
Thomas M. Howard

Alonzo Kelly
Robotics Institute
Carnegie Mellon University
Pittsburgh, PA 15213-3890, USA
{thoward,alonzo}@ri.cmu.edu
http://www.ri.cmu.edu/people/{howard_thomas,kelly_alonzo}.html

Optimal Rough Terrain
Trajectory Generation for
Wheeled Mobile Robots

Abstract
We present an algorithm for wheeled mobile robot trajectory
generation that achieves a high degree of generality and
efficiency. The generality derives from numerical linearization
and inversion of forward models of propulsion, suspension, and
motion for any type of vehicle. Efficiency is achieved by using
fast numerical optimization techniques and effective initial
guesses for the vehicle controls parameters. This approach can
accommodate such effects as rough terrain, vehicle dynamics,
models of wheel-terrain interaction, and other effects of interest.
It can accommodate boundary and internal constraints while
optimizing an objective function that might, for example, involve
such criteria as obstacle avoidance, cost, risk, time, or energy
consumption in any combination. The algorithm is efficient
enough to use in real time due to its use of nonlinear
programming techniques that involve searching the space of
parameterized vehicle controls. Applications of the presented
methods are demonstrated for planetary rovers.

KEY WORDS — mobile robots, trajectory generation, rough
terrain, constrained optimization, optimal control, path planning.

1 Introduction
In order to operate competently in any environment, a mobile
robot must understand the effects of its own dynamics and of its
interactions with the terrain. It is therefore natural to incorporate
models of these effects in a trajectory generator that determines
the controls necessary to achieve a prescribed motion.

Trajectory generation is the problem of determining a feasible
motion (or a set of feasible motions) that will permit a vehicle to
move from an initial state to a final state given some model of
the associated dynamics. While this two-point boundary value
problem is classical and well studied, it remains quite complex to
solve adequately in practice. In order to generate a smooth,
continuous path on flat terrain (which satisfies an arbitrary
number of constraints involving position, heading, linear and
angular velocities, and/or curvature), a nonlinear differential
equation must be solved.

The addition of rough terrain to the problem further
complicates matters by coupling these nonlinear equations of
motion. Numerical methods, such as the ones presented in this
article, are required to solve such problems for arbitrary terrain
due either to its typically sampled representation or to the
nonlinearities of the models.

1.1 Motivation
While the present generation of mobile robots is content to move
from point A to B, and perhaps avoid obstacles along the way,
truly useful machines must often interact with the world in ways
more general than simply driving over it. For autonomous
vehicles, trajectory generation algorithms can form the basis of
any capacity to achieve a designated state of motion. Further,
real-time algorithms are needed to do so in response to
information gathered on the fly by perception.

Figure 1: Motion Planning on Rough Terrain. For competent
navigation in challenging environments, the terrain shape must be
considered in the generation of continuous motion trajectories. The
presented trajectory generation algorithm generates motion plans that
account for arbitrary terrain shape, vehicle dynamics models, and
wheel/terrain interaction models by linearizing and inverting forward
models of propulsion, suspension, and motion.

Continuous motion is the core capacity of contemporary
mobile robots. Yet, future machines will be required to address
specific places in challenging terrains at specific attitudes and
headings (Figure 1). At these places, they will be required to
deploy implements to do something useful like measuring the
composition of a rock, digging a hole, or placing a load of
material on a truck.

Competent operations in cluttered environments require the
capacity to understand precisely the entire space of feasible
motions and to search it for a (or the best) solution. The trivial
solution of line segments joining waypoints is often not feasible
due to kinematic or dynamic limitations on curvature – even for
vehicles that can nominally turn in place when stopped.

Continuous curvature trajectories can have certain advantages
over this trivial alternative. For example, the time to complete
the mission or the exposure to risks (such as wheel slip) increases
when the vehicle must stop and change direction.

In the context of semi-autonomous operations, trajectory
generation can be used to drive the vehicle to an operator-
designated waypoint or waypose. This point-and-click approach
reduces both operator workload and telemetry bandwidth relative
to continuous car-like driving. It potentially provides a better
solution than might be achieved otherwise because closing the
speed loops on the vehicle can mitigate the effects of latency.

For autonomous operations, trajectory generation can be used
to acquire specific terminal states when the context is one of
acquiring a fixed goal point. When following a path, trajectory
generators can correct for path following errors by reacquiring a
moving goal point at some forward position on the path.

Trajectory generation can also be cast as a core component of
global motion planning. It can be used as a mechanism to encode
the connectivity of state space in lattice-like networks as in
(Pivtoraiko and Kelly 05). In this context, trajectory generation
is the key to encoding a search space that intrinsically meets all
mobility constraints.

1.2 Related Work
In the context of robot motion planning, most research in

trajectory generation has dealt with finding obstacle-free paths
subject to nonholonomic constraints assuming flat terrain and
simple vehicle models. Two basic techniques exist. The first is
sequential search of a graph whose edges consist of dynamically
feasible low-order controls (arcs, clothoids, etc…). This
technique produces a solution sequence of these low-order
geometric primitives. The second technique is continuum
optimization producing a single high-order parameterized
geometric primitive. Graph-search methods generate the globally
optimal solution in the discretized network, while parametric
optimization methods search the continuum of solutions to find a
locally optimal solution. The choice is between a sampled global
solution and a continuous local one.

Some of the first work in trajectory generation involved
composing optimal paths from a sequence of line segments, arcs
(Dubins 57), clothoids (Kanayama and Miyake 85)(Shin and
Singh 90), and cubic spirals (Kanayama and Hartman 89). The
desire for higher-order geometric primitives was intended to
enable higher levels of continuity at the boundaries of the
primitives. B-splines have been used to meet arbitrary position
and heading boundary conditions by defining a sequence of knot
points along the path (Komoriya and Tanie 89). The concept of
differential flatness, a property of a class of systems ideally
suited to trajectory generation, was introduced by (Fliess 92).
Methods based on sinusoidal and Fourier series input functions
also appear throughout the literature (Brockett 81)(Tilbury et. al.
1992)(Murray and Sastry 93). These methods exploit the
geometry of the problem to solve for the unknown path
parameters directly. They cannot generally solve for collision-
free paths in an obstacle field.

Graph-search techniques have been used for a long time in
kinodynamic planning. In the context of robot manipulators,

optimal joint trajectories were planned in (Heinzinger et. al.
1990) using grid-search. These methods also apply to the
problem of solving for obstacle-free and minimum-length paths
which satisfy nonholonomic and boundary constraints (Canny et
al 1988)(Jacobs and Canny 89)(Barraquand and Latombe
89)(Reeds and Shepp 1990)(Laumond et al 90). The drawback
of using graph-search techniques for trajectory generation is the
resolution lost due to discretization of state space and/or control
space. The only boundary states that can be reached are those
that already exist in the network.

Variational (optimization) techniques for trajectory
generation, which search the continuum for a locally optimal
solution, are as old as optimal control theory and have been used
in most fields that employ automatic control (Betts 98). This
approach generally uses numerical methods to satisfy some set of
boundary conditions and/or minimize some cost function by
searching for the associated parameterized or sampled control.
Automatic generation of joint trajectories using optimal control
and cubic polynomial primitives were exhibited in (Lin et al
1983). Minimum-time paths between boundary states are treated
as a control problem in (Baker 89). (Jackson and Crouch 91)
implemented the shooting method to solve for trajectories using
cubic spline primitives. Energy minimization was used in
(Delingette et al 91) to successively deform a curve until it met
the boundary constraints, but it was found to be unsuitable for
real-time applications. In (Laumond 95), a holonomic geometric
path is found in an obstacle field and path segments are
smoothed using optimal control. A near real-time optimal control
trajectory generator is presented in (Reuter 98), which solves
eleven first-order differential equations subject to the state
constraints. A real-time trajectory generation algorithm for
differentially flat systems is presented in (Faiz et. al 00), where
an approximation of nonlinear constraints are replaced by linear
inequality constraints. (Kim and Tilbury 01) used methods based
on solving an approximate linearized problem (when systems are
input-output linearizable) for UAV trajectory planning. Some of
the most recent work in optimal control trajectory generation
includes (Kalmár-Nagy et al 03), where near-optimal paths are
constructed for omnidirectional vehicles using bang-bang
optimal control methods. Their methods generate minimum-time
omnidirectional trajectories subject to complicated dynamics and
actuator models. In (Nagy and Kelly 01)(Kelly and Nagy 03),
our group presented a real-time algorithm which solves the
planar trajectory generation problem between arbitrary boundary
states by linearizing and inverting the equations of motion.

All of the mobile robot trajectory generation methods
discussed so far have assumed a flat world. By contrast, at the
level of global motion planning where primitive trajectories are
sequenced together, the nonflat terrain shape is often known. It is
normally considered only in terms of its effect on the overall
objective being optimized rather than in terms of its lower level
effect on the motion itself.

Some of the first such rough terrain work involved using A*
on a search-space based on the isolines of a relief map which
incorporated energy costs associated with elevation changes
(Gaw and Meystel 89). More complicated terrain and vehicle
models are introduced in (Shiller and Chen 91)(Amar
93)(Bonnafous et al 01), which include kinematic and dynamic

Howard and Kelly / Optimal Rough Terrain Trajectory Generation for Wheeled Mobile Robots
 3

models. In (Shiller and Chen 91)(Shiller and Gwo 91), optimal
B-spline paths are generated on a B-patch representation of the
terrain. (Amar 93) adapts a sub-optimal cubic spline path
assuming flat terrain to three-dimensional terrain using a
kinematic vehicle model and enforcing terrain contact. A graph-
search method using a set of arc primitives was used in
(Bonnafous et al 01) where distance and risk associated with the
robot orientation was minimized.

One technique, which does account for the influence of terrain
on motion, is the two-level planner is presented in (Cherif et. al
1994)(Cherif 99). This work searches for an optimal global path
plan assuming flat terrain but it ensures connectivity between the
states using a local trajectory generator that accounts for terrain
shape. The local trajectory generator is set up as a graph-search
problem and is solved using best-first search.

1.3 Discriminators
The method presented in this article differs from the body of
prior work discussed above in several ways. The current state of
the art in nonholonomic trajectory generation exhibits two
classes. Algorithms in the first class produce smooth motion
primitives on assumed flat terrain. The second class produces
rough terrain primitives that are generated from a search, often of
a graph, over a discretized control space rather than the
continuum. Such techniques have not produced continuous
motions at the junctions between motion primitives.

