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Abstract - This paper presents a solution to the 

problem of finding an effective yet admissible heuristic 
function for A* by precomputing a look-up table of 
solutions.  This is necessary because traditional heuristic 
functions such as Euclidean distance often produce poor 
performance for certain problems.  In this case, the 
technique is applied to the state lattice, which is used for 
full state space motion planning.  However, the approach 
is applicable to many applications of heuristic search 
algorithms.  The look-up table is demonstrated to be 
feasible to generate and store.  A principled technique is 
presented for selecting which queries belong in the table.  
Finally, the results are validated through testing on a 
variety of path planning problems. 

 
Index Terms – motion planning, state lattice, heuristic, 

nonholonomic, mobile robot 
 

I. INTRODUCTION 

The state lattice planner [1] efficiently encapsulates 
vehicle constraints such that they need not be considered 
during planning.  The state lattice is a graph constructed from 
edges that represent continuous motions connecting discrete 
state space nodes.  The control set which corresponds to these 
edges is generated according to the dynamic constraints of a 
particular vehicle. 

A. Motivation 
The state lattice planner derives its efficiency from 

several sources.  First, infeasible motions are culled out prior 
to the search process.  Second, the graph structure of the 
search space allows for elimination of redundant search steps. 

Additionally, a heuristic search algorithm such as A* is 
needed in order to efficiently find the best path between start 
and goal (known as a query).  Such algorithms require a 
heuristic cost estimate function, which estimates the true cost 
of a path.  Planning performance depends on the quality of the 
heuristic.  For some graph search problems, a simple function 
such as Euclidean distance is adequate.   

However, no good closed-form heuristic for the state 
lattice is known.  This is a hard problem because the planner 
operates in full state space, taking into account a vehicle’s 
differential constraints.  The Euclidean distance function has 

no knowledge of vehicle capabilities, and is thus poor 
heuristic because it underestimates actual path cost by 
violating differential constraints.  Consequently, some of the 
most difficult queries to solve put the start and goal are in 
close proximity but misaligned, so that much maneuvering is 
necessary.  The classic example of this situation is parallel 
parking.  Another such example is shown in Figure 1. 

 
Figure 1: A Difficult Search Problem.  When planning in 
full configuration space on a vehicle with dynamic 
constraints, Euclidean distance is a poor indicator of resulting 
path length.  Here, an Ackerman-steered vehicle is asked to 
move sideways and turn around.  The length of the solution 
path is approximately forty times what a Euclidean heuristic 
would estimate. 

  

B. Problem Statement 
Given ample computational resources, a straightforward 

and effective way to predict path cost is to pre-compute and 
store the actual costs that the planner will need, using the 
planner itself.  Such a Heuristic Look-Up Table (HLUT) can 
be imagined as a large multi-dimensional array of real-valued 
query costs.  Assuming that such a table could be generated, 
the invocation of the heuristic function becomes a simple table 
dereference.  Like other heuristic cost functions, the HLUT 
cannot take into account obstacles or other terrain variation 
when precomputing queries.  Since it is implausible to encode 
all possible worlds in a table, an obstacle-free policy must be 
assumed instead.  For simplicity, the HLUT discussed here is 
designed for an Ackerman-steered vehicle.  The techniques 
are applicable to any control set for any type of vehicle with 
any kind of constraints, but the need for the look-up table is 
much reduced in some problems.  Below, the issues of 
generating, storing and using the HLUT for practical planning 
problems are explored. 



C. Prior Work 
An early approach to robot navigation applied gradient 

descent to a potential function in which the goal is a global 
minimum and hazards are represented by local maxima.  
Many such potential functions were explored, but most proved 
incomplete due to the problem of local minima.  In [5], it was 
demonstrated that a potential function free of local minima, 
known as a navigation function, could be constructed.  The 
HLUT is an example of such a navigation function. 

