

Chapter 5 Optimal Estimation

Part 4

5.4 Bayesian Estimation

Outline

- 5.4 Bayesian Estimation
 - 5.4.1 Definitions
 - 5.4.2 Bayes' Rule
 - 5.4.3 Bayes' Filters
 - 5.4.4 Bayesian Mapping
 - 5.4.5 Bayesian Localization
 - Summary

Outline

- 5.4 Bayesian Estimation
 - 5.4.1 Definitions
 - 5.4.2 Bayes' Rule
 - 5.4.3 Bayes' Filters
 - 5.4.4 Bayesian Mapping
 - 5.4.5 Bayesian Localization
 - Summary

Whats The Big Deal

- Can handle arbitrary (non Gaussian) distributions,
- Produces an arbitrary distribution as a result.
- Hence, computes the probability the robot is in every place. Solves the "kidnapped robot" problem.

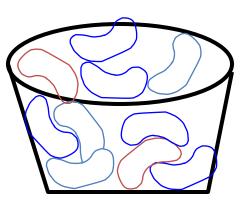
Thomas Bayes

- Born London 1719
- Educated Edinburgh
 Logic / Theology
- Known for tutorial on Newto
- Posthumously (1764) publis
 Solving a Problem in the Doc
 - Addresses "inverse probabilit
 - Given some observations of a be said about the distribution.

Carnegie Mellon THE ROBOTICS INSTITUTE

Probability

- Let A and B be discrete random variables.
- So long as A is a variable, P(A) is a function: P(A) : A → [0,1].
- For a specific value of A, like "red", P(red) is a number. By P(A=red) we mean
 - the probability that
 - the proposition that a red jelly bean was selected
 - is true.



Notation

- If f(x) = x2, f(y) usually means y2.
- Not so for probability.
- P(A) means an unspecified function over the domain of A and P(B) means a different function over the domain of B.
 - Concentrate on what's inside the ().
 - The A in P(A) determines the form of the function P.

THE ROBOTICS IN

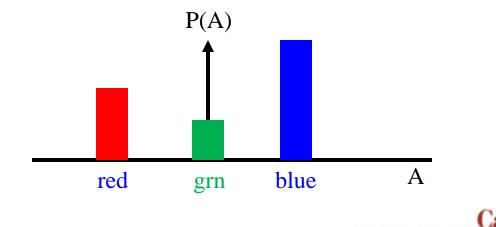
• Could have P(A) = 1-A and P(B) = B2 {not 1-B}.

Variables and Events

- If A is a random variable, then an event is some statement about its value, like A=red.
- The variable A has a probability mass function or distribution like e^{-x²}.
- The event A=red has a probability like 0.3.
- Sometimes we talk about several:
 - events (statements about values of variables)
 - variables (different random processes)

Predicates and Functions

- Sometimes P(A) means the probability that A takes a particular assumed value (like "true" if A is binary.
- Then, its best to write P(A=true).
- Other times P(A) means the entire distribution of probabilities for each possible value of A.



THE ROBOTI

Negation

- P(red) or P(¬A) is often used for the probability that the proposition a nonred bean was selected is true.
- Always:
 - $-P(red) = 1 P(\neg red)$

Odds

• Odds of event A:

$$O(A) = \frac{P(A)}{P(\overline{A})} = \frac{P(A)}{1 - P(A)} = \frac{1 - P(\overline{A})}{P(\overline{A})}$$

• Knowing any one of $P(A) P(\overline{A}) O(A)$ determines the other two.

One equation 3 unknowns. Hmmmm

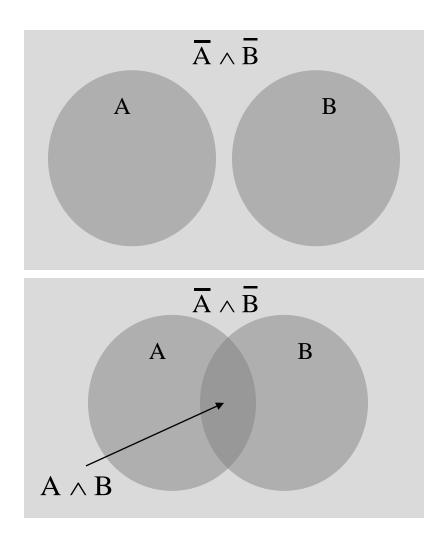
Carnegie Me

THE ROBOTICS INS

 Odds formulations and "log odds" = log[O(A)] can be very computationally efficient.

Venn Diagrams

- Imagine a process that selects <u>one</u> point in space with uniform probability.
- Label some regions.
 - The event "A" occurs when the point ends up in circle A etc.
- A point can only be in one place, so.....
- How many "disjoint" events can you list.
 - When the circles do not overlap, there are 3 elemental possibilities.
 - When the circles do overlap, there are 4 elemental possibilities.



