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Abstract 
We present an algorithm for wheeled mobile robot trajectory 
generation that achieves a high degree of generality and 
efficiency. The generality derives from numerical linearization 
and inversion of forward models of propulsion, suspension, and 
motion for any type of vehicle. Efficiency is achieved by using 
fast numerical optimization techniques and effective initial 
guesses for the vehicle controls parameters. This approach can 
accommodate such effects as rough terrain, vehicle dynamics, 
models of wheel-terrain interaction, and other effects of interest. 
It can accommodate boundary and internal constraints while 
optimizing an objective function that might, for example, involve 
such criteria as obstacle avoidance, cost, risk, time, or energy 
consumption in any combination. The algorithm is efficient 
enough to use in real time due to its use of nonlinear 
programming techniques that involve searching the space of 
parameterized vehicle controls. Applications of the presented 
methods are demonstrated for planetary rovers. 
 
KEY WORDS — mobile robots, trajectory generation, rough 
terrain, constrained optimization, optimal control, path planning. 

1 Introduction 
In order to operate competently in any environment, a mobile 
robot must understand the effects of its own dynamics and of its 
interactions with the terrain. It is therefore natural to incorporate 
models of these effects in a trajectory generator that determines 
the controls necessary to achieve a prescribed motion. 

Trajectory generation is the problem of determining a feasible 
motion (or a set of feasible motions) that will permit a vehicle to 
move from an initial state to a final state given some model of 
the associated dynamics.  While this two-point boundary value 
problem is classical and well studied, it remains quite complex to 
solve adequately in practice.  In order to generate a smooth, 
continuous path on flat terrain (which satisfies an arbitrary 
number of constraints involving position, heading, linear and 
angular velocities, and/or curvature), a nonlinear differential 
equation must be solved.   

The addition of rough terrain to the problem further 
complicates matters by coupling these nonlinear equations of 
motion.  Numerical methods, such as the ones presented in this 
article, are required to solve such problems for arbitrary terrain 
due either to its typically sampled representation or to the 
nonlinearities of the models.   

1.1 Motivation 
While the present generation of mobile robots is content to move 
from point A to B, and perhaps avoid obstacles along the way, 
truly useful machines must often interact with the world in ways 
more general than simply driving over it.  For autonomous 
vehicles, trajectory generation algorithms can form the basis of 
any capacity to achieve a designated state of motion. Further, 
real-time algorithms are needed to do so in response to 
information gathered on the fly by perception. 

 

 

Figure 1: Motion Planning on Rough Terrain.  For competent 
navigation in challenging environments, the terrain shape must be 
considered in the generation of continuous motion trajectories.  The 
presented trajectory generation algorithm generates motion plans that 
account for arbitrary terrain shape, vehicle dynamics models, and 
wheel/terrain interaction models by linearizing and inverting forward 
models of propulsion, suspension, and motion. 

Continuous motion is the core capacity of contemporary 
mobile robots. Yet, future machines will be required to address 
specific places in challenging terrains at specific attitudes and 
headings (Figure 1). At these places, they will be required to 
deploy implements to do something useful like measuring the 
composition of a rock, digging a hole, or placing a load of 
material on a truck. 

Competent operations in cluttered environments require the 
capacity to understand precisely the entire space of feasible 
motions and to search it for a (or the best) solution. The trivial 
solution of line segments joining waypoints is often not feasible 
due to kinematic or dynamic limitations on curvature – even for 
vehicles that can nominally turn in place when stopped. 



 
Continuous curvature trajectories can have certain advantages 
over this trivial alternative.  For example, the time to complete 
the mission or the exposure to risks (such as wheel slip) increases 
when the vehicle must stop and change direction. 

In the context of semi-autonomous operations, trajectory 
generation can be used to drive the vehicle to an operator-
designated waypoint or waypose.  This point-and-click approach 
reduces both operator workload and telemetry bandwidth relative 
to continuous car-like driving. It potentially provides a better 
solution than might be achieved otherwise because closing the 
speed loops on the vehicle can mitigate the effects of latency.    

For autonomous operations, trajectory generation can be used 
to acquire specific terminal states when the context is one of 
acquiring a fixed goal point.  When following a path, trajectory 
generators can correct for path following errors by reacquiring a 
moving goal point at some forward position on the path. 

Trajectory generation can also be cast as a core component of 
global motion planning. It can be used as a mechanism to encode 
the connectivity of state space in lattice-like networks as in 
(Pivtoraiko and Kelly 05).  In this context, trajectory generation 
is the key to encoding a search space that intrinsically meets all 
mobility constraints.  