Another approach to navigation involves the 
discretization of space so that search in the continuum can be 
approximated via graph search.  Graph search, including 
heuristic search methods, has been thoroughly studied by the 
artificial intelligence community.  The concept that a search 
could guarantee an optimal result while doing less work than a 
brute force search was introduced in [3], with the A* 
algorithm.  Many variations on that theme have since been 
proposed.  The connection between heuristics accuracy and 
efficient search has long been known.  Only in recent years 
however has the effect of the heuristic on search complexity 
been understood in detail, described in works such as [7].  The 
problem of specifying an effective, admissible heuristic 
function remains a challenge, and most good heuristics are 
application-specific.  Perhaps the most significant advance in 
heuristic search during the last decade was the concept of the 
pattern database, described in [1].  The pattern database is a 
look-up table indexed by a subset of the state and containing a 
precomputed heuristic value that reflects the cost of solving 
the corresponding subproblem.  Many enhancements to 
pattern databases were proposed, including [2], [4], and [6], 
which each describe methods of combining multiple pattern 
databases to improve performance.  Each of these works 
discusses heuristic search in the context of combinatorial 
puzzles like the Fifteen Puzzle and Rubik’s Cube.  Such 
problems have an intractably large but finite search space. 

Reference [8] introduces the state lattice, which is an 
enhancement of discretized robot planning via graph search.  
That paper first introduced the HLUT, which is a type of 
pattern database in which the table is indexed by the full state.  
Unlike the problems that ushered in the pattern database 
however, the state lattice is infinite in extent, yet it can be 
represented effectively by a finite look-up table. 

II. CONSTRUCTING THE HEURISTIC LOOK-UP TABLE 

The lattice planner accommodates differential constraints, 
resulting in increased path complexity.  In this environment, 
Euclidean distance proved a poor heuristic.  The need for 
more effective heuristics was the impetus for this work. 

The notion of an HLUT suggests several design 
considerations, including: the utility of a table of reasonable 
size; the amount of time required to generate it; and the policy 
for handling heuristic queries that are not in the table. 

 
Figure 2: Symmetries of the State Lattice.  Many different 
lattice edges and combinations of edges are equivalent under 
a small set of transformations.  Exploitation of these 
properties dramatically reduces the total size of the HLUT.  
Symmetries shown from left to right: translation, rotation, and 
reflection. A. Space 

The issue of limited memory can be addressed in most 
cases merely by exploiting symmetries in the lattice control set 
to eliminate duplicate information.  Those symmetries include 
translation, rotation, and reflection (Figure 2).  Because the 
discretization of the lattice is regular in position, all queries 
can be treated as if they originate from the origin.  Only a 
subset of possible initial headings needs to be generated.  For 
example, if the control set exhibits 8-axis symmetry, it is 
sufficient to precompute only 1/8th + 1 discrete initial 
headings.  Finally, many goal states are redundant.  For 
instance, with an initial heading of zero, there is symmetry 
about the x-axis.  With all of these massive space savings, a 
useable size HLUT can be stored in 200,000 entries, 
consuming perhaps 2.5MB, approximately 0.001% of the size 
before symmetry is considered. 

B. Time 
To generate such a table requires solving many A* 

queries.  An average A* lattice planning query with the 
Euclidean distance heuristic takes about 0.2 seconds on 
average (much more in the worst case), so generating 200,000 
entries by the most naïve method would require more than ten 
hours.  Fortunately, several properties of A* allow the table to 
be populated much more efficiently.  When a search is 
performed, much more can be learned about the graph than 
just the final path length.  Every time a state is expanded and 
put on A*’s CLOSED list, the lowest cost path to that state is 
known from each state along the path, so several more optimal 
query costs can be inserted into the HLUT.  Secondarily, it is 
wasteful to delete the A* lists and start from scratch between 
queries, as these lists contain valuable data.  The CLOSED list 
can be reused as-is, but the OPEN list is sorted according to 
distance estimates to the old goal state.  Depending on the size 
of the OPEN list, it may be cheaper to delete it and begin 
anew or to recompute each estimate according to the new goal 
location.  For a particular implementation, this cut-off was 
found to occur at approximately 150,000 OPEN states, so that 
several queries can be processed in a row before the lists need 
to be expunged.  Finally, the order in which queries are 
populated in the HLUT has a significant effect, because the 
exact solutions of earlier queries can be used as a heuristic in 
later queries.  The issue of population of the table is 
considered below. 