Carnegie Mellon THE ROBOTICS INSTITUTE

Disjunction (OR)

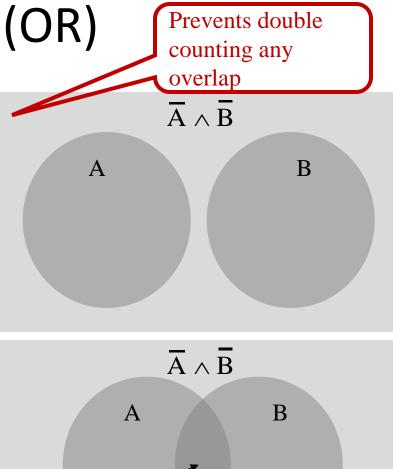
- Probability of either A or B: $P(A \lor B) = P(A) + P(B) - P(A \land B)$
- When A and B are mutually exclusive (disjoint):

 $P(A \lor B) = P(A) + P(B)$

• Because:

 $P(A \wedge B) = 0$

Consider P(¬ grn v ¬ blu)
 - 2/3+2/3-1/3 = 1.



 $A \wedge B$

Conjunction (AND)

• When A and B are independent, the probability of both occurring is:

• Which gives: $P(A \land B) = P(A) \times P(B)$ $P(A) = \frac{P(A \land B)}{P(B)}$

$$P(B) = \frac{P(A \land B)}{P(A)}$$

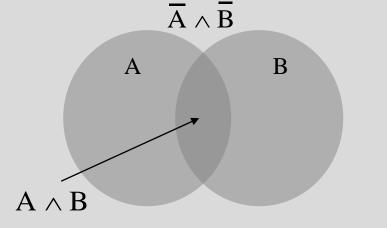
Dependence / Conditional

- P(A | B) means prob of A occurring "given that" B has occurred.
- Still talking about <u>one</u> point
- When the circles overlap, the two events are dependent.
- If you know B is true, there is a slightly higher probability that A is true and vice versa.
- Dependence means...

 $P(A|B) \neq P(A)$

- Independence means
 P(A | B) = P(A)
- Disjoint/Exclusive means:
 P(A|B) = 0

Its not about whether one point falls in A <u>after</u> another falls in B.



Carnegie Mellon THE ROBOTICS INSTITUTE

Interpretation as a Staged Experiment

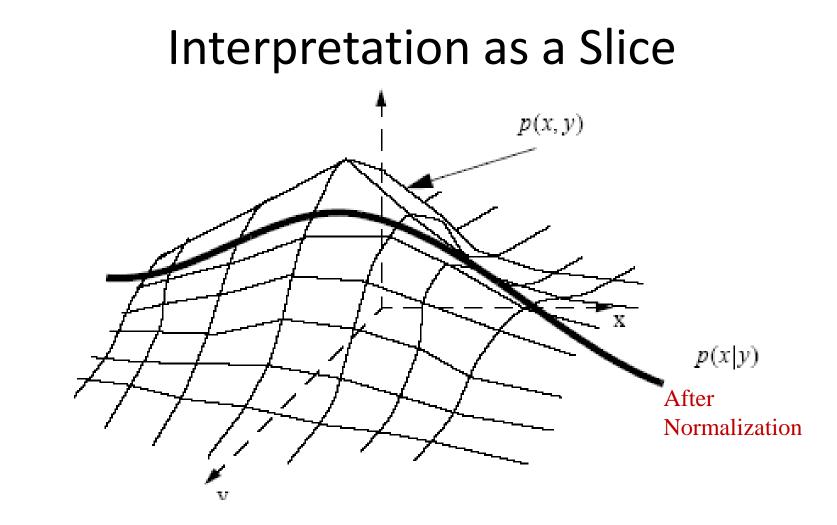
- P(A=red) means the prob a red bean is selected from any barrel.
- Stage 1:
 - P(B) means prob of selecting each barrel of jelly beans.
- Stage 2:
 - P(A=red|B) means prob of selecting a red bean from a specific barrel.

rgb Mostly Mostly red

Three conditional prob functions

P(A|rgb) P(A|mostly blue) P(A| mostly red)

> Carnegie Mellon THE ROBOTICS INSTITUTE



- Variable y ceases to be random once its known.
- Then p(x) depends on it deterministically.

Interpretation as an Estimation Process

- Let A be the state of a system denoted x and let B be a measurement denoted z.
- Then:
 - p(x) means the likelihood of the system being in state x.
 - p(z) means the likelihood that a particular measurement is observed.
 - p(x|z) means the likelihood of the system being in the state x if the measurement z is observed.
 - p(z|x) means the likelihood of a measurement z being observed if the state is x
 - p(x,z) means the likelihood of the system being in a state x and measurement z is observed.
- Every one of these is a different number 0<n<1.

Total Probability and Marginalization

• Suppose n mutually exclusive events (like n different values of the variable B).

 $B_1 \dots B_n$

- If we know one (unknown) of these events Bi has occurred, then the probability of A is:
 P(A|B₁...B_n) = P(A|B₁)P(B₁) + P(A|B₂)P(B₂) + ... + P(A|B_n)P(B_n)
- Consider: one of grn...blu has occurred..