Continuum motion generation algorithms to date have not
accounted for the effects of rough terrain and models of vehicle
dynamics (e.g. delays, gain limits, wheel slip) at the level of
primitive motions. Of course, the flat terrain assumption greatly
simplifies the problem because it decouples the nonlinear state
equations of the system (Howard and Kelly 05) but it does so at
the expense of introducing model error for which controllers
must later compensate. By accounting for terrain shape and
models of vehicle dynamics, we eliminate this significant source
of error predictively at planning time rather than reactively at
execution time (in feedback control). Terrain shape is generally
known (to the accuracy of the perception system) and it is
already used elsewhere in the controls of most rough terrain
autonomous vehicles, so terrain adaptive lower level controls
such as trajectory generation are an inevitable development that
we describe in this article.

1.4 Technical Approach
A highly general description of the trajectory generation

problem is that of generating a set of controls (u) which satisfy a
set of state constraints (C) subject to a set of governing
differential equations (f(x,u,t)) describing the system dynamics:

()t,,uxfx =& (1)

0xC =)t,((2)

Our formulation is one that transforms the basic optimal
control problem into one of nonlinear programming. We assume
some parameterized set of controls, and then compute the
response to an initial guess for the control. Initial guesses are
generated based on lookup tables for flat plane solutions. The

mapping from control to response is then linearized numerically
with respect to the parameters, and it is inverted numerically to
provide the first order updates to the guessed parameters that
explain the deviation of the computed endpoint from the desired
endpoint. Continued iteration refines the estimated control until
the terminal state error descends below some threshold. The
search spaces we consider have been observed to have a large
radius of convergence and few local optimums, making such
methods efficient and reliable in practice.

The numerical linearization in the above formulation is able to
invert a forward model of a vehicle without explicitly encoding
anything peculiar to the vehicle. However, the forward model
does model the vehicle specifics. An arbitrarily complex vehicle
model can be used to predict how the vehicle will move over the
terrain. In our suspension model, we generally enforce terrain
contact, possibly by articulating visco-elastic degrees of freedom,
to determine attitude and elevation given position and heading.
However, dynamic models admitting ballistic motions are also
possible. In our propulsion model, such elements as actuator
dynamics, rate limits, wheel slip, and the velocity kinematics are
included. More complicated models involving forces, mass
properties, and terramechanical models are consistent with our
framework.

In summary, this article will present an approach to the
problem that uses parameterized controls and nonlinear
programming to search the continuum of control space efficiently
for an optimum trajectory while preserving the ability to do so in
real-time. The numerical approach used also makes the approach
applicable to arbitrary terrain shape and arbitrary vehicle models
actuated in arbitrary ways.

1.5 Layout
This paper is divided into seven sections. Section 2 describes the
trajectory generator system architecture, including details about
the boundary state definition, parameterized controls, numerical
optimization, integration, and simulation steps in the process.
Section 3 discusses initial guesses for the vehicle controls
parameters and sections 4 and 5 detail the experiments used to
test the capabilities of the algorithm. Applications, conclusions,
and future work are discussed in sections 6 and 7.

2 Trajectory Generator System Architecture
The trajectory generation algorithm exhibits a three-level
architecture which separates the trajectory generation (numerical
optimization which minimizes constraint error), motion
prediction (numerical integration to predict motion), and the
vehicle simulation methods (Figure 2). The initial and final state
boundary pair, the parameterization of the controls and the
vehicle model comprise the inputs to the trajectory generator.
The output is a trajectory, which we define as the union of the
path (comprised of a vector of vehicle states) and the correct
parameters for the controls. The vehicle model is defined
externally to render the approach vehicle independent. Sections
2.1, 2.2, 2.3, 2.4, and 2.5 will discuss the boundary state
definition, parameterized vehicle controls, trajectory generation
(numerical optimization), motion prediction (numerical
integration), and the vehicle model respectively.

2.1 State Constraint Definition
One of the simpler forms of trajectory generation problems is a
form of the two-point boundary value problem where it is
convenient to constrain the vehicle state at the boundaries of the
path. The integration of the equations of motion requires the
initial state of the vehicle, and the terminal state defines the
target state of the vehicle at some forward time tf (Figure 2).

The most basic types of state constraints include world-frame
position (x,y,z) and orientation (φ,θ,ψ). However, since roll (φ),
pitch (θ), and elevation (z) are determined (under assumptions of
terrain contact) by the pose and the interaction between the
vehicle suspension and the terrain, only the position (x,y) or pose
(x,y,ψ) boundary constraints on position and orientation can
generally be specified. Typically there are also requirements on
the vehicle controls that must be satisfied at the initial and
terminal states. Linear and angular velocities (v) and
accelerations (a) are often constrained for a dynamically feasible
motion plan. A state vector is formed for the initial (x0) and
terminal states (xf) of the robot:

[]T00000 ,,,,y,x Kωvx0 ψ= (3)

[]Tfffff ,,,,y,x Kωvxf ψ= (4)

The initial state constraint is typically satisfied trivially and its
value is used to seed the numerical integration while the terminal
state specifies the constraints at the end of the trajectory. We will
write the constraints on the system in the following manner:

()
()
()
()

()
()
()
()

0xC
ux
ux
ux
ux

x =

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
ψ−ψ

−
−

=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

ψ=

MMM

&
&

&

&

&

ff

ff

ff

ff

4

3

2

1

tkk
t
tyy
txx

)t,(
t,,f
t,,f
t,,f
t,,f

k

y
x

 (5)

2.2 Parameterized Vehicle Controls
In addition to the boundary states, the algorithm requires a set of
parameterized controls that encode the motion of the vehicle
(Figure 2). While the space of parameterized controls may
represent only a subspace of all feasible motions, an appropriate
choice of parameterization can represent nearly all possible
controls. The set of all parameterized controls (u) for the vehicle
is defined as a function of the parameter vector (p) and some
distinguished independent variable (ζ):

()ζ= ,pfu (6)Figure 2: Trajectory Generator System Architecture. The
trajectory generation algorithm can be conceptualized as a three-level
hierarchy. The highest level is a numerical optimization that
minimizes the constraint error by adjusting the free parameters in the
controls. The next level, motion prediction, is simply the numerical
integration of the equations of motion. The lowest level, the vehicle
model, simulates the vehicle’s dynamics, motion, and suspension.
This architecture is formalized and implemented to permit different
vehicle models to interface with the same underlying algorithm.

The free parameters in the parameter vector represent knobs that
allow the algorithm to change the shape of the control. The
number of free parameters in the parameter vectors minus the
number of constraints represents the number of remaining
degrees of freedom in the system.

2.2.1 Body-Frame Vehicle Parameterized Controls
Choosing the proper set and parameterization for vehicle

controls (u) requires an examination of typical wheeled mobile
robot mobility systems (Figure 3):

Figure 3: Mobility System Models. The choice of mobility system
determines the vehicle’s capacity to execute complex motions.
Omnidirectional mobility systems are most capable, allowing
instantaneous motion in any direction in the local tangent plane. All-
wheel steering mobility systems allow motion in any direction in the
local tangent plane, but are restricted by nonholonomic constraints.
The skid-steering, Ackermann steering and corner steering mobility
systems are the least flexible mobility systems because their linear
velocity is constrained along the forward x-axis of the vehicle frame.

Howard and Kelly / Optimal Rough Terrain Trajectory Generation for Wheeled Mobile Robots
 5

Nonholonomic constraints are often conveniently expressed in
the body frame when they can be expressed by simply
eliminating degrees of freedom. Neglecting articulations,
wheeled mobile robots move rigidly with three degrees of
freedom in the local tangent plane. Hence, body-frame linear
(vx,vy) and angular velocities (ωz) are natural candidates for the
controls because they reduce the dimension of the input space to
a minimum. This choice can be made without loss of generality
because a specific implementation might elect to include a
mapping from wheel level controls onto body motions before the
steps discussed below. Wheel velocities and steering angles are
found by mapping the body frame linear and angular velocities
through the suspension kinematics.

Skid-steered, Ackermann, and corner-steered mobility
systems are the simplest locomotion methods because their linear
velocity is constrained to lie along the forward x-axis of the
vehicle (vx). Omnidirectional mobility systems have holonomic
wheels which allow translation in any direction in the local
tangent plane (vx,vy). All-wheel steering mobility systems allow
translation in any direction in the local tangent plane so long as
the path heading varies continuously.

The parameterization of the controls in terms of the linear
velocity in the x and y-directions is not always convenient. When
the number of control variables exceeds the number of degrees of
freedom in the system, explicit constraints must be formulated. A
convenient set of controls for all-wheel steering mobility
platforms encodes the independent linear velocities in the local
tangent plane in terms of the speed in the local tangent plane (|v|)
and the body frame referenced velocity direction (δ) (Howard
and Kelly 06).

()
() ()xy

1

2
y

2
x

y

x

vvtan

vvv
sinvv
cosvv

−=δ

+=
↔

δ=
δ= (7)

Notice that the skid-steered, Ackermann steered, and corner-
steered mobility systems are simply a special case of the all-
wheel steering mobility system definition where the continuous
direction function (δ) is zero.

2.2.2 Control Function Parameterizations
Now that the control candidates for specific vehicle mobility

systems have been defined, appropriate parameterized functions
must be chosen to represent the freedoms in each vehicle control.
The typical choices for the independent variable (ζ) in the
parameterized controls are time (t) and arc-length (s).

This section will detail several logical options for the
parameterization of the controls. In general, any parameterized
function can be applied provided it permits numerical
linearization of the solution to the equations of motion.

It is important to remember that these parameterized controls
are the inputs to the system, not necessarily the response, so
arbitrary parameterizations do not violate vehicle dynamics.
Even discontinuous controls will generate a smooth response
when passed through the dynamics.

Linear Velocity Profiles
Typically, it is convenient for local motion planning algorithms
to control the speed and shape of the trajectory independently.
The initial speed, traversal speed, and the terminal speed are
often known along with the desired linear velocity profile. An
archetypal linear velocity profile for vehicles is the trapezoidal
profile (Figure 4), defined by an initial velocity (v0), initial
acceleration (a0), traverse velocity (vtraverse), terminal deceleration
(af), terminal velocity (vf), and the traversal time (Δt). Smoother
(where acceleration and its derivative are defined), simpler
(linear profile between v0 and vf), or more complex profiles
(several intermediate velocities) can also be applied in the same
framework.