C. Inclusion of Queries for the Table 
The look-up table cannot be infinite in size.  Therefore, 

some queries will occur for which no entry exists in the table.  
An alternate backup heuristic such as Euclidean distance 
must, of course, already be in use for purposes of generating 
the HLUT. It can also be used to satisfy queries missing from 
the table during planning.  Doing so is easily justified by the 
fact that the Euclidean heuristic gives better approximations 
on more distant queries (Figure 3). 

When generating the table, there must be some 
termination condition.  Such a condition should be automatic, 
principled, and tunable according to the needs of various 
applications.   This issue really breaks down into two separate 
questions.  First, which queries should be included or 
excluded?  Second, how many entries should be included? 

To answer the first question, it is helpful to define the 
trim ratio as the ratio of the backup heuristic’s estimate for a 
particular query to the true path cost which the HLUT would 
include for that query.  There are two considerations for 
including a particular entry in the HLUT.  As described in [4], 
it is more important to avoid low heuristic estimates than to 
retain large ones.  Thus, queries with low trim ratios should be 
included because the backup heuristic does a poor job of 
estimating them (hence, they should be “trimmed” last.).  
Secondly, frequently needed queries should be included for 
the sake of efficiency, since failing over to the backup 
heuristic results in additional processing.  Figure 5 shows trim 

ratios in a slice of the HLUT where initial and final headings 
are zero for each query.  Note that paths into dark regions (of 
low trim ratio) would correspond to compositions of 
maneuvers that result in ultimate sideways motion.  These are 
the queries whose costs are most valuable to have stored in the 
HLUT. 

 
Figure 3: Euclidean Distance is a Good Approximation 
for Distant Queries.  As two states are separated by a greater 
distance, parameters like curvature and heading have an 
increasingly insignificant effect on the overall path length. 

III. POPULATING THE HEURISTIC LOOK-UP TABLE 

When performing A* searches to populate the look-up 
table, an important consideration is the order in which queries 
are performed.  Ordering affects the ultimate selection of 
queries due to the inclusion of all states on the CLOSED list.  
In addition, the ability to reuse previously computed state 
varies considerably with ordering of queries.  Three different 
approaches to HLUT population are considered here. 

The simplest method of look-up table population is the 
naïve approach, which iterates through each entry in the table 
in a raster-scan fashion.  The result of A* when run on each 
query is inserted in order.  This is the slowest of the methods 
that were tested.  It does not share significant state between 
sequential queries, and the most difficult queries are presented 
to the planner first, when no HLUT data have yet been built 
up to improve performance. 

Parts of the table can be populated much faster by the use 
of Dijkstra’s algorithm.  In this approach, the search is run in 
such a way that the next node expanded in the graph is always 
the unexpanded node closest in cost to zero.  This algorithm 
very quickly populates many HLUT entries, but those states 
are the easiest ones to reach, meaning that they generally have 
higher trim levels (Figure 4).  This method produces queries 
that are monotone in distance from the start, but queries that 
are monotone in trim ratio are preferred, as discussed above.  
The Dijkstra’s search can be terminated at an arbitrary time. 