 $P(\neg red|grn...blue) = P(\neg red|grn)P(grn) + P(\neg red|blue)P(blu)$

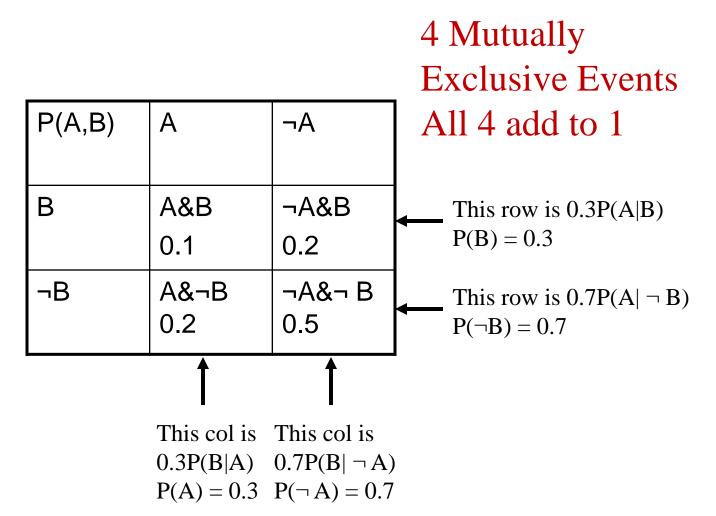
 $P(\neg red|grn...blue) = (1)(1/2) + (1)(1/2) = 1$

Not 1/3 Only grn or blu were possible

THE ROBOTICS IN

Integrates out a dimension in the PDF.

Marginalization



Carnegie Melle

THE ROBOTICS INST

Different Views

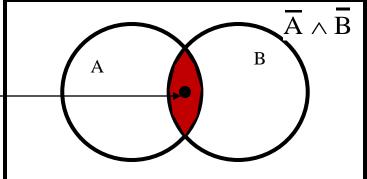
- P(A|B) conditional, A variable, B fixed
 - I happen to know B
 - Based on Bs value, how likely is each value of A.
- P(A,B) joint, A,B variable
 Probability of each different pair of values (a,b)
- P(A) prior, A variable, B irrelevant
 - Probability of each value (a) if we knew nothing ("prior" to knowing something) about B.

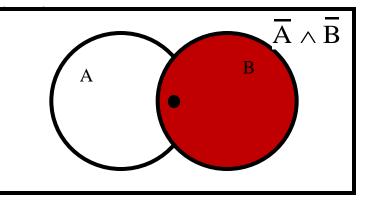
Outline

- 5.4 Bayesian Estimation
 - 5.4.1 Definitions
 - <u>5.4.2 Bayes' Rule</u>
 - 5.4.3 Bayes' Filters
 - 5.4.4 Bayesian Mapping
 - 5.4.5 Bayesian Localization
 - Summary

Bayes Rule

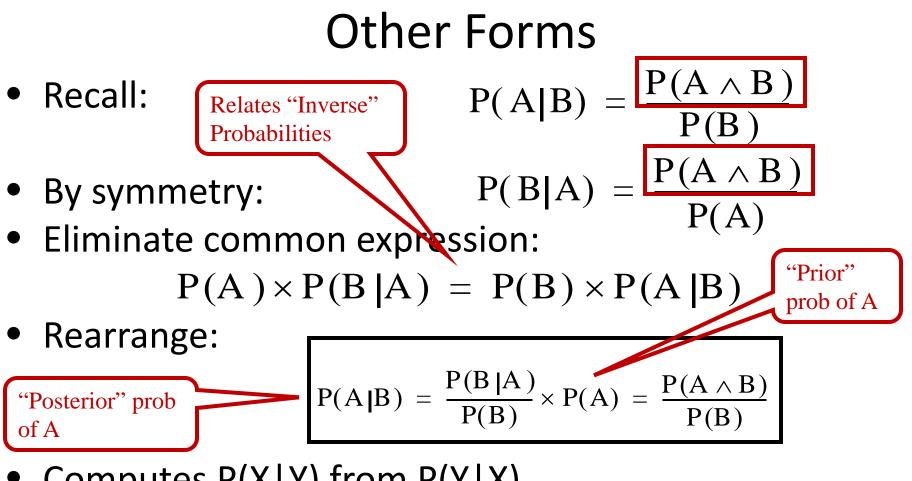
- We can compute P(A|B).
- Given B has occurred, AtheBra in the overlap or not in it.
- If all points in B are equally I
 - Ratio of overlap to area of B is of falling in the overlap.





$$P(A|B) = \frac{P(A \land B)}{P(B)}$$

Carnegie Mellon THE ROBOTICS INSTITUTE



- Computes P(X|Y) from P(Y|X).
- We care about:

 $- P(x|z) \rightarrow P(state | measurements)$

Normalization

• In estimator notation:

$$P(X|Z) = \frac{P(Z|X)}{P(Z)} \times P(X)$$

 Can compute P(Z) using the total probability theorem.

$$P(Z) = \sum_{\text{all } x} P(Z|X)P(X) = \sum_{\text{all } x} P(X \land Z)$$

Common notation is:

$$\eta(Z) = \frac{1}{P(Z)}$$
 "Normalizer"

THE ROBOTICS IN

Note that knowing P(Z|X) and P(X) completely determines P(Z).

Outline

- 5.4 Bayesian Estimation
 - 5.4.1 Definitions
 - 5.4.2 Bayes' Rule
 - 5.4.3 Bayes' Filters
 - 5.4.4 Bayesian Mapping
 - 5.4.5 Bayesian Localization
 - Summary

Example Museum Tour Guide Robot

- Robot has sonar sensors.
- Sits idle until it detects someone in the room.
- Room has noisy fan nearby which corrupts sonar readings.
- Some visitors stand still for long periods.