[]Tfftraverse00 tvavav Δ=vp (8)

Figure 4: Trapezoidal Linear Velocity Profile. Typically most of the
parameters defining the shape of the linear velocity control are known.
For a trapezoidal velocity profile, the parameters in the control are the
initial (v0), intermediate (vtraverse), and terminal (vf) velocities, initial
(a0) and terminal (af) accelerations, and the duration (Δt).

Angular Velocity Profiles
The shapes of trajectories are primarily determined by the
angular velocity profile, so it is effective to represent the most
possible feasible motions with a minimum number of parameters.
One effective parameterization of an angular velocity control is a
polynomial function of time (Figure 5):

Figure 5: Polynomial Angular Velocity Profile. A polynomial function
of time is an effective parameterization of the angular velocity controls.
The parameters in the control are the polynomial coefficients (a,b,c…)
and the duration (Δt).

[]Ttdcba Δ= K
zωp (9)

() K++++=ω 32
z dtctbtat,

zωp (10)

By the Taylor remainder theorem, the polynomial can
represent all feasible motions to any desired degree of precision
given enough terms. It is also differentiable, providing any
desired degree of continuity.

When solving parameterized optimal control problems, the
computations are best conditioned if all of the freedoms are of

the same scale. Since interpolation schemes often use
polynomial functions to join a set of control points, the control
points themselves are an equivalent representation. Unlike
polynomial coefficients, though, they have roughly equal scale
(Figure 6):

[]Tn3210 tΔωωωωω= K
zωp

() () fn0100 t,ntt,twhere ω=ωΔ+ω=ωω=ω L ()
(11)

() K++++=ω 32
z td̂tĉtb̂ât,

zωp

() () ()K,fĉ,fb̂,fâwhere 321 zzz ωωω ppp ===
(12)

2.3 Trajectory Generation (Numerical Optimization)
Given the boundary states and the parameterized controls, the
method used for finding the correct controls is nonlinear
programming (Figure 2). Slightly different solution methods
apply depending on the degree of problem constraint. For fully
constrained problems, a constraint residual can be defined and
when the algorithm is properly seeded, it will quickly converge
to an acceptably small residual. Underdetermined problems
encode a family of solutions from which one “best” solution
must be chosen. The criterion of “best” is encoded by specifying
some utility functional to be used to judge alternatives.

2.3.1 Constrained Trajectory Generation
The constrained trajectory generation formulation is the most
straightforward approach. The process modifies the variables in
the parameterized control (p) until the terminal state of the
forward simulated trajectory (x(tf)) is equal to the defined target
terminal state (xf), thereby satisfying the constraint equations
(C(x)). Some of these boundary constraints are trivial to solve
because they can be equated directly to certain parameters in the
control (e.g. initial velocity). Non-trivial constraints (e.g.
position) must be solved numerically using numerical methods.

The numerical method applied is Newton’s method, where the
Jacobian of the solution to the equations of motion is inverted to
find a correction to the parameters in the system needed to
minimize the constraint error (Δxf(p)), which we define for the
moment to be the difference in the simulated terminal state and
the terminal boundary constraints:

() ()() pxxxp
p

px
ff

f Δ−=−=Δ⎥
⎦

⎤
⎢
⎣

⎡
∂

Δ∂
ft () (13)

() ()pΔx
p

pΔxp f
f

1−

⎥
⎦

⎤
⎢
⎣

⎡
∂

∂
−=Δ (14)

If the Jacobian of the constraints is non-square (when the
constraint vector and the parameter vector are not of equal
length), a pseudo-inverse can be applied to produce the least
squares or least norm solution in order to generate a parameter
correction vector.
Since the partial derivatives of the integral of the equations of
motion cannot generally be found analytically, (Howard and
Kelly 05) estimates must be found numerically. Forward (eq. 15)
or central difference (eq. 16) linearizations of the forward
equations of motion can be used to estimate these partial
derivatives. The algorithm derives its vehicle independence from
the numerical estimation of all of the partial derivatives.

Figure 6: Spline Angular Velocity Profile. An alternate
representation of a polynomial function is a spline function. The
parameters in this control are the knot points (ω1,ω2,ω3…) that define
the shape of the angular velocity control and the duration (Δt). This
representation is beneficial for numerical optimization schemes
because all of the knot points have roughly equal scale.

() () ()
e
,e j,ikj,i

k

j,i pΔxppΔx
p

pΔx −+
=

∂

∂
 (15)

() () ()
e2

,e,e kj,ikj,i

k

j,i ppqppq
p

pΔx −−+
=

∂

∂
 (16)

2.3.2 Constrained Optimization Trajectory Generation
In addition to the pseudo-inverse, optimal control methods can be
used to solve the underconstrained formulation of the problem. In
this case, the optimization process creates the extra needed
constraints to define a locally unique solution.

In the optimal control formulation of the problem, parameters
in the linear and angular velocity controls (p) must be adjusted to
satisfy the constraints and minimize some utility functional
(J(p)). As in (Kelly and Nagy 03), this is accomplished using the
method of Lagrange multipliers The Hamiltonian (H) is defined
as the sum of the cost function and the product of the Lagrange
multiplier vector (λ) with the constraints:

() () () () ()()f
TT tJJ, xxλppΔxλpλpH ff −+=+= (17)

The utility functional is a description of what we want to
optimize over the path. In general, it takes the form of:

() ()∫= f

0

t

t
dtt,,YJ pxp (18)

The utility functional is conceived as a line integral of a
potentially time-varying utility function (Y(x,p,t)) along an
unknown path. Equivalently, the problem can be formulated in
terms of cost rather than utility. The time-varying utility
function can be considered to be a (potentially time varying) field
over the state vector. It represents any weighted combination of
utilities or costs that are properties of a given state. It may
include instantaneous energy consumption, wheel slip, loss of
mobility, risk, slope, path smoothness, proximity to an obstacle,
or anything else of interest.

() () () () K+++= xxxpx smoothness3energy2risk1 Ywt,YwYwt,,Y (19)

The weights in the utility functional inevitably represent
tradeoffs – like how far the system should be willing to go
around an obstacle in order to reduce the risk, at a cost of
lengthening the time to the goal. The tuning of these weights is

Howard and Kelly / Optimal Rough Terrain Trajectory Generation for Wheeled Mobile Robots
 7

unavoidable and both application and platform specific, and is
outside the scope of this article.

The first-order necessary conditions for optimality are well
known:

() () () TTJ, 0
p

pΔxλ
p
p

p
λpH f =

∂
∂

+
∂
∂

=
∂

∂ (n equations) (20)

() () 0
λ

pΔx
λ
λpH f =

∂
∂

=
∂

∂ , (m equations) (21)

There are a total of n+m equations for this system, where n is
the length of the parameter vector (and the number of unknown
parameters in the system) and m is the length of the Lagrange
multiplier vector (and the number of constraints in the system).

This system is solved by linearizing the first-order necessary
conditions. The initial guess of free control parameters and the
Lagrange multipliers are adjusted at each iteration until a locally
optimal solution is found. At this point, the gradient of the
Hessian and the error in the boundary state both approach zero.
Each iteration of the optimization involves a numerical solution
of:

() ()

()

()

() ⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

∂
∂

−=⎥
⎦

⎤
⎢
⎣

⎡
Δ
Δ

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

∂
∂

∂
∂

∂

∂

pxΔ

p
λpH

λ
p

0
p

pΔx

p
pΔx

p
λpH

ff

f T
T

2

2

,
,

 (22)

A correction factor for the control parameters and Lagrange
multiplier vector is found by inverting the relationship in
Equation 22:

() ()

()

()

() ⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

Δ

∂
∂

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

∂
∂

∂
∂

∂

∂

β−=⎥
⎦

⎤
⎢
⎣

⎡
Δ
Δ

−

px

p
λpH

0
p

pΔx

p
pΔx

p
λpH

λ
p

ff

f T

1T

2

2

,
,

 (23)

A step size scaling factor (β) is used to enhance numerical
stability when initial guesses are far from the local solution. In
place of the scale factor, the optimal step size could be
determined by performing a more expensive line search.

The Hessian of the Hamiltonian (H), like the Jacobian of the
forward solution, cannot be solved analytically in our case.
Again, forward or central differences are used to estimate the
partial derivatives:

() () () () ()
2

j,ikj,ilj,ilkj,i

lk

j,i
2

e
,e,e,e,e pHppHppHpppH

pp
pH ++−+−++
=

∂∂

∂
(24)

2.4 Motion Prediction (Numerical Integration)
The process of numerically integrating the differential equations
that govern the motion of the vehicle is essentially one of
simulation (Figure 2). Motion simulations are required to
generate the trajectory corresponding to the parameterized
controls and consequently the Jacobian and the Hessian of the
Hamiltonian (because they are found by numerical linearizations
of forward solutions). The process is broken into three distinct

steps: control dynamics, modeling of the wheel-terrain
interaction, and motion simulation.

The first step, modeling of the control dynamics, is very
important for accurately simulating real-world systems. Real
systems have motor acceleration and torque limits, latency, and
joint limits that must be modeled in order to produce an accurate
simulation of how the vehicle will respond to its commands. The
control dynamics modeling portion of the motion prediction
stage simply determines the vehicle response to the body-frame
linear and angular velocity controls:

() (t,,t, uxfux dynamicscontrol)=& (25)

The control dynamics portion of the model determines the
forces that the vehicle will exert on the environment, and
therefore the resulting response forces from the environment. It
is here where models of wheel slip, sliding, and the actions of
external forces on the system are applied.
The last portion of the motion prediction is the actual motion
simulation, which determines the change in vehicle pose (r|world,
o|world) over a small time step (Δt):

() () () tt,,ttt Δ+=Δ+ uxxxx & (26)

Since ground vehicles generally cannot control their roll,
pitch, or elevation rates (they are functions of the interaction
between the environment and the suspension), new estimates of
these states are computed by the suspension model at the end of
each motion prediction step.

2.5 Vehicle Model (Vehicle Simulation)
From a coding perspective, the vehicle model portion of the
trajectory generation algorithm is an instance of the abstract
vehicle model class that determines how the robot will respond to
the commanded body-frame linear and angular velocity controls,
change its position and orientation, and interact with its
environment (Figure 2). The vehicle model is generally broken
down into four elements: a dynamics model, a wheel/terrain
interaction model, a motion model, and a suspension model.