The horizon method is more principled in that it selects 
first those queries with the lowest trim levels.  This algorithm 
maintains a HORIZON list of queries sorted by trim level, 
similar to the way in which A*’s OPEN list is sorted by cost.  
The HORIZON list is initially populated with queries in 
which both states are at the origin in every combination of 
initial and final heading (because these are the most difficult 
queries).  Each is assigned a trim ratio of 0.0, since that is the 
Euclidean distance between overlapping points in a plane.  
During each iteration, the lowest-valued query is popped from 
the HORIZON list and presented to A*.  Each neighboring 
state in the x,y-plane (with the same orientation) is considered 
a child of the popped state.  Each child state is pushed onto the 
HORIZON list and sorted according to its parent’s trim ratio.  
The ratio of the parent state is used since the exact cost of the 

 

 
Figure 5: Visualization of HLUT.  This cross-section of an 
example 4D HLUT shows a slice of paths from the origin to 
various x, y positions in which θ0=θf =0.  Brightness represents 
trim ratio, the ratio of Euclidean distance / nonholonomic path 
length.  Dark regions correspond to low ratios. 

  

 
Figure 4: Populating the HLUT Using Dijkstra’s 
Algorithm.  Expansion of the lowest cost unexpanded state in 
the tree is an efficient way of finding the shortest distance to 
many states at once. 

 



Trim ratio HLUT entries Generation time 
(mm:ss) 

0.6 202,338 01:15 

0.7 365,345 03:28 

0.8 648,877 13:33 
Table 1: Generating the HLUT.  Through a combination 
of techniques, sizeable heuristic look-up tables can be 
generated efficiently.  The runs shown here were 
performed on a 3 GHz Pentium 4. 

query is required to compute trim ratio, and that is not yet 
known for the child.  The horizon algorithm terminates when 
a desired trim level is reached.  The process is depicted 
graphically in Figure 6; note that symmetry can be considered 
to speed up the algorithm.  In order for this method to find all 
states below a given trim level, it must be possible to draw a 
path outward from the origin through an arbitrary state such 
that the trim ratio increases monotonically along the path 
(Figure 7).  Horizon is a faster algorithm than the naïve 
approach because it makes better use of precomputed state, 
but it is slower than Dijkstra’s algorithm because it requires 
A* list resets. 

The Dijkstra’s search algorithms may leave gaps in the 
HLUT, as shown in Figure 4, while the two slower 
techniques produce dense results. A gap occurs in the table 
when an entry is absent but is surrounded by neighboring 
entries that are included.  Gaps are undesirable because they 
result in less predictable search time among potential A* 
queries using the heuristic.  Furthermore, a major 
underestimate resulting from falling back to a backup heuristic 
due to a gap causes a false lead for A*, which then expends a 
lot of unnecessary search time.   

In order to populate the HLUT quickly while retaining 

desired properties, a combination of methods can be used.  
First, Dijkstra’s algorithm fills in the majority of the HLUT.  
Then the gaps are filled in using the horizon method.  In this 
case, the horizon method skips over those queries that were 
previously filled in to avoid duplication of effort. 
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Figure 6: Growth of HLUT in the Horizon Method.  As 
the HORIZON grows outward, queries of higher trim ratio 
are incorporated into the HLUT. 

Taken together, these techniques are remarkably efficient.  
Table 1 shows computation time required to generate several 
different sizes of HLUT on an ordinary desktop computer. 
Each size look-up table was produced by performing 
Dijkstra’s algorithm out to some size (ranging from 70 to 90 
cells depending on the desired trim ratio), and then running 
the horizon algorithm to fill in the gaps. 

IV. BENCHMARKING THE HEURISTIC LOOK-UP TABLE 

Thus far, the HLUT has been discussed in theoretical 
terms.  The remainder of this paper is devoted to an 
examination of more practical considerations.  Several points 
are demonstrated empirically through extensive testing.  First, 
the HLUT produces a speedup in the state lattice when 
compared to other heuristics.  Second, there is an optimal 
HLUT size when considering trade-offs such as memory and 
processor time. 

