 
Product 



Bayesian Filters 
• Define the “belief” function as the distribution 

over X given all evidence so far: 
 
 

• Then the normalizer is: 
 

• The normalizer is a constant scalar and the belief 
function is a distribution over X (a vector). 
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Bel Xn( ) P X Z1 n,( )=

η Z1 n,( ) P Zn Z1 n 1–,( ){ } 1–=



Bayesian Filter Algorithm 
• Bayes_filter(Bel(X),Z): 
•   
• For all x do 
•   
•   
• For all x do 
•   
• return Bel’(x) 
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η 1– 0=

Bel ' X( ) P Zn X( ) Bel X( )×=

η 1– η 1– Bel ' X( )+=

Bel ' X( ) η 1– Bel ' X( )×=

Accumulate normalizer 

Normalize 
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Certainty Grids 
• Recursive Localizer: 

– Given sensor ranges and map, compute position 

• Certainty Grid Mapper: 
– Given sensor ranges and position, compute map 

• Originally proposed as a mechanism to deal with 
the poor angular resolution of sonar. 
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Sonar Angular Resolution 

• The range to the object is known but either 
of the above three positions could generate 
the same range reading: 
– Angular resolution of a 30 degree sonar beam 

is poor. 
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sensor 

object 

sensor 

object 

sensor 

object 



Synthetic Aperture 
• Use of sensor motion (and accurate position) to 

achieve the improved angular resolution of a 
larger aperture (antenna radius). 
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object 

sensor sensor 



Occupancy Grids 
• Each cell encodes 

probability cell is 
occupied (by an 
obstacle). 

• Really, a discrete 
approximation to a 
random field. 
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P(occupied) 



Incorporating (Range) Measurements 
• Simplest case is to count hits (maybe and misses). 
• Range reading R is evidence of: 

– Occupancy at R 
– No occupancy <R 

• Tells you nothing beyond R. 
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Ground Truth 



Bayesian Update 
• Assume Independence: 

 
• Now can imagine a bank of Bayesian filters. 
• P(X) for two values of X is just P(occ). 
• Bayes Rule is: 

 
• Also, for the other value of X. 
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P occ R1 k,( )
P rk occ( )

P rk R1 k 1–,( )
--------------------------------- P occ R1 k 1–,( )=

P occ R1 k,( )
P rk occ( )

P rk R1 k 1–,( )
--------------------------------- P occ R1 k 1–,( )=

P occ xi yi,[ ] occ xj yj,[ ]( ) P occ xi yi,[ ]( )           i j≠=

Range 
Reading 



Odds Update Formulation 
• Take the ratio of the last two results: 

 
 
• Recall the definition of odds: 

 
 

• Fill map initially with O(occ) prior and then 
multiply each cell by O(rk|occ) continuously. 
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P occ R1 k,( )

P occ R1 k,( )
-------------------------------

P rk occ( )

P rk occ( )
------------------------

P occ R1 k 1–,( )

P occ R1 k 1–,( )
-------------------------------------=

O occ R1 k,( ) O rk occ( ) O occ R1 k 1–,( )⋅=

very 
computationally 
efficient 



Ideal Sensor Model 

• Nothing can be said beyond the measured 
range. 

• Trouble resolving corners. 
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p rk occ( )
0.5 range cell( ) rk>,

1.0 range cell( )=rk,

0.0 range cell( ) rk<,

=

rk 

P(rk) 

1 

0.5 



More Realistic Sensor Model 

• Allows for (models) sensor error. 
• Models prior P(occ). 
• Trouble resolving corners. 
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rk 

P(rk) 

1 

0.5 p rk o( )

0.5 ρ rk>,

0.99exp 1
2
--- θ

σr
----- 

  2
– ρ rk–( ) σr<,

0.05 otherwise,

=

prior 
P(occ) 



Modelling Dependence 
• To capture dependence, use a sensor 

“map” of the inverse form. 
 