2.5.1 Vehicle Dynamics Models
Vehicle dynamics models simulate the response of the body-
frame vehicle commands to the torques on and/or velocities of
the wheels. By modeling the response to the parameterized
controls, the solutions found are dynamically feasible.

A few elements of vehicle dynamics models are rate limits,
joint limits, and latency. Rate limits represent constraints on how
fast actuators can turn. Modeling these effects can account for
drive wheels that move slower than requested or steering servos
that lag behind their desired orientation. By contrast, joint limits
bound entire regions of control space that contain infeasible
motions. An example of such infeasible motions is the
impossible turn-in-place maneuver in automobiles. The front
wheels can never reach the steer angles required for this motion.
Accounting for latency in the system is essential for generating
correct trajectories when the vehicle state can change
dramatically over the scale of the latency.

These types of constraints can be handled in the trajectory

generator by using the response to the input controls in the
integration of the kinetic motion model instead of the controls
themselves. Hard limits can be imposed on steering angles and
models of actuator dynamics can simulate delays in the motor
controller.

The imposition of such joint and rate limits in the vehicle
model requires a method for computing wheel direction and
velocities given some body-frame linear and angular velocity.
For determining the mapping from body-frame linear and angular
velocity to wheel velocities, suspension articulation rates can be
temporarily neglected to simplify the computations. For such an
assumed rigid body, the velocity of any point on the vehicle can
be determined from the linear and angular velocity of the body
frame. Specifically at the location of a wheel:

wheelbodybodywheel rωvv ×+= (27)

In the linear and angular velocity vectors, only the
controllable velocities (vx,vy,ωz) need to be considered. The
vector r|wheel is the displacement from the body frame to wheel
contact point. The wheel speed and direction can then be
determined from the computed wheel velocity vector.

2.5.2 Wheel/Terrain Interaction Models
By predicting the wheel/terrain interaction in the planning stage
of the overall autonomy system, rather than accounting for it in
the execution stage, more dynamically feasible vehicle motion
can be generated. Traversing high wheel slip environments is a
major challenge for current planetary robotic systems, for
example and the present algorithm promises to help compensate
for such slip to the degree that it can be predicted by the
specialized perception algorithms that are appearing (Angelova
05).

2.5.3 Vehicle Motion Models
The vehicle motion model maps body frame linear and angular
velocities to world frame position and orientation rates. A body-
frame coordinate system is defined with the positive x-axis
pointing forward, the positive y-axis pointing to the right, and the
positive z-axis pointing down. The mapping of linear velocities
from the body-frame (v|body) to world frame (v|world) is completed
by rotating the body-frame x, y, and z axes by the Euler angles
roll (φ), pitch (θ), and yaw (ψ) respectively:

() () () bodyxyzworldworld vROTROTROTvr φθψ==& (28)

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

φθ
φψ−φθψ
φψ+φθψ

φθ
φψ+φθψ
φψ−φθψ

⎢
⎢
⎢

⎣

⎡

θ−
θψ
θψ

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

z

y

x

v
v
v

cc
sccss
sscsc

sc
ccsss
csssc

s
cs
cc

z
y
x

&

&

&

&
worldr (29)

This relationship can be inverted to determine the body-
frame velocity vectors in terms of the global position rates:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

φθ
φθ
θ−

φψ−φθψ
φψ+φθψ

θψ

⎢
⎢
⎢

⎣

⎡

φψ+φθψ
φψ−φθψ

θψ
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

z
y
x

cc
sc
s

sccss
ccsss

cs

sscsc
csssc

cc

v
v
v

z

y

x

&

&

&

bodyv (30)

The mapping between the Euler angle rates and the body-
frame angular velocities (ω|body) can also be found by
transforming the individual Euler rotation rates from their
intermediate frames to the robot-fixed frame:

() () ()
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

ψ
θφ+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
θφ+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡φ
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

ω
ω
ω

=
&

&

&

0
0

rotrot
0

0
rot

0
0 yxx

z

y

x

bodyω (31)

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

ψ
θ
φ

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

θφφ
θφ−φ

θ
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

ω
ω
ω

=
&

&

&

ccs0
csc0

s01

z

y

x

bodyω (32)

Just as with global position rates and body-frame linear
velocities, this relationship can be inverted to determine the Euler
rates in terms of the body-frame angular velocities:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

ω
ω
ω

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

θ
φ

θ
φ

−

φφ
φθ−φθ

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

ψ
θ
φ

=Ψ

z

y

x

c
c

c
s0

sc0
ctst1

&

&

&

world
 (33)

Equations (29) and (33) form the basis of the time-based
velocity kinematics. The rate of change of global position and
Euler angles can be determined given a set of controllable body-
frame linear and angular velocities:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

ω
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

θ
φ

φψ+φθψθψ
φψ−φθψθψ

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

ψ
=

z

y

x
v
v

c
c00

0ccssscs
0csssccc

y
x

&

&

&

&x (34)

2.5.4 Vehicle Suspension Models
Vehicle suspension modeling is the problem of properly
determining the attitude and elevation of a vehicle given other
elements of its current state. This is an embedded optimization
problem because it is often highly underdetermined. We solve
this problem by conceptually allowing the vehicle to float in
altitude and attitude, and articulate in suspension, while
minimizing the residual between the wheels and the terrain
elevations under (or above) them.

3 Initial Guesses for the Vehicle Controls Parameters
Good initial guesses for the vehicle controls parameters are very
important to the efficiency of the trajectory generation algorithm.
When initial guesses of parameters are close to the actual
solution, fewer iterations of the algorithm are required to satisfy
the boundary state constraints. Furthermore, when local minima
exist, a good initial guess is insurance against falling into the
wrong minimum. Since initial guesses for three-dimensional
terrain, arbitrary vehicle dynamics, and arbitrary terrain models
are difficult to calculate (because of their dimensionality), flat
surface solutions with limited dynamics are considered.
Historically, approximations of the solutions have been found by
hand-tuning polynomial functions to data from a few dimensions
(Nagy and Kelly, 2001). This section discusses the problem of
generating the dataset for the initial guesses and two methods of
storing them: a initial guess lookup table and a neural network.

Howard and Kelly / Optimal Rough Terrain Trajectory Generation for Wheeled Mobile Robots
 9

3.1 Lookup Table
A lookup table is an efficient means of storing initial guesses for
the vehicle controls parameters given that the space of solutions
is low dimensional and is smooth. This is yet another reason for
using parameterized controls because they encode the entire
shape of the trajectories in relatively little memory.

Generally the most important boundary constraints which
influence the shape of the path are the initial and terminal
positions (x,y), headings (ψ), and initial and final curvatures
(k0,kf), resulting in a five-dimensional lookup table of solution
parameter vectors. More dimensions, such as velocities, can be
incorporated into the lookup table if they have dramatic effects
on the accuracy of the initial guess.

In order to generate the initial guess lookup table efficiently,
we use previous solutions to seed neighboring trajectory
generation problems in the table. This requires a satisfactory
initial guess for the first trajectory generation problem, which is
ideally centrally located in the lookup table.

In practice it may be necessary to adjust the order of the

progression through each dimension of the initial guess lookup
table if convergence problems (due to dynamic infeasibility or
sparsity of the discretization) are observed. The resolution and
dimensionality of the stored lookup table is a function of the
robot’s storage and computing power and is therefore platform
dependent.

3.2 Neural Network
Another method to generate the initial guess used in the
trajectory generator is to use machine-learning algorithms to fit a
function to a large training set of trajectory generation examples.
The initial guess lookup table from Section 3.1 (or a sampled
version of it) can be used as a good training set because the
boundary state pairs are regularly separated.

The motivating factor behind using such a representation is
the space savings. A high-dimensional initial guess lookup table
can require tens or hundreds of megabytes of storage whereas a
neural network, which requires that only the weights of the
learned function be stored, requires only a few kilobytes. This is

important for applications with limited storage such as planetary
rovers. The solutions are good candidates for machine learning
algorithms because the parameters of the solutions are generally
smooth and continuous. The downside to applying neural
networks for such situations is the upfront cost of learning the
entire function.

4 Experimental Setup
Using the methods and algorithms previously described, we have
built a continuous primitive trajectory generator for arbitrary
vehicles that accounts for terrain geometry in the motion
prediction. The experiments and simulations will use a vehicle
model based on the Rocky 8 prototype Mars rover (Figure 8).
The vehicle has an all-wheel steering mobility system that is
artificially constrained in some of the subsequent examples in
order to demonstrate trajectory generation for less capable
mobility systems. This section will outline the state constraints
(Section 4.1), control parameterizations (Section 4.2), trajectory
generation algorithm implementation (Section 4.3), suspension
models (Section 4.4), vehicle dynamic models (Section 4.5), and
the simulated environment used in the experiments.

4.1 State Constraints
For the series of examples in Section 5, we will solve the two-
point boundary value problems typically associated with
trajectory generation. It is important to note however that in
general the algorithm does not require that the state constraints
be specified at the boundaries. The implemented error threshold
used to declare convergence of the algorithm is shown in Table
1.

 Table 1: Convergence Criterion

State Constraint Required Accuracy

Position (x,y) 0.001 meter

Heading (ψ) 0.001 radian

Direction (δ) 0.001 radian

Curvature (ω) 0.001 radian

Figure 7: Neighboring Solutions for Initial Guess Lookup Table
Generation. The initial guess lookup table is generated by continually
solving neighboring trajectory generation problems in such a way that
the last solution is a good initial guess for the next query.

Only the terminal positions, headings, directions, and curvatures
must be satisfied by the trajectory generator optimization. The
position, heading, direction, and curvature initial state constraints
are solved trivially using the current state of the vehicle.

4.2 Control Parameterizations
This implementation employs a fifth-order polynomial spline
function in curvature and linear profiles for the linear velocity
and direction. A curvature profile is used in the same way that
the angular velocity is used and the two are interchangeable.
There are artificial constraints on the initial controls - that they
be equal to the initial curvature, linear velocity, and direction
state constraints for maximum continuity.

4.3 Trajectory Generation Algorithm Implementation
Since the length of the parameter vector (8) exceeds that of the
constraint vector (6), the system can be solved using the
constrained or constrained optimization trajectory generation

techniques. The constrained trajectory generation technique
(Section 2.3.1) is used in Sections 5.1 – 5.5 whereas the
constrained optimization technique (Section 2.3.2) is used in
Section 5.6.