A. Experimental Setup 
A representative lattice control set was used in all tests.  

Its state space consisted of the 2D translational coordinates, 
heading and curvature (x, y, θ, and κ).  For the sake of 
simplicity, curvature was constrained to be zero at each 
discrete state.  This control set is depicted in Figure 8. 

For these tests, a list of 10,000 random queries was 
generated, consisting of an initial and final state, also 
expressed as position, heading, and curvature.  The set of 
queries was generated with the intent to require the planner to 
produce paths ranging from simple (nearly straight) to 
complex (e.g. parallel parking or n-point turn maneuvers) 
among obstacles.  Each query was tested with a variety of 
configurations, including different obstacle fields and various 
start-goal relationships.  Metrics for performance included 
time and memory consumption. 

Start and goal states were produced with a random 
number generator that provides evenly distributed real values 
in a requested range.  Initial positions were selected at random 
from the free space in order to produce the maximum possible 
variety of queries. The goal position was then specified by a 
randomly selected radius and angle specified in polar 

 

 
Figure 7: Monotonicity of Trim Level.  Several example 
paths are shown in the x,y-plane, which are monotonic in trim 
level.  Every point in the plane must have at least one such 
path that passes through it in order for the horizon algorithm 
to populate the HLUT with all queries below a certain trim 
level. 

  



 
Figure 9: World with Obstacles.  A portion of the world 
with point obstacles used in the experiments is shown here.  
The size of the vehicle is shown for scale. 

coordinates with respect to the start, repeating this step as 
necessary to ensure that the goal is also in the free space.  
Initial and final headings were randomly selected, and 
curvature at end-points was constrained to be zero. Goal states 
were constrained to be no more than ten minimum turning 
radii (80 cells) from their corresponding start states when 
projected onto x, y space. 

Each query was tested in two worlds.  In both worlds, 
cost to traverse free space was held constant at 1 unit per cell 
of free space.  Hence, path cost was equal to the distance 
traveled.  The baseline case was an obstacle-free world, 
meaning that the HLUT was a perfect heuristic.  Results were 
also obtained using a world with randomly placed point 
obstacles, shown in Figure 9 with paths generated by two 
different planners.  These obstacles are the size of one map 
cell, which in this control set corresponds to 1/8th of the 
minimum turning radius.  Points were generated with uniform 
distribution and 5% density in the plane. 

B. Performance 
When comparing heuristic performance, it is important to 

compare problems of similar complexity.  In order to quantify 

the complexity of a particular query, the distinction is made 
between absolute difficulty, which is proportional to path 
length, and relative difficulty, which reflects how much the 
resulting path deviates from a straight line.  Figure 10 
illustrates the two concepts.  Both factors contribute to the 
overall resource requirements for a particular planning 
problem.  Absolute difficulty is measured here by the path 
length.  In the case of relative difficulty, the ratio of Euclidean 
distance / nonholonomic distance was used.  In this scale, 
values near one indicate that the resulting path is nearly a 
straight line, while those values nearest to zero indicate that 
much maneuvering is necessary to reach the final pose.  In the 
analysis below, results are shown for queries with absolute 
difficulty of 40 cells.  This number was chosen arbitrarily for 
clarity of presentation. Any other absolute difficulty would 
have conveyed similar results. 

 
Figure 8: Lattice Control Set Used in Experiments.  The 
state lattice control set selected for testing has 16 discrete 
headings, a maximum curvature of 1/8 of cell, and an average 
outdegree of 12, for a total of 192 curves.  The straight edges 
cannot be seen because they are obscured by the longer 
curved edges. 

A performance breakdown of the HLUT versus Euclidean 
distance heuristic is shown in Figure 12.  Across the entire 
range of relative difficulty (the straightness of the solution 
path), the HLUT outperforms the simpler heuristic.  It may 
seem counterintuitive that performance for the HLUT is best 
on those problems which are considered the hardest.  This 
phenomenon is explained by the fact that the control set’s 
straighter edges are shorter than the very curvy edges – a 
situation which naturally arises from the control set generation 
process described in [1].  In each query, the search using the 
HLUT performs no more expansions than are necessary, but 
more expansions are needed with the straighter paths.  Since 
these expansions are compulsory, searches with the HLUT 
must be at least as fast as Euclidean in every case. 