Notation

• Use values of variables to imply the variables themselves.

$$P(X = visitor) \leftrightarrow P(vis)$$

$$P(X = \neg visior) \leftrightarrow P(\neg vis)$$

$$P(Z = motion) \leftrightarrow P(mot)$$

$$P(Z = \neg motion) \leftrightarrow P(\neg mot)$$

Prior on X

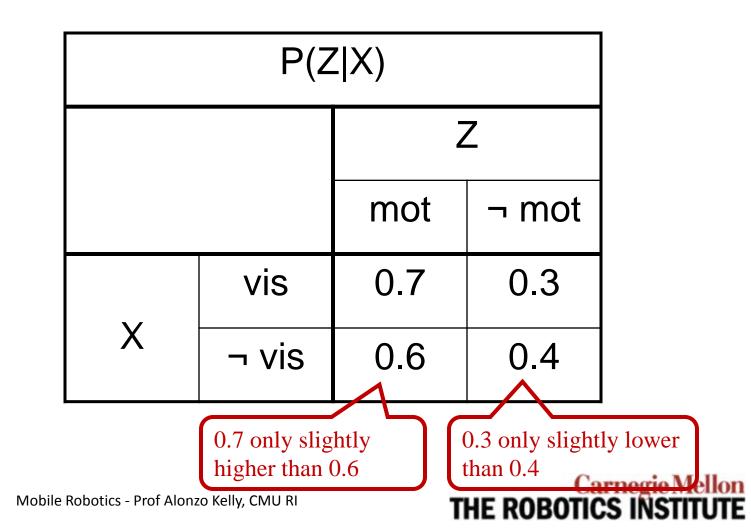
• Room is empty 90% of the time.

Х	P(X)	
vis	0.1	
⊐ vis	0.9	

Carnegie Mellon THE ROBOTICS INSTITUTE

Sensor Model P(Z|X)

• Fan noise makes the sensor barely effective.



Process First Measurement

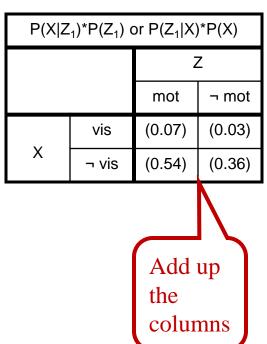
 $P(X|Z_1) = \frac{P(Z_1|X)}{P(Z_1)} \times P(X)$ **Bayes Rule:** $P(X|Z_1)^*P(Z_1) \text{ or } P(Z_1|X)^*P(X)$ P(Z|X)Ζ Ζ mot ¬ mot 0.7 0.3 vis 0.6 ¬ vis 0.4 mot ¬ mot Х P(X)(0.3)(9.11)(0.7)(0.1) vis vie 0.1 Х vis (0.6)(0.9) + (0.4)(0.9)¬ Vis Vector dot product ! Normally, only one column needs to be computed. The one for the Z you measured. **Carnegie** M Mobile Robotics - Prof Alonzo Kelly, CMU RI THE ROBOTICS INST 33

Normalizer

• Normalizer: $P(Z_1) = \sum P(Z_1|X)P(X)$

all x

Z ₁	$P(Z_1)$	
mot	0.61	
n mot	0.39	



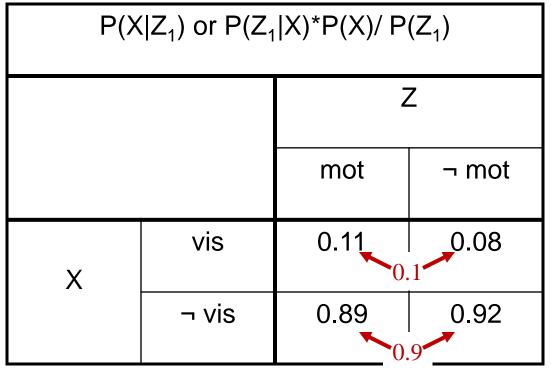
- Represents the prior likelihood of each sensor reading. What you would get if you:
 - measured continuously for a month,
 - paid no attention to whether there were visitors in the room or not, and
 - computed averages.

Normalize First Measurement

Bayes Rule:

$$P(X|Z_1) = \frac{P(Z_1|X)}{P(Z_1)} \times P(X)$$

• Divide by normalizer:



$P(X Z_1)^*P(Z_1) \text{ or } P(Z_1 X)^*P(X)$					
		Z			
		mot	⊐ mot		
Х	vis	(0.07)	(0.03)		
	⊐ vis	(0.54)	(0.36)		

Z ₁	Z ₁ P(Z ₁)	
mot	0.61	
⊐ mot	0.39	

Prior on X is bumped up or down

Normally only one column is computed.

Mobile Robotics - Prof Alonzo Kelly, CMU RI slightly to get $P(X|Z_1)$.

Recursive Bayesian Update

• First measurement is processed with:

$$P(X|Z_1) = \frac{P(Z_1|X)}{P(Z_1)} \times P(X)$$

 Suppose there is another measurement. P(X|Z1) (old posterior) becomes the new prior:

$$P(X|Z_1, Z_2) = \frac{P(Z_2|X, Z_1)}{P(Z_2|Z_1)}P(X|Z_1)$$

Baye's Rule for second measurement

THE ROBOTICS INS

• Put a Z1 after the | everywhere.