4.4 Suspension / Kinematic Model
In order to map body-frame velocities to wheel velocities and to
determine the orientation and configuration of the vehicle on
arbitrary terrain, the suspension of the vehicle must be modeled.
The body to wheel kinematics equations and were computed in a
manner similar to (Tarokh 2005). The vehicle can be modeled as
a series of revolute joints and links as seen in Figure 8:

The suspension model has been implemented as a numerical

optimization (a different application of Newton’s Method) that
minimizes the distance between wheel contact points and the
terrain by adjusting the three rocker-bogie freedoms, roll, pitch,
and elevation. In general, the partial derivatives required by the
optimization must be found numerically. However an estimate of
the Jacobian can be found analytically by taking the partial
derivatives of the forward kinematics equations of the wheel
contact point with respect to the body-frame elevation, attitude,
and suspension freedoms. This solution is efficiently computed
online in the forward solutions by using the previous state as the
initial estimate for the suspension optimization.

4.5 Vehicle Dynamic Models
Varying dynamic models, including models of wheel slip and
sliding are demonstrated in section 5.5. The examples in
Sections 5.1-5.4 and 5.6 apply ideal vehicle dynamics models in
order to isolate effects of different aspects of modeling. In
general, all of these applications can use arbitrarily complex
vehicle models (joint limits, motor models, etc…) at the burden
of higher computational costs.

4.6 Simulated Environment
The terrain in the experiments is represented as an elevation map
generated using fractals. A third-order Lagrangian interpolation
scheme was implemented to determine the elevation at any given
position in the environment. This method was preferred over
simpler and less costly linear interpolation schemes because
third-order Lagrangian interpolation provides continuous
derivatives at the boundaries between map cells.

5 Experiments and Results
This section demonstrates some uses of the developed trajectory
generator. A comparison of paths generated using the rough
terrain and traditional trajectory generations is shown first to
demonstrate the need to include the terrain geometry in the
forward model. Then, the observed rate and behavior of
convergence of the algorithm is discussed followed by examples
of motion generation for different mobility systems, cases where
vehicle dynamics are important, and the generation of optimal
trajectories.
Results are presented for a simulated vehicle because this is the
best way to test the algorithm on a statistically significant set of
cases. The main purpose of the algorithm is to invert a model to
produce feasible motions that meet the dynamic constraints
encoded in the model and the boundary constraints encoded in
the problem specification. The fidelity of the model used is an
important but separate and independent question that can only be
evaluated on a real vehicle. We assert that, however the
parameters of the vehicle model may change in order to calibrate
it better to reality; our trajectory generator will still be able to
invert it. The algorithm has been integrated into the CLARAty
system at the Jet Propulsion Laboratory and successfully field
tested on the Rocky 8 prototype mobile robot platform. Figure 8: Kinematic Models for Rocky 8. A kinematic model can

easily be generated for mobile robots with Rocker-Bogie suspensions
using a series of revolute joints. The kinematic model is used to map
body frame velocities to wheel frame velocities and to determine the
attitude and elevation of the robot given its position.

Due to space limitations, a relative few examples are
presented in detail but the algorithm has been under continuous
use and evaluation for over two years.

5.1 Rough Terrain Trajectory Generation
Accounting for terrain geometry in trajectory generation is
important in rough terrain environments. Figure 9 shows two
forward simulations of trajectories generated by alternately
assuming and then not assuming flat terrain. The rough terrain
solution meets the stringent terminal constraints (in three
iterations), whereas in this example the flat terrain solution is off
by 24.1% in relative position and 11.5% in relative heading.

Howard and Kelly / Optimal Rough Terrain Trajectory Generation for Wheeled Mobile Robots
 11

There are three important points to take from this figure:

1) Neglecting the influence of the terrain geometry in the
motion model leads to incorrect trajectories.

2) Any path generated assuming flat terrain will be shorter than
the real three-dimensional path between two arbitrary states
on general surfaces. Trajectories generated by ignoring
terrain geometry will make turns too early because the
vehicle will not recognize that it has only displaced a
fraction of its apparent (x,y) position change.

3) The flat terrain solution is close enough to the real solution
to provide an initial guess to initialize the rough terrain
trajectory generation algorithm. Even in the presence of
large terrain undulations like the ones shown in Figure 10,
convergence typically requires less than three iterations.

Of course, in modern robotic systems, such errors are typically
treated using feedback control and path tracking. However, the
main point here is that such errors can be avoided entirely, before
the fact, using the methods of the article because perception used
in local planning can inform the algorithm on terrain geometry.

5.2 Algorithm Convergence
To demonstrate robustness to poor initial guesses for the vehicle
control parameters, the same problem as section 5.1 was solved
using an artificially poor initial guess for the parameters of the
control and a smaller step size scaling factor (α = 0.625).
Figures 10 and 11 show trajectories representing each of the nine
iteration steps required by the trajectory generator to converge to
a solution that reaches the target terminal state.

Figure 10: Trajectory Generation Convergence. The same problem
in Figure 8 is solved using an artificially poor initial guess to
demonstrate robustness of the algorithm. As the method progresses,
successive iterations of the optimization minimize the distance
between the simulated state and the target terminal state until the error
reaches an acceptable level.

Figure 9: Trajectory Generation Compensating for Terrain
Geometry. An example motion plan between a pair of boundary states
is shown with and without compensating for terrain geometry. The
trajectory plan ignoring the terrain geometry does not reach the target
terminal state.

Figure 11: Trajectory Generation Convergence. The position and
heading errors are shown for each trajectory in Figure 10. Given an
artificially poor initial guess of the vehicle control parameters, the
trajectory generator determined the correct solution in nine iterations
of the optimization.

Figure 11 demonstrates the convergence property of Newton’s
Method as the parameter correction is proportional to the current
state error. Even when provided with a relatively large error in
the initial guess, the algorithm is able to converge to the correct
solution because of the relative convexity of the solution space.

5.3 Rough Terrain Trajectory Generation for Instrument
Placement with Restricted Mobility

Instrument placement problems for mobile robots typically
require a local planning algorithm to generate a trajectory to a
terminal state where its position and heading are defined. The
position and heading boundary constraints are typically set such
that the target is within the range of motion of scientific
instruments or the field of view of sensors or cameras.

To demonstrate a more general example of the presented
trajectory generation algorithm, we have used the algorithm to
plan trajectories to visit seven sequential scientific targets as seen
in Figure 12. Here the simulated mobile robot’s all-wheel
steering capability is constrained to demonstrate motion planning
for skid-steered, Ackermann, and corner-steering mobility
systems (linear velocity is restricted to be along the x-axis of the
vehicle). The generated motion plan consists of seven forward
and five reverse trajectories all subject to the vehicle’s
nonholonomic constraints. The trajectories used trapezoidal
velocity profiles with zero initial and terminal velocity, ±2.0
meters/second2 acceleration and deceleration, and a traverse
speed of ±1.0 meters/sec. Figure 12 shows views of the
simulated instrument placement scenario and Figure 13 plots the
position and heading errors as functions of the number of
iterations of the algorithm.

In this situation, the termination conditions are satisfied by all

twelve trajectories in fewer than four iterations of the algorithm
when considering the terrain geometry. As in the previous
examples, this demonstrates fast convergence of the algorithm in
relatively difficult terrain geometry while illustrating a typical
application for the presented method.

5.4 Rough Terrain Trajectory Generation for Instrument
Placement and All-Wheel Steering Mobility Systems

The ability to generate paths in arbitrary terrain for all-wheel
steering mobility systems can endow the robot with the capacity
to move efficiently through the environment. This is especially
important for planetary robotics applications where energy is
limited, the environment may be cluttered with obstacles, and the
orientation of the robot is important (to deploy scientific
instruments). The same instrument placement scenario as in

section 5.3 is presented in Figure 14 except that now the robot
can use the all-wheel steering mobility system. The motion plan
illustrates how the algorithm can exploit all-wheel steering to
generate smoother, more efficient motion plans for multiple
sequenced instrument placement problems. Figure 15 plots the
position and heading errors as functions of the number of
iterations of the algorithm.

Figure 12: Instrument Placement using Corner Steering Mobility
Systems. Sequences of trajectories are planned for an example
instrument placement task using a corner steering mobility system.
The targets must be aligned with the front of the robot chassis because
of the location of the scientific instruments. Each of the seven science
targets are achieved by planning twelve trajectories that include
forward and backward motions.

Figure 14: Instrument Placement using All-Wheel Steering
Mobility Systems. The same instrument placement problem in Figure
12 is solved using an all-wheel steering mobility system, allowing the
vehicle path heading to change independently from the body yaw.
Each of the seven science targets are achieved by planning only seven
motions. The overall motion plan (black path) is more efficient than
the corner steering motion plan (white path) by effectively exploiting
the all-wheel steering mobility.

Figure 13: Trajectory Generator Convergence for Instrument
Placement Tasks using Corner Steering Mobility Systems. For the
sequence of trajectories shown in Figure 12, the maximum, average,
and minimum position and heading errors of the twelve planned
trajectories are shown as a function of the number of iterations
executed by the trajectory generation algorithm.

Figure 15: Trajectory Generator Convergence for Instrument
Placement Tasks using All-Wheel Steering Mobility Systems. For
the sequence of trajectories shown in Figure 14, the maximum,
average, and minimum position and heading errors of the seven
planned trajectories are shown as a function of the number of iterations
executed by the trajectory generation algorithm.

In this situation, the termination conditions are satisfied by all
seven trajectories in fewer than six iterations when considering
the terrain geometry and the all-wheel steering capability of the
vehicle. The constraint error is larger because the initial guess
used does not account for the all-wheel steering capability of the
vehicle. In practice, such solutions could be encoded into the
initial guesses for the vehicle controls parameters.

Howard and Kelly / Optimal Rough Terrain Trajectory Generation for Wheeled Mobile Robots
 13

In comparing the motion plans for the instrument placement
scenarios presented in sections 5.3 and 5.4, the all-wheel steering
motion plan is clearly shorter and more efficient. The planned
all-wheel steering mobility system capable is 42.3% shorter
(24.33 seconds vs. 42.15 seconds) than the corner steering
mobility system path. Of particular interest are the all-wheel
steering trajectory sequences (2-3) and (6) in Figure 14, which
allow the mobile robot to circle a target while continuously
pointing its instruments towards the target. Trajectory generation
algorithms that can exploit all-wheel steering systems can enable
for more capable and efficient local motion planning algorithms.