1.2 Related Work 
In the context of robot motion planning, most research in 

trajectory generation has dealt with finding obstacle-free paths 
subject to nonholonomic constraints assuming flat terrain and 
simple vehicle models.  Two basic techniques exist. The first is 
sequential search of a graph whose edges consist of dynamically 
feasible low-order controls (arcs, clothoids, etc…).  This 
technique produces a solution sequence of these low-order 
geometric primitives. The second technique is continuum 
optimization producing a single high-order parameterized 
geometric primitive. Graph-search methods generate the globally 
optimal solution in the discretized network, while parametric 
optimization methods search the continuum of solutions to find a 
locally optimal solution.  The choice is between a sampled global 
solution and a continuous local one. 

Some of the first work in trajectory generation involved 
composing optimal paths from a sequence of line segments, arcs 
(Dubins 57), clothoids (Kanayama and Miyake 85)(Shin and 
Singh 90), and cubic spirals (Kanayama and Hartman 89).  The 
desire for higher-order geometric primitives was intended to 
enable higher levels of continuity at the boundaries of the 
primitives.  B-splines have been used to meet arbitrary position 
and heading boundary conditions by defining a sequence of knot 
points along the path (Komoriya and Tanie 89).  The concept of 
differential flatness, a property of a class of systems ideally 
suited to trajectory generation, was introduced by (Fliess 92).  
Methods based on sinusoidal and Fourier series input functions 
also appear throughout the literature (Brockett 81)(Tilbury et. al. 
1992)(Murray and Sastry 93). These methods exploit the 
geometry of the problem to solve for the unknown path 
parameters directly. They cannot generally solve for collision-
free paths in an obstacle field.   

Graph-search techniques have been used for a long time in 
kinodynamic planning.  In the context of robot manipulators, 

optimal joint trajectories were planned in (Heinzinger et. al. 
1990) using grid-search.  These methods also apply to the 
problem of solving for obstacle-free and minimum-length paths 
which satisfy nonholonomic and boundary constraints (Canny et 
al 1988)(Jacobs and Canny 89)(Barraquand and Latombe 
89)(Reeds and Shepp 1990)(Laumond et al 90).  The drawback 
of using graph-search techniques for trajectory generation is the 
resolution lost due to discretization of state space and/or control 
space.  The only boundary states that can be reached are those 
that already exist in the network. 

Variational (optimization) techniques for trajectory 
generation, which search the continuum for a locally optimal 
solution, are as old as optimal control theory and have been used 
in most fields that employ automatic control (Betts 98).  This 
approach generally uses numerical methods to satisfy some set of 
boundary conditions and/or minimize some cost function by 
searching for the associated parameterized or sampled control.  
Automatic generation of joint trajectories using optimal control 
and cubic polynomial primitives were exhibited in (Lin et al 
1983).  Minimum-time paths between boundary states are treated 
as a control problem in (Baker 89).  (Jackson and Crouch 91) 
implemented the shooting method to solve for trajectories using 
cubic spline primitives. Energy minimization was used in 
(Delingette et al 91) to successively deform a curve until it met 
the boundary constraints, but it was found to be unsuitable for 
real-time applications.  In (Laumond 95), a holonomic geometric 
path is found in an obstacle field and path segments are 
smoothed using optimal control. A near real-time optimal control 
trajectory generator is presented in (Reuter 98), which solves 
eleven first-order differential equations subject to the state 
constraints. A real-time trajectory generation algorithm for 
differentially flat systems is presented in (Faiz et. al 00), where 
an approximation of nonlinear constraints are replaced by linear 
inequality constraints.  (Kim and Tilbury 01) used methods based 
on solving an approximate linearized problem (when systems are 
input-output linearizable) for UAV trajectory planning. Some of 
the most recent work in optimal control trajectory generation 
includes (Kalmár-Nagy et al 03), where near-optimal paths are 
constructed for omnidirectional vehicles using bang-bang 
optimal control methods.  Their methods generate minimum-time 
omnidirectional trajectories subject to complicated dynamics and 
actuator models.  In (Nagy and Kelly 01)(Kelly and Nagy 03), 
our group presented a real-time algorithm which solves the 
planar trajectory generation problem between arbitrary boundary 
states by linearizing and inverting the equations of motion. 