Markov Assumption

- Last slide had: $P(X|Z_1, Z_2) = \frac{P(Z_2|X, Z_1)}{P(Z_2|Z_1)}P(X|Z_1)$
- Assume Z2 is independent of Z1 when X is known (for any particular value of X).

$$P(Z_2|X,Z_1) = P(Z_2|X)$$
 The Famous
Markov
Assumption

- Intuitively, Z2 depends on X, but not on Z1.

• Baye's Rule becomes: $P(X|Z_1, Z_2) = \frac{P(Z_2|X)}{P(Z_2|Z_1)}P(X|Z_1)$ Now, we don't need a different table for every possible sensor measurement sequence.

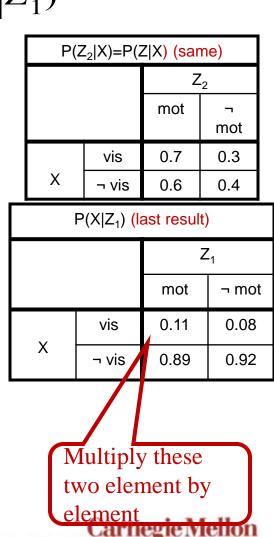
THE ROBOTICS IN

Process Second Measurement

- Bayes Rule: $P(X|Z_1, Z_2) = \frac{P(Z_2|X)}{P(Z_2|Z_1)}P(X|Z_1)$
- Consider only case of Z2=Z1 to avoid a 3D table.

 $P(X|Z_1,Z_2)^*P(Z_2|Z_1) \text{ or } P(Z_2|X)^*P(X|Z_1)$

		Z ₁ ,Z	
		mot ²	⊐ mot²
X	vis	(0.7)(0.11)	(0.3)(0.08)
	⊐ vis	(0.6)(0.89)	(0.4)(0.92)



THE ROBOTICS INS

Mobile Robotics - Prof Alonzo Kelly, Civio Ki

vou measured.

Normally, only one column needs

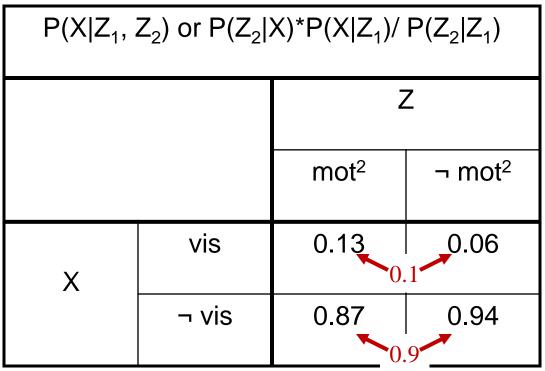
to be computed. The one for the Z

Normalizer

- Normalizer: $P(Z_2|Z_1) = \sum P(Z_2|X)P(X|Z_1)$ all x $P(X|Z_1,Z_2)^*P(Z_2|Z_1)$ or $P(Z_{2}|X)*P(X|Z_{1})$ Z₁,Z mot² ¬ mot² $P(Z_2|Z_1)$ Z_1, Z_2 0.08 0.02 vis Х mot² 0.61 0.53 0.37 ¬ vis \neg mot² 0.39Add up the columns
- Unchanged to 2 sig figs from last normalizer but different in general.

Normalize Second Measurement

- Bayes Rule: $P(X|Z_1, Z_2) = \frac{[P(Z_2|X) \times P(X|Z_1)]}{P(Z_2|Z_1)}$
- Divide by normalizer:

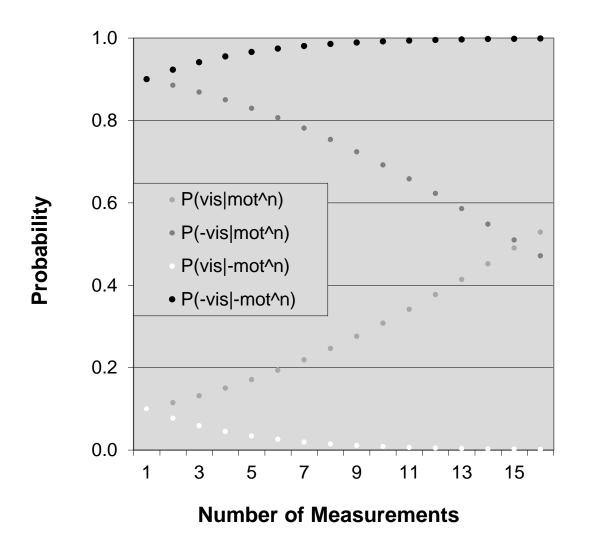


$2 \mathbf{Z}_1$				
$P(X Z_1, Z_2)^*P(Z_2 Z_1)$ or $P(Z_2 X)^*P(X Z_1)$				
		Z		
		mot ²		⊐ mot²
х	vis	0.08		0.02
	⊐ vis	0.53		0.37
	Z ₁ , Z ₂		$P(Z_2 Z_1)$	
mot		2	0.61	
	⊐ mot²		0.39	

Prior on X is bumped up

Normally only one column is computed.