5.5 Trajectory Generation Considering Vehicle Dynamics
One advantage of the numerical linearization is that arbitrary
models of vehicle dynamics can be incorporated. Often,
dynamic effects are neglected at the local motion planning level
and dealt with at a lower level through feedback control. Our
formulation allows dynamic models of wheel-terrain interaction
and other vehicle dynamics to be treated beforehand in the
trajectory generation solution.

5.5.1 Trajectory Generation Considering Wheel Slip Models
Compensating for wheel slip is presently one of the most
important mobility problems for planetary mobile robots
(Biesiadeki 05). Algorithm convergence is not guaranteed for
any wheel slip model since a reasonable initial guess of the
solution is required. However, if a reasonable initial guess is
provided and convergence is still not achieved, then there is
likely no dynamically feasible motion.

Since the trajectory generator uses the response of body-frame
velocity controls, it is necessary to first determine individual
wheel velocities, apply a slip model on each wheel, and then
invert the body kinematics to estimate of the body-frame velocity
response. While this approach is not as principled as force-based
models of wheel slip, this approximation is often used in
practice, so we will use it here.

An often encountered problem involving wheel slip is
planning trajectories for planetary rovers while climbing hills as
seen in Figure 16. Typical wheel slip models for such
applications, respond with an attitude dependent percent of the
commanded velocity. When wheel slip is not modeled in the
trajectory generator, paths come up short. We can, however, use
the presented trajectory generation algorithm to compute paths
that meet the target state constraints subject to these wheel slip
models.

Figure 16: Compensating for Wheel Slip in Trajectory Generation.
Wheel slip models can be included in the vehicle model used by the
trajectory generator to plan motions. Notice that the forward
simulation of the solution generated by the motion without a wheel slip
model slides moves significantly less than predicted and it does not
reach the target terminal state. Improved performance of path tracking
algorithms can be expected by modeling these effects instead of relying
on feedback control to account for such errors.

The wheel slip model used here calculates a percent wheel
slip for each wheel based on the vehicle attitude. The model
parameters used were consistent with observations from field
experiments. In general, any wheel slip model can be
implemented in the vehicle model for such situations.

Figure 17 shows the commanded and response linear and

angular velocities of the two paths shown in Figure 16. Notice
that the path generated by incorporating the wheel slip model
takes longer to execute (9.21 seconds vs. 6.16 seconds) because
the net velocity response of the wheel slip model is always lower
than the commanded velocity. Also, note that the response
velocities are not particularly smooth functions despite the
smoothness of the commands.

5.5.2 Trajectory Generation Considering Vehicle Dynamics
Models

Wheel slip is not the only form of dynamics that can be
accommodated. Sliding or slipping dynamics can be
incorporated in the control dynamics model in order to generate
trajectories that compensate for these motions automatically. For
example, the planetary robot in Figure 18 is attempting to follow
a provided trajectory while crossing a slope. If the plan is
generated and followed without modeling the sliding effects of
the slope, the robot will slide down the hill. This effect can
easily be modeled as a velocity proportional to the gradient of the
terrain, resulting in a planned trajectory that drives up the hill to
compensate for the downward sliding effects.

Figure 17: Compensating for Wheel Slip in Trajectory Generation.
Wheel slip approximations can be used in the forward model to enable
predictive compensation for these effects in the trajectory generator.
The plots on the left show the commanded and response linear and
angular velocities of the unmodelled solution. The plots on the right
show the commanded and response linear and angular velocities of the
solution that models these effects. Notice that the solution that
accounts for wheel slip takes longer to execute (9.21 seconds vs. 6.16
seconds) because the response net velocities on the slopes are always
less than the commanded net velocities.

Figure 18: Compensating for Sliding Dynamics in Trajectory
Generation. Sliding dynamics models can be included in the vehicle
model used by the trajectory generator to plan motions. Notice that the
forward simulation of the solution generated by the motion without a
sliding dynamics model slides down the slope and does not reach the
target terminal state. Improved performance of path tracking
algorithms can be expected by modeling these effects instead of relying
on feedback control to compensate for such errors.

In this example, the trajectory generator was able to meet the
boundary state constraints in five iterations of the algorithm.
Figure 19 shows the commanded and response velocities for the
modeled and unmodeled vehicle dynamics solutions. Notice that
the unmodeled solution does nothing to account for sliding down
the hill, so the angular velocity remains constantly at zero (the
terminal state is straight ahead of the initial state). The solution
that incorporates these effects understands that to compensate for
these effects, it must initially turn up against the slope, and hence
it has a non-zero angular velocity profile.

Figure 19: Compensating for Vehicle Sliding Dynamics in
Trajectory Generation. Vehicle sliding dynamics models can be
incorporated in the forward model of the vehicle to predictably
compensate for these effects in trajectory generation.

5.6 Rough Terrain Trajectory Generation using
Constrained Optimization

The optimal control formulation is applicable whenever there are
sufficient degrees of freedom to optimize something. We
illustrate two different cases of trajectory optimization,
specifically using minimum-cost and minimum-slope dwell
utility functionals. It is important to note that these trajectories
are optimal only over the space of feasible motions spanned by
the polynomial control set. However, we have also argued that

Howard and Kelly / Optimal Rough Terrain Trajectory Generation for Wheeled Mobile Robots
 15

this space is a very good approximation to the continuous
function space of arbitrary controls.

5.6.1 Minimum-Cost Performance Index
In this type of formulation, obstacles are represented as costs in a
field that the robot traverses. If a high-cost obstacle is observed
to be in the planned trajectory, typically the vehicle must either
replan at the global level or temporarily swerve from the target
path and reacquire it behind the obstacle. The swerve motion can
be generated dynamically in the optimal control formulation of
trajectory generator, where a tradeoff between minimum-cost and
minimum-time is encoded in the overall cost functional.

To find a best compromise, the utility functional (Y(x,p,t)) is
defined as the sum of 1 and the weighted value of the cost map at
the current position (x,y).

() () ()∫∫ α+== ff t

0

t

0
dty,xcost1dtt,,YJ uxu (35)

The “1” term in the integral represents the time that it takes to
traverse a cell and the “cost(x,y)” is the cost of its traversal. The
parameter α controls the trade-off between finding the shortest
path and the one that minimizes the cost line integral. As α
approaches zero, the minimum-time path will be found.
Conversely as α approaches infinity, the locally minimum cost
path will be found.
A straightforward example demonstrating the effectiveness of
this utility function is that of avoiding a simulated localized
obstacle. A cost field can be generated by penalizing proximity
to the obstacle as shown in Figure 20.

The solution for zero α is trivial, there is no cost contribution
from the simulated obstacle and the minimum-time solution (a
straight-line path directly to the terminal state) is found. As α is
increased, the paths deflect away from the high cost regions at

the cost of longer path lengths. This example is applicable, for
example, to operator interfaces where the operator might
designate the obstacle by clicking at its location.

5.6.2 Minimum- Slope Dwell Performance Index
For planetary rovers operating in rough terrain, it is sometimes
necessary to minimize the amount of time spent on slopes to
reduce risk. An advantage of the rough terrain constrained
optimization trajectory generation formulation is that we can
gather information about vehicle orientation along the path at no
added computational cost. We can therefore define a utility
function that penalizes high roll and pitch values along the path
to avoid slopes:

() () ()∫∫ θ+φα+== ff t

0
22t

0
dt1dtt,,YJ uxu (36)

Just as with the minimum-cost example from section 5.6.1,
the “α” term represents the tradeoff between the minimum-time
and minimum slope-dwell solutions. Since the numerical
techniques that we use are descent algorithms, we will find only
local optima so the technique cannot be used without
modification when many such minima are prevalent.

To demonstrate the use of this utility functional, we try to find
the shortest path that drives over a large pyramid-shaped hill. On
flat terrain, the trajectory is trivial – it is a straight line between
the two states. However, driving on the side of a hill can be
dangerous (tip-over, sliding, loss of traction, etc.). We get a
straight-line motion when our weight (α) is equal to zero because
it is the minimum-time solution to the problem. As the weight
(α) is increased toward unity, the algorithm converges to a path
that moves around most of the hill. It does not plan entirely
around the hill because it is still looking for the shortest solution
subject to this penalty for high attitude. An increase of the
weight (α) towards two causes the path to avoid more of the hill
at the cost of increasing the time to the goal. Figure 21 shows
how the paths differ from one another given the different weights
in this formulation of the problem.

Figure 20: Minimizing Path Cost. The optimal control formulation of
the trajectory generator can be used to minimize an arbitrary path cost
function over the course of a trajectory. This example demonstrates
avoidance of high cost regions (proximity to a simulated obstacle) at
the expense of longer path lengths.

5.7 Runtime Performance
The complexity of the vehicle model and the terrain shape used
in trajectory generation has significant effects on the expected
runtime of the algorithm. This section benchmarks the expected
performance with the presented rough terrain trajectory
generation algorithm with a real vehicle model. All tests were
run on a 1.866 GHz Pentium M notebook computer with 1 GB of
RAM.

Runtime can be very dependent on the terrain roughness
because of the complexity of the suspension model used since, at
each step of the numerical integration, the elevation, attitude, and
the new suspension angles must all be computed via nonlinear
optimization. In order to investigate the effect of terrain
roughness on runtime, we ran 4,096 trajectory generation queries
using the Rocky 8 vehicle model on a series of fifty different
terrains of increasing roughness. Each world was generated by
scaling a single elevation map by roughness index. Views of the
different height maps used throughout the tests are shown in
Figure 22 and the average runtime vs. terrain roughness plot is
shown in Figure 23.

Figure 23: Runtime vs. Terrain Roughness. A series of tests
were conducted to determine the effect of terrain roughness on
the runtime of the algorithm. The number of optimization steps
required by the algorithm and hence the runtime of the
algorithm is observed to increase proportionally with respect to
the terrain roughness.

Figure 21: Minimizing Slope Dwell. Just as in the minimum path cost
example from section 5.6.1, the optimal control formulation of the
trajectory generation algorithm can be used to mitigate risk involving
high slopes when navigating rough terrain. This example demonstrates
how increasing the slope weight (α) causes the trajectory to avoid the
hill at the cost of longer path lengths.

The average runtime of the algorithm is observed to increase
proportionally with terrain roughness. This is expected because
the suspension optimization must perform more iterations to
adapt the vehicle to rough terrain and the initial guess of the
control parameters (which are based on the flat terrain solutions)
are going to be worse on rougher terrain.