• Sensor model is sum of these two terms: 
 
 
 
 

• Better results. 
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p1
0.05exp 1

2
---–

ρ rk–
σr

------------- 
  0.05 ρ rk<,–

0.0 ρ rk>,

=

p2 0.95exp 1
2
---–

ρ rk–
σr

------------- 
 

2
=

p o Rk 1– rk∧( ) p o Rk 1–( ) p o rk( )× p o( )⁄=
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NOTE 
• Get the sonar processing stuff from the text. 

Mobile Robotics - Prof Alonzo Kelly, CMU RI 58 



Bayesian Localization 
• Sensor Model 

P(Z|X) 
– Probability of every 

range image given 
every state 

• Action Model 
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Bayesian Action Models 
• Unlike measurements, actions tend to increase 

uncertainty. 
– None are executed perfectly 

• Seek a pmf over state conditioned on the controls. 
Something like: 
 

• This means the probability of 
– ending up in state Xk given that 
– the state was Xk-1 and 
– the control that was executed was Uk-1. 
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P Xk Xk 1– Uk 1–,( )

INPUTS FUNCTION JUST LIKE CONTROLS 



Action Uncertainty 
• Suppose the actions are of the form:  

 
 
 
 

• If the start were known, the position part of the 
transition pmf may look like so: 

Mobile Robotics - Prof Alonzo Kelly, CMU RI 61 

∆s 

∆θ 

xk-1,yk-1 

99% 
ellipse 

known 
start 



Action Uncertainty 
• If the start is unknown, project 

every possibility forward in time 
via marginalization over the 
previous state:  
 
 

• Under Markov assumption: 
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P X n U1 n,( ) P Xn Xn 1– U, 1 n 1–,( )P X n 1–( )
all Xn 1–

∑=

P Xn U1 n,( ) P X n Xn 1– U, n 1–( )P Xn 1–( )
all Xn 1–

∑=



Action Uncertainty 
• Output is a weighted smoothing operation on the 

input: 
 
 
 
 
 
 
 
 

• Intuition is shift-and-smooth where shift means shift 
the distribution by the nominal motion. 
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P X n U1 n,( ) P Xn Xn 1– U, n( )P Xn 1–( )
all Xn 1–

∑=

1: For each 
possible output 
state 

2: For each 
possible former 
state 

3: Compute likelihood of 
the transition given the 
input 

4: Weighted by 
likelihood of 
former state 

k-1 k 

One possible 
Output state 

“All” possible 
input states 



Bayesian Filter With Actions 
• Algorithm Bayes_filter(Bel(X),D): 
•   
• if  D is a perceptual data item  then: 
•  for all x do 
•   
•   
•  for all x do 
•   
• else if  is an action data item  then: 
•  for all x do 
•    
• return Bel’(x) 
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η 1– 0=

Bel ' X( ) P Zn X( ) Bel X( )×=
η 1– η 1– Bel ' X( )+=

Bel ' X( ) η 1– Bel ' X( )×=

Bel ' X( ) P Xn Xn 1– U, n( )P Xn 1–( )
all xn-1
∑=

Observe 

Predict 



Outline 
• 5.4 Bayesian Estimation 

– 5.4.1 Definitions 
– 5.4.2 Bayes’ Rule 
– 5.4.3 Bayes’ Filters 
– 5.4.4 Bayesian Mapping 
– 5.4.5 Bayesian Localization 
– Summary 
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Summary 
• Bayesian estimation is more powerful than Kalman 

Filters 
– Can model arbitrary distributions. 

• This generality comes at a computational cost. 
• Can achieve impressive disambiguation through 

evidence accumulation. 
– Kidnapped robot problem 
– Localization in ambiguous, nearly repetitive environments. 

• Still end up making assumptions in many cases. 
– Markov (zk independent of zk-1) 
– Spatial independence [P(x) independent of neighbors]. 
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