Ad Infinitum



Carnegie Mellon THE ROBOTICS INSTITUTE

Multiple Measurements

• Last result is easy to generalize

- Move all measurements so far after the |

• Denote all measurements so far as:

$$Z_{1,n} = Z_1, Z_2, ..., Z_n$$

Bayes Rule in the multiple measurement form:

$$P(X|Z_{1,n}) = \frac{P(Z_n|X, Z_{1,n-1})}{P(Z_n|Z_{1,n-1})}P(X|Z_{1,n-1})$$

With Markov assumption:

$$P(X|Z_{1,n}) = \left[\frac{P(Z_n|X)}{P(Z_n|Z_{1,n-1})}\right]P(X|Z_{1,n-1})$$

THE ROBOTICS I

Multiple Measurement Normalizer

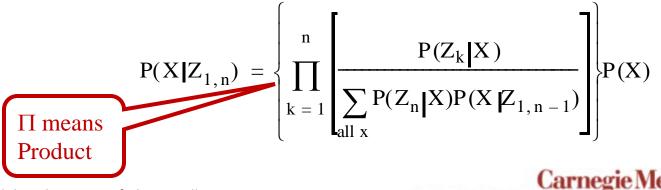
• Prior on Z is:

$$P(Z_n | Z_{1, n-1}) = \sum_{a \parallel x} P(Z_n | X, Z_{1, n-1}) P(X | Z_{1, n-1})$$

• Used in this form with Markøv Assumption:

$$P(Z_n | Z_{1, n-1}) = \sum_{all x} P(Z_n | X) P(X | Z_{1, n-1})$$

• Can unwind the recursion to get this impressive result:



THE ROBOTICS INS

Bayesian Filters

 Define the "belief" function as the distribution over X given all evidence so far:

$$Bel(X_n) = P(X|Z_{1,n})$$

- Then the normalizer is: $\eta(Z_{1, n}) = \{P(Z_n | Z_{1, n-1})\}^{-1}$
- The normalizer is a constant scalar and the belief function is a distribution over X (a vector).

THE ROBOTICS IN

Bayesian Filter Algorithm

Bayes_filter(Bel(X),Z):

$$\eta^{-1} = 0$$

• For all x do

Bel ' (X) = P(Z_n|X) × Bel(X)

$$\eta^{-1} = \eta^{-1} + Bel$$
 ' (X) Accumulate normalizer

- For all x do
- Bel'(X) = $\eta^{-1} \times Bel'(X)$ Normalize
- return Bel'(x)

Outline

- 5.4 Bayesian Estimation
 - 5.4.1 Definitions
 - 5.4.2 Bayes' Rule
 - 5.4.3 Bayes' Filters
 - <u>5.4.4 Bayesian Mapping</u>
 - 5.4.5 Bayesian Localization
 - Summary

Certainty Grids

• Recursive Localizer:

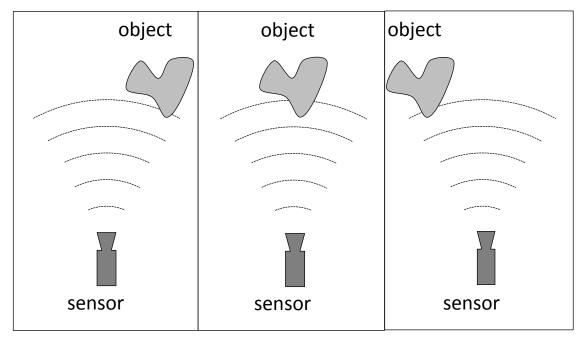
- Given sensor ranges and map, compute position

• Certainty Grid Mapper:

- Given sensor ranges and position, compute map

 Originally proposed as a mechanism to deal with the poor angular resolution of sonar.

Sonar Angular Resolution

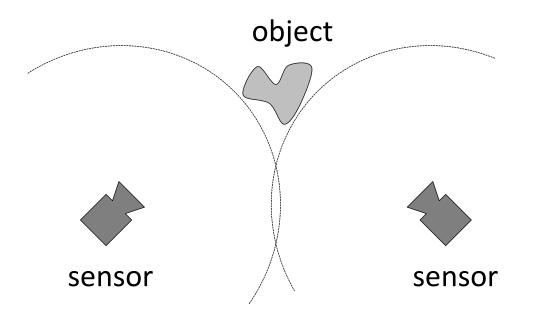


- The range to the object is known but either of the above three positions could generate the same range reading:
 - Angular resolution of a 30 degree sonar beam is poor.

THE ROBOTICS INS

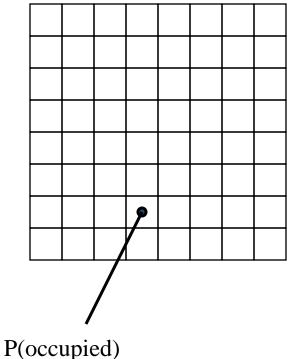
Synthetic Aperture

 Use of sensor motion (and accurate position) to achieve the improved angular resolution of a larger aperture (antenna radius).



Occupancy Grids

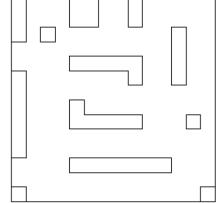
- Each cell encodes probability cell is occupied (by an obstacle).
- Really, a discrete approximation to a random field.