It is important to note that the complexity can be scaled
appropriately depending on the computational capabilities of the
platform.

6 Applications
Our algorithm can endow a mobile robot with an unprecedented
capability to predict the consequences of its own actions in
relatively challenging environments. Using it, we can expect
intelligent behaviors in applications such as local planning and
obstacle avoidance, path following, and global planning as
outlined in this section.

6.1 Local Motion Planning
The most logical application for the developed trajectory
generation method is local motion planning in complex
environments.

One such approach to local motion planning is ego-graphs,
which are body-centered search spaces often used for obstacle
avoidance (Lacaze et al 98). The presented algorithm is highly
effective for generating ego-graphs (Figure 24) because it is
efficient and it can encode vehicle dynamics constraints.

Figure 22: Terrain Roughness Tests. In order to conduct a fair
series of runtime vs. terrain roughness tests, motions plans are
generated on a series of terrains of increasing roughness ranging from
a roughness index of 0.0 (nominally flat terrain) to 1.0 (very rough
terrain).

Figure 24: Ego-graph Generation. The presented trajectory
generation algorithm can be used to generate ego-graphs, which are
body-frame fixed obstacle avoidance and local navigation search
spaces. The above two ego-graphs, comprised of 630 individual
trajectories each, were generated with different initial states using the
present algorithm. Note that only the first level of the search space is
dependent on the current vehicle state.

Ego-graphs can be initially generated with a flat terrain
assumption and subsequently adapted to arbitrary rough terrain
and dynamics models in order to better evaluate feasibility and
true path cost (Figure 25). Since the ego-graphs generated using
this algorithm are simply a collection of paths solved between

Howard and Kelly / Optimal Rough Terrain Trajectory Generation for Wheeled Mobile Robots
 17

pairs of boundary states, the algorithm can efficiently adapt the
solutions to rough terrain using the flat terrain solution as its
initial guess.

6.2 Path Following
Path following is the problem of finding vehicle controls which
will allow the mobile robot to track its target path. Typically
path following algorithms rely on a relatively fast feedback
control loop using a low-order motion primitive that reacquires
the target path at some forward point (e.g. pure pursuit). This
method has been implemented successfully for many years
because a fast update rate can compensate for unmodelled errors.

A more robust path tracking algorithm can generate vehicle

controls based on realistic models of dynamics and wheel-terrain
interaction as in (Howard et. al 06). In this approach, a set of
candidate path following motions are generated by the optimal
rough terrain trajectory generation algorithm that reacquire the
path at some forward vehicle posture, ensuring position, heading,
and curvature continuity (Figure 26). An optimal selection of the

corrective trajectory is chosen that minimizes some utility
function based on cross-track error, smoothness, and any other
arbitrary factors (Figure 27).

Figure 27: Reacquiring the Target Path. The rough terrain trajectory
generation algorithm can be employed in a constrained optimization
sense to determine the optimal corrective path to reacquire the target
path. A cost function based on cross-track error, smoothness, and
other factors is minimized in order to determine the optimal corrective
trajectory.

Figure 25: Terrain-Adaptive Ego-graphs. The ego-graphs generated
in Figure 21 can be adapted to rough terrain using the developed
trajectory generation algorithm in order to better evaluate dynamic
feasibility and path cost. The fact that individual trajectories all pass
exactly through the intended terminal states indicates compensation for
terrain shape.

6.3 Global Motion Planning
Trajectory generation can be used to create an inherently feasible
search space for global motion planning. One technique,
illustrated in Figure 28, is to create a regular lattice of states and
to connect them with feasible motions that serve as the edges to
transition between states. Initially, the edges can be generated
based on a flat terrain lookup table and very few distinct shapes
are needed since the node relationships are symmetric under
translations and rotations whose magnitudes are consistent with
the cell sizes.

Thereafter, the edges can be adapted individually to terrain
shape to enforce continuity once they are actually traversed in
search, and potentially once again when perception information
refines the terrain shape during plan execution.

Figure 26: Corrective Trajectory Continuity. This figure
demonstrates several different trajectory generation boundary
conditions that lead to increasingly higher levels of continuity for
corrective trajectories. The corrective trajectory becomes increasingly
complicated at the benefit of higher degrees of terminal state
continuity.

Figure 28: Connectivity of a State Space Lattice in Rough Terrain.
The states of a lattice which is equally distributed in (x,y) can be
connected with minimum-time paths in general rough terrain using our
trajectory generator.

7 Conclusions
This article has presented a highly generic approach to trajectory
generation for mobile robots of somewhat arbitrary mobility
characteristics. Such a general formulation is proposed because
it permits the predictive elimination of model errors at planning
time rather than reactive elimination at execution time. To the
degree that models of terrain following, vehicle dynamics, and
wheel/terrain interaction have any utility at all, our approach can
extract and exploit the signal in such models while leaving the
remaining unpredictable components to be compensated during
control execution.

This algorithm can endow a mobile robot with an
unprecedented capacity to predict the consequences of its own
actions and to take corrective actions in relatively challenging
environments. Using it, we can expect such intelligent behaviors
as the following:
• An automated passenger bus can start turning early by

precisely the correct amount in order to change lanes in
traffic because the actuator dynamic models model the
sluggishness of the steering system.

• A planetary rover that can exploit its predictions of wheel slip
by approaching a hillside goal on the high side in anticipation
of sliding into the goal as the trajectory executes.

• An unmanned ground vehicle executing a sweep for buried
mines can alter its trajectory in response to real time high-
resolution terrain information. Such alteration will ensure that
the present sensor swath is precisely parallel to the last,
regardless of how poor the aerial terrain map generated by the
deployment aircraft may have been.
Performance in real applications is of course subject to the

fidelity of the models being inverted and is outside the scope of
this work. However, even imperfect nominal models are better
that the complete lack of a model which characterizes the state of
the contemporary art with respect to the elements introduced
here.

Current and future work includes the use of this algorithm in
multiple contexts. First, it is being applied in the generation of
corrective maneuvers in rough terrain path following
applications. Second, it is being used to generate well-separated
trajectory sets for obstacle avoidance computations on rough
terrain vehicles. In addition, it is being evaluated and refined as
the search space generation component of a larger scale
nonholonomic motion planner.

Acknowledgement
This research was conducted at the Robotics Institute of Carnegie
Mellon University under contract to NASA/JPL as part of the
Mars Technology Program.

References
Amar, F.B., Bidaud, Ph., and Ouezdou, F.B. 1993. On Modeling

and Motion Planning of Planetary Vehicles. In the Proc. of
the IEEE/RSJ International Conference on Intelligent Robots
and Systems, vol. 2, pages 1381-1386.

Angelova, A., Matthies, L., Helmick, D., and Perona, P. 2006.
Slip Prediction Using Visual Information, In Proc Robotics
Science and Systems 2006.

Baker, D. 1999. Exact Solutions to Some Minimum-Time
Problems and Their Behavior Near Inequality State
Constraints. In the IEEE Transactions on Automatic Control,
vol. 34, no. 1, pages 103-106.

Barraquand, J. and Latombe, J.C. 1989. On Non-Holonomic
Mobile Robots and Optimal Maneuvering. Revue
d’Intelligence Artificielle, 3(2): 77-103.

Betts, J.T. 1998. Survey of Numerical Methods for Trajectory
Optimization. Journal of Guidance, Control, and Dynamics,
vol. 21, no. 2, pages 193-207.

Biesiadeki, J., Leger, C., and Maimone, M. 2005. Tradeoffs
Between Directed and Autonomous Driving on the Mars
Exploration Rovers, In Proc of the International Symposium
on Robotics Research.

Bonnafous, D., Lacroix, S., and Simeon, T. 2001. Motion
Generation for a Rover on Rough Terrain. In the Proc. of the
IEEE/RSJ International Conference on Intelligent Robotics
and Systems, vol. 2, pages 784-789.

Brockett, R.W. 1981. Control Theory and Singular Riemann
Geometry. In New Directions in Applied Mathematics, pages
11-27, Springer-Verlag.

Canny, J., Donald, B., Reif, J., and Xaiver, P. 1988. On the
Complexity of Kinodynamic Planning. In the Proc. of the 29th
IEEE Symposium on Foundations of Computer Science, pages
306-318.

Cherif, M. 1999. Motion Planning for All-Terrain Vehicles: A
Physical Modeling Approach for Coping with Dynamic and
Contact Interaction Constraints. In the IEEE Transaction on
Robotics and Automation, vol. 15, no. 2, pages 202-218.

Cherif, M., Laugier, Ch., Milesi-Bellier, Ch., and Faverjon, B.
1994. Planning the Motions of an All-Terrain Vehicle by
Using Geometric and Physical Models. In the Proc. of the
IEEE Int. Conf. on Robotics and Automation, vol. 3, pages
2050-2056.

Delingette, H., Herbert, M., and Ikeuchi, K. 1991. Trajectory
Generation with Curvature Constraint Based on Energy
Minimization. In Proc. of the IEE-RSJ Int. Conf. on
Intelligent Robots and Systems, volume 1, pages 206-211.

Dubins, L.E. 1957. On Curves of Minimal Length with a
Constraint on Average Curvature and with Prescribed Initial
and Terminal Positions and Tangents. American Journal of
Mathematics, 79:497-516.

Fernandez, C., Gurvits, L., and Li, Z.L. 1995. A Variational
Approach to Optimal Nonholonomic Motion Planning. In the
Proc. of the IEEE Int. Conf. on Robotics and Automation, vol.
1, pages 680-685.

Gaw, D. and Meystel, A. 1986. Minimum-Time Navigation of
an Unmanned Mobile Robot in a 2 ½ D World with Obstacles.
In the Proc. of the IEEE International Conference on Robotics
and Automation, vol. 3, pages 1670-1677.

Fliess, M., Levine, J., Martin, Ph. and Rouchon, P. 1995.
Flatness and Defect of Nonlinear Systems: Introductory

Howard and Kelly / Optimal Rough Terrain Trajectory Generation for Wheeled Mobile Robots
 19

Theory and Examples. International Journal of Control
61(6):13277-1361.

Faiz, N., Agrawal, S., and Murray, R. 2001. Differentially Flat
Systems with Inequality Constraints: An Approach to Real-
Time Feasible Trajectory Generation. J. Guidance, Control,
and Dynamics, Vol. 24, No. 2, pp. 219-227.