C. Sizing 
The heuristic look-up table has been shown to have some 

benefits over simple heuristics, but that experiment relied on 
mately 2.3 million entries consuming 

over 28MB.  This table was generated by first using Dijkstra’s 
method to a distance of 100 cells, followed by the horizon 
method with a trim ratio of 0.9.  Even though this amount of 
memory is insignificant by today’s standards, it would be 
desirable to devote fewer resources to the heuristic function if 
possible.  Therefore, the impact on the planner of using 
smaller HLUTs was examined. 

an HLUT with approxi

There is a basic trade-off involving HLUT size, which is 
defined according to its backup heuristic (Euclidean distance). 
An HLUT with maximum trim ratio of 0.0 is tantamount to a 
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Figure 10: Absolute and Relative Query Difficulty.  The 
difficulty of a query can be quantified in two dimensions.  
Each path, A, B, and C, starts at O.  Query A is high in 
absolute difficulty as well as relative difficulty because it is 
long and has multiple cusps.  B is simple in both measures.  
Query C has the same absolute difficulty as A (same length), 
but the same relative difficulty as B (nearly a straight line). 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12: Performance Comparison of Heuristics.  The 
HLUT consistently outperforms the Euclidean heuristic across 
all types of queries.  The improvement varies from 2 to 1000x. 

simple Euclidean distance heuristic function, which we have 
seen to perform poorly on many lattice queries because it 
performs unnecessary A* expansion steps.  Conversely, if the 
HLUT is very large, few expansions are performed at the 
expense of increased demands for memory to store the HLUT 
itself.  The ideal HLUT is large enough to solve queries 
efficiently without being so large that gains in memory saved 
in exploration are consumed by a monstrous HLUT. 

The effect of trim level on average processor requirement 
can be observed by aggregating all queries for a given trim 
level and examining the effect of varying the HLUT size on 
CPU consumption.  In Figure 13, the effect of trim level on 
computation time is shown.  There is a clear knee in the 
curves both with and without obstacles, which occurs at trim 
level 0.8, corresponding to an HLUT size of approximately 
2.5MB. 

In Figure 11, the same data are examined from the 
perspective of memory usage.  Here it is apparent that there is 
a trade-off between the amounts of memory consumed by the 
HLUT and because of the graph search itself.  Once again, the 
optimal size is a trim level of 0.8.   

When using this new look-up table as a heuristic rather 
than the original one (which was ten times larger), the 
reduction in performance of the planner was shown to be quite 
insignificant, since only large-trim-ratio queries were 
removed.  The size of the HLUT can be easily tuned as 
desired for any application, simply by selecting the desired 
trim ratio. 

V. CONCLUSIONS 

The state lattice combined with a heuristic look-up table 
has been shown to be an efficient means of generating path 
plans in full configuration space.  The look-up table can be 
generated efficiently, and a useful HLUT can easily within the 
size of modern computer memory.  Using the concept of trim 
ratio, entries in the HLUT may be selected for inclusion in a 
principled manner.  This notion provides a useful knob for 
adjusting the trade-off between performance and space 
savings.  While an HLUT is generated with respect to a 
particular vehicle’s control set, the techniques are generally 
applicable to the creation of heuristic functions for A*. 
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Figure 11: Memory Comparison of HLUT Sizes.  Upper 
trim levels are annotated.  Memory consumption varies with 
HLUT size, but a minimum occurs at trim level 0.8. 
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Figure 13: Time Comparison of HLUT Sizes.  Upper trim 
levels are annotated.  A* search time varies inversely with 
HLUT size, but there is a clear knee to the curve, with limited 
gains at trim levels above 0.8. 
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