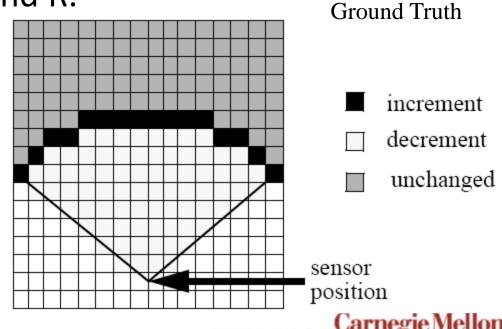


Carnegie Mellon THE ROBOTICS INSTITUTE

Incorporating (Range) Measurements

- Simplest case is to count hits (maybe and
- Range reading R is evidence of:
 - Occupancy at R
 - No occupancy <R</p>
- Tells you nothing beyond R.





THE ROBOTICS INST

Bayesian Update

- Assume Independence: $P(occ[x_i, y_i]|occ[x_j, y_j]) = P(occ[x_i, y_i]) \qquad i \neq j$
- Now can imagine a bank of Bayesian filters.
- P(X) for two values of X is just P(occ).
- Bayes Rule is: $P(occ | R_{1, k}) = \begin{bmatrix} P(r_k | occ) \\ P(r_k | R_{1, k-1}) \end{bmatrix} P(occ | R_{1, k-1})$ • Also, for the other value of X.

$$P(\overline{occ} | R_{1, k}) = \left[\frac{P(r_k | \overline{occ})}{P(r_k | R_{1, k-1})} \right] P(\overline{occ} | R_{1, k-1})$$

THE ROBOTICS IN

Odds Update Formulation

• Take the ratio of the last two results:

$$\frac{P(\operatorname{occ}|\mathbf{R}_{1,k})}{P(\operatorname{occ}|\mathbf{R}_{1,k})} = \begin{bmatrix} P(r_k | \operatorname{occ}) \\ P(r_k | \operatorname{occ}) \end{bmatrix} \frac{P(\operatorname{occ}|\mathbf{R}_{1,k-1})}{P(\operatorname{occ}|\mathbf{R}_{1,k-1})}$$

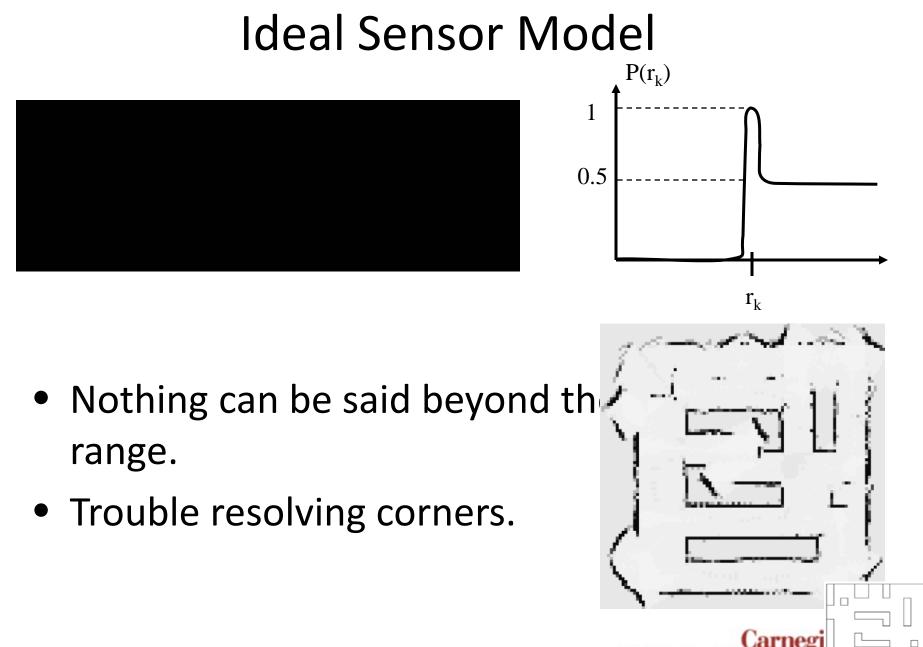
• Recall the definition of odds:

$$O(occ|R_{1,k}) = O(r_k|occ) \cdot O(occ|R_{1,k-1})$$

 Fill map initially with O(occ) prior and then multiply each cell by O(rk|occ) continuously.

computationally

efficient



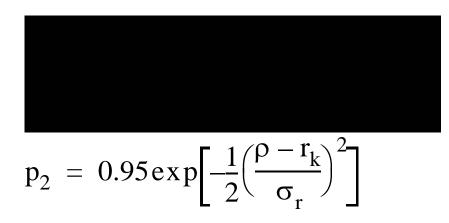
THE ROBOTI

Modelling Dependence

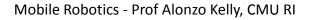
• To capture dependence, use a sensor "map" of the inverse form.

 $p(o|R_{k-1} \wedge r_k) = p(o|R_{k-1}) \times p(o|r_k)/p(o)$

• Sensor model is sum of these two terms:



• Better results.



Outline

- 5.4 Bayesian Estimation
 - 5.4.1 Definitions
 - 5.4.2 Bayes' Rule
 - 5.4.3 Bayes' Filters
 - 5.4.4 Bayesian Mapping
 - 5.4.5 Bayesian Localization
 - Summary

NOTE

• Get the sonar processing stuff from the text.