Helmick, D., Cheng, Y., Clouse, D.S., and Matthies, L.H. 2004.
Path Following using Visual Odometry for a Mars Rover in
High Slip Environments.

Horn, B.K. 1983. The Curve of Least Energy. ACM Transactions
on Mathematical Software, Vol. 9, No. 4, pp 441-460.

Howard, T.M. and Kelly, A. 2006. Trajectory and Spline
Generation for All-Wheel Steering Mobile Robots. In Proc. of
the IEEE/RSJ International Conference on Intelligent
Robotics and Systems, Beijing, China, October 2006.

Howard, T.M. and Kelly, A. 2005. Trajectory Generation on
Rough Terrain Considering Actuator Dynamics. Field and
Service Robotics 2005, Port Douglas, Australia, July 2005.

Howard, T.M. and Kelly, A. 2005. Terrain-Adaptive Generation
of Optimal Continuous Trajectories for Mobile Robots.
International Symposium on Artificial Intelligence, Robotics,
and Automation in Space 2005, Munich, Germany, October
2005.

Howard, T.M. Knepper, R.A., and Kelly, A. 2006. Constrained
Optimization Path Following of Wheeled Mobile Robots in
Natural Terrain. International Symposium on Experimental
Robotics 2006, Rio de Janeiro, Brazil, July 2006.

Iagnemma, K., Shibly, H., Rzepniewski, A., and Dubowsky, S.
2001. Planning and Control Algorithms for Enhanced Rough-
Terrain Rover Mobility. In Proc. Of the 6th International
Symposium on Artificial Intelligence and Robotics and
Automation in Space..

Jacobs, P. and Canny, J. 1989. Planning Smooth Paths for
Mobile Robots. in Proc. of the IEEE Int. Conf. on Robotics
and Automation, pages 2-7.

Jackson, J.W. and Crouch, P.E. 1991. Curved Path Approaches
and Dynamic Interpolation. In the IEEE Aerospace and
Electronic Systems Magazine, vol. 6, no. 2, pages 8-13.

Kalmár-Nagy, T., D’Andrea, R., and Ganguly, P. 2004. Near-
Optimal Dynamic Trajectory Generation and Control of an
Omnidirectional Vehicle. Robotics and Autonomous Systems,
46:47-64.

Kanayama, Y. and Miyake, N. 1985. Trajectory Generation for
Mobile Robots. In Proc. of the Int. Symp. on Robotics
Research, pages 16-23.

Kanayama, Y. and Hartman, B.I. 1989. Smooth Local Path
Planning for Autonomous Vehicles. In Proc. of the Int. Conf.
on Robotics and Automation, volume 3, pages 1265-1270.

Kelly, A. and Nagy, B. 2003. Reactive Nonholonomic
Trajectory Generation via Parametric Optimal Control,
International Journal of Robotics Research, Vol. 22, No. 7-8,
pages 583-601.

Kim, S.K. and Tilbury, D.M. 2001. Trajectory Generation for a
Class of Nonlinear Systems with Input and State Constraints.

In the Proc. of the American Control Conference, vol. 6, pages
4908-4913.

Komoriya, K. and Tanie, K. 1989. Trajectory Design and
Control of a Wheel-Type Mobile Robot using B-Spline Curve.
In Proc. of the IEEE-RSJ Int. Conf. on Intelligent Robots and
Systems, pages 398-405.

Lacze, A., Moscovitz, Y., DeClaris, N. and Murphy, K. 1998.
Path Planning for Autonomous Vehicles Driving over Rough
Terrain. In Proceedings of the 1998 IEEE ISIC/CIRA/ISAS
Joint Conference.

Lamiraux, F. and Laumond, J.P. 2001. Smooth Motion Planning
for Car-Like Vehicles. In IEEE Trans. Robotics and
Automation, vol. 17, no. 4, pages 498-502.

Laumond, J.P., Taix, M., and Jacobs, P. 1990. A Motion
Planner for Car-Like Robots Based on a Mixed Global/Local
Approach. In IEEE International Workshop on Intelligent
Robots and Systems.

Laumond, J.P. 1995. Nonholonomic Motion Planning via
Optimal Control. In the Proc. of the Workshop on Algorithmic
Foundations of Robotics, pages 227-238.

Lin, C.S., Chang, P.R. and Luh, J.Y.S. 1983. Formulation and
Optimization of Cubic Polynomial Joint Trajectories for
Industrial Robots. In the IEEE Trans. on Automatic Control,
pages 1066-1074, vol. AC-23.

Murray, R. and Sastry, S. 1993. Nonholonomic Motion
Planning: Steering Using Sinusoids. In IEEE Trans. on
Automatic Control, vol. 38, pages 700-716, 1998.

B. Nagy and A. Kelly. 2001. Trajectory Generation for Car-Like
Robots Using Cubic Curvature Polynomials. Field and
Service Robotics 2001 (FSR ’01), June 2001.

Nelson, W. L. 1989. Continuous Curvature Paths for
Autonomous Vehicles. In Proc. of the IEEE Int. Conf. on
Robotics and Automation, volume 3, pages 1260-1264,
Scottsdale, AZ 1989.

Nesnas, I., Maimone, M. and Das, H. 2000. Rover Maneuvering
for Autonomous Vision-Based Dexterous Manipulation. In
IEEE Conference on Robotics and Automation, vol. 3, pages
2296-2301, San Francisco, CA 2000.

Pivtoraiko, M. and Kelly, A. 2005. Efficient Contstrained Path
Planning via Search in State Lattices. International
Symposium on Artificial Intelligence, Robotics, and
Automation in Space 2005.

Reeds, J.A. and Shepp, L.A. 1990. Optimal Paths for a Car that
Goes Both Forward and Backward. Pacific Journal of
Mathematics, 145(2):367-393.

Reuter, J. 1998. Mobile Robot Trajectories with Continuously
Differentiable Curvature: An Optimal Control Approach. in
the Proc. of the IEEE/RSI Conference on Intelligent Robots
and Systems, vol. 3, pages 38-43, Victoria, BC, October 1998.

Scheuer, A. and Fraichard, Th. 1996. Planning Continuous-
Curvature Paths for Car-Like Robots. In Proc. of the IEEE-
RSJ Int. Conf. on Intelligence Robots and Systems, volume 3,
pages 1304-1311 , Osaka (JP), November 1996.

Scheuer, A. and Fraichard, Th. 1997. Collision-Free and

Continuous-Curvature Path Planning for Car-Like Robots. In
Proc. of the IEEE Int. Conf. on Robotics and Automation,
pages 867-873, , Albuquerque NM (US), April 1997.

Scheuer, A. and Laugier, C. 1998. Planning Sub-Optimal and
Continuous-Curvature Paths for Car-Like Robots. In Proc. of
the IEEE-RSJ Int. Conf. on Intelligent Robots and Systems,
vol. 1, pages 25-31, Victoria, BC (CA), October 1998..

Shiller, Z. and Chen, J.C. 1990. Optimal Motion Planning of
Autonomous Vehicles in Three-Dimensional Terrains. In the
Proc. of IEEE Int. Conf. on Robotics and Automation, pages
198-203.

Shiller, Z. and Gwo, Y.R. 1991. Dynamic Motion Planning of
Autonomous Vehicles. In the IEEE Transactions on Robotics
and Automation, vol. 7, No 2, April 1991.

Shin, D.H. and Singh, S. 1990. Path Generation for Robot
Vehicles Using Composite Clothoid Segments. Tech Report,
CMU-RI-TR-90-31, The Robotics Institute, Carnegie Mellon
University.

Tarokh, M. and McDermott, G. 2005. Kinematics Modeling and
Analyses of Articulated Rovers. Technical Report No.
CS/10/2005.

Tilbury, D., Laumond, J.P., Murray, R., Sastry, S. and Walsh, G.
1992. Steering Car-Like Systems with Trailers Using
Sinusoids. In the Proc. of the IEEE Int. Conf. on Robotics and
Automation, vol. 3, pages 1993-1998.

	1 Introduction
	1.1 Motivation
	1.2 Related Work
	1.3 Discriminators
	1.4 Technical Approach
	1.5 Layout

	2 Trajectory Generator System Architecture
	2.1 State Constraint Definition
	2.2 Parameterized Vehicle Controls
	2.2.1 Body-Frame Vehicle Parameterized Controls
	2.2.2 Control Function Parameterizations
	Linear Velocity Profiles
	Angular Velocity Profiles

	2.3 Trajectory Generation (Numerical Optimization)
	2.3.1 Constrained Trajectory Generation
	2.3.2 Constrained Optimization Trajectory Generation

	2.4 Motion Prediction (Numerical Integration)
	2.5 Vehicle Model (Vehicle Simulation)
	2.5.1 Vehicle Dynamics Models
	2.5.2 Wheel/Terrain Interaction Models
	2.5.3 Vehicle Motion Models
	2.5.4 Vehicle Suspension Models

	3 Initial Guesses for the Vehicle Controls Parameters
	3.1 Lookup Table
	3.2 Neural Network

	4 Experimental Setup
	4.1 State Constraints
	4.2 Control Parameterizations
	4.3 Trajectory Generation Algorithm Implementation
	4.4 Suspension / Kinematic Model
	4.5 Vehicle Dynamic Models
	4.6 Simulated Environment

	5 Experiments and Results
	5.1 Rough Terrain Trajectory Generation
	5.2 Algorithm Convergence
	To demonstrate robustness to poor initial guesses for the vehicle control parameters, the same problem as section 5.1 was solved using an artificially poor initial guess for the parameters of the control and a smaller step size scaling factor ((= 0.625). Figures 10 and 11 show trajectories representing each of the nine iteration steps required by the trajectory generator to converge to a solution that reaches the target terminal state.
	5.3 Rough Terrain Trajectory Generation for Instrument Placement with Restricted Mobility
	5.4 Rough Terrain Trajectory Generation for Instrument Placement and All-Wheel Steering Mobility Systems
	5.5 Trajectory Generation Considering Vehicle Dynamics
	5.5.1 Trajectory Generation Considering Wheel Slip Models
	5.5.2 Trajectory Generation Considering Vehicle Dynamics Models

	5.6 Rough Terrain Trajectory Generation using Constrained Optimization
	5.6.1 Minimum-Cost Performance Index
	5.6.2 Minimum- Slope Dwell Performance Index

	5.7 Runtime Performance

	6 Applications
	6.1 Local Motion Planning
	6.2 Path Following
	6.3 Global Motion Planning

	7 Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