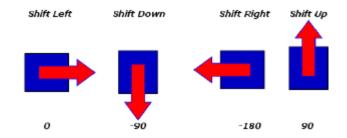
Carnegie Mellon THE ROBOTICS INSTITUTE

Bayesian Localization

- Sensor Model P(Z|X)
 - Probability of every range image given every state
- Action Model

$$P(Z_1 \mid X) = 1 - \left(\frac{1}{N \cdot r_{\max}} \left(\sum_{i=0}^{N} (r_i - \hat{r}_i)^2\right)^{\frac{1}{2}}\right)$$

 $P(X_k | X_{k-1}, U_{k-1})$



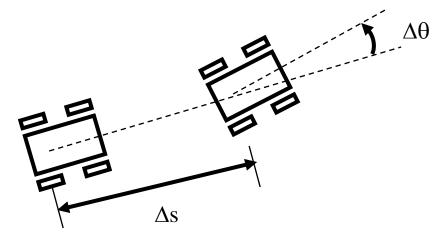
Bayesian Action Models

- Unlike measurements, actions tend to increase uncertainty.
 - None are executed perfectly
- Seek a pmf over state conditioned on the controls. Something like: $P(X_k | X_{k-1}, U_{k-1})$
- This means the probability of
 - ending up in state Xk given that
 - the state was Xk-1 and
 - the control that was executed was Uk-1.

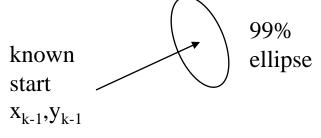
INPUTS FUNCTION JUST LIKE CONTROLS

Action Uncertainty

• Suppose the actions are of the form:



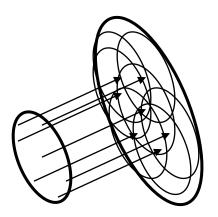
 If the start were known, the position part of the transition pmf may look like so:



Carnegie Mellon THE ROBOTICS INSTITUTE

Action Uncertainty

 If the start is unknown, project every possibility forward in time via marginalization over the previous state:



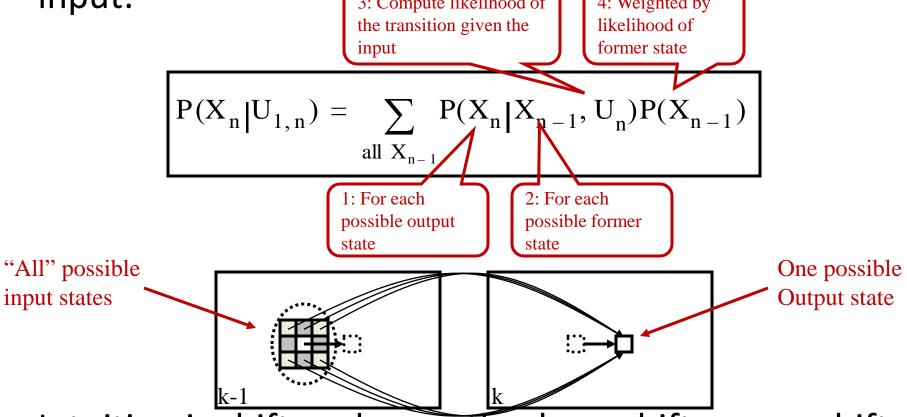
$$P(X_{n} | U_{1,n}) = \sum_{\text{all } X_{n-1}} P(X_{n} | X_{n-1}, U_{1,n-1}) P(X_{n-1})$$

• Under Markov assumption:

$$P(X_{n}|U_{1,n}) = \sum_{all X_{n-1}} P(X_{n}|X_{n-1}, U_{n-1})P(X_{n-1})$$

Action Uncertainty

Output is a weighted smoothing operation on the input:
 3: Compute likelihood of 4: Weighted by



 Intuition is shift-and-smooth where shift means shift the distribution by the nominal motion.

Carnegie Mello

THE ROBOTICS INSTI

Bayesian Filter With Actions

- Algorithm Bayes_filter(Bel(X),D): • $\eta^{-1} = 0$
- if D is a perceptual data item then:
- for all x do Bel'(X) = P(Z_n|X) × Bel(X) • $\eta^{-1} = \eta^{-1} + Bel'(X)$ Observe
- for all x do

Bel '(X) =
$$\eta^{-1} \times Bel$$
 '(X)

- else if is an action data item then:
- for all x do Bel' (X) = $\sum P(X | X + U)P(X + I)$ Predict

$$I'(X) = \sum_{\text{all } xn-1} P(X_n | X_{n-1}, U_n) P(X_{n-1})$$

return Bel'(x)

Outline

- 5.4 Bayesian Estimation
 - 5.4.1 Definitions
 - 5.4.2 Bayes' Rule
 - 5.4.3 Bayes' Filters
 - 5.4.4 Bayesian Mapping
 - 5.4.5 Bayesian Localization
 - <u>Summary</u>

Summary

- Bayesian estimation is more powerful than Kalman Filters
 - Can model arbitrary distributions.
- This generality comes at a computational cost.
- Can achieve impressive disambiguation through evidence accumulation.
 - Kidnapped robot problem
 - Localization in ambiguous, nearly repetitive environments.
- Still end up making assumptions in many cases.
 - Markov (zk independent of zk-1)
 - Spatial independence [P(x) independent of neighbors].

Carnegie Mellon THE ROBOTICS INSTITUTE