All of the mobile robot trajectory generation methods 
discussed so far have assumed a flat world. By contrast, at the 
level of global motion planning where primitive trajectories are 
sequenced together, the nonflat terrain shape is often known. It is 
normally considered only in terms of its effect on the overall 
objective being optimized rather than in terms of its lower level 
effect on the motion itself. 

Some of the first such rough terrain work involved using A* 
on a search-space based on the isolines of a relief map which 
incorporated energy costs associated with elevation changes 
(Gaw and Meystel 89).  More complicated terrain and vehicle 
models are introduced in (Shiller and Chen 91)(Amar 
93)(Bonnafous et al 01), which include kinematic and dynamic 
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models.  In (Shiller and Chen 91)(Shiller and Gwo 91), optimal 
B-spline paths are generated on a B-patch representation of the 
terrain.  (Amar 93) adapts a sub-optimal cubic spline path 
assuming flat terrain to three-dimensional terrain using a 
kinematic vehicle model and enforcing terrain contact.  A graph-
search method using a set of arc primitives was used in 
(Bonnafous et al 01) where distance and risk associated with the 
robot orientation was minimized. 

One technique, which does account for the influence of terrain 
on motion, is the two-level planner is presented in (Cherif et. al 
1994)(Cherif 99). This work searches for an optimal global path 
plan assuming flat terrain but it ensures connectivity between the 
states using a local trajectory generator that accounts for terrain 
shape.  The local trajectory generator is set up as a graph-search 
problem and is solved using best-first search. 

1.3 Discriminators 
The method presented in this article differs from the body of 
prior work discussed above in several ways.  The current state of 
the art in nonholonomic trajectory generation exhibits two 
classes. Algorithms in the first class produce smooth motion 
primitives on assumed flat terrain. The second class produces 
rough terrain primitives that are generated from a search, often of 
a graph, over a discretized control space rather than the 
continuum. Such techniques have not produced continuous 
motions at the junctions between motion primitives. 

Continuum motion generation algorithms to date have not 
accounted for the effects of rough terrain and models of vehicle 
dynamics (e.g. delays, gain limits, wheel slip) at the level of 
primitive motions. Of course, the flat terrain assumption greatly 
simplifies the problem because it decouples the nonlinear state 
equations of the system (Howard and Kelly 05) but it does so at 
the expense of introducing model error for which controllers 
must later compensate. By accounting for terrain shape and 
models of vehicle dynamics, we eliminate this significant source 
of error predictively at planning time rather than reactively at 
execution time (in feedback control). Terrain shape is generally 
known (to the accuracy of the perception system) and it is 
already used elsewhere in the controls of most rough terrain 
autonomous vehicles, so terrain adaptive lower level controls 
such as trajectory generation are an inevitable development that 
we describe in this article. 

1.4 Technical Approach 
A highly general description of the trajectory generation 

problem is that of generating a set of controls (u) which satisfy a 
set of state constraints (C) subject to a set of governing 
differential equations (f(x,u,t)) describing the system dynamics: 

( )t,,uxfx =&  (1)

0xC =)t,(  (2)

Our formulation is one that transforms the basic optimal 
control problem into one of nonlinear programming. We assume 
some parameterized set of controls, and then compute the 
response to an initial guess for the control. Initial guesses are 
generated based on lookup tables for flat plane solutions.  The 

mapping from control to response is then linearized numerically 
with respect to the parameters, and it is inverted numerically to 
provide the first order updates to the guessed parameters that 
explain the deviation of the computed endpoint from the desired 
endpoint. Continued iteration refines the estimated control until 
the terminal state error descends below some threshold.  The 
search spaces we consider have been observed to have a large 
radius of convergence and few local optimums, making such 
methods efficient and reliable in practice. 

The numerical linearization in the above formulation is able to 
invert a forward model of a vehicle without explicitly encoding 
anything peculiar to the vehicle. However, the forward model 
does model the vehicle specifics. An arbitrarily complex vehicle 
model can be used to predict how the vehicle will move over the 
terrain.  In our suspension model, we generally enforce terrain 
contact, possibly by articulating visco-elastic degrees of freedom, 
to determine attitude and elevation given position and heading. 
However, dynamic models admitting ballistic motions are also 
possible. In our propulsion model, such elements as actuator 
dynamics, rate limits, wheel slip, and the velocity kinematics are 
included. More complicated models involving forces, mass 
properties, and terramechanical models are consistent with our 
framework.   

In summary, this article will present an approach to the 
problem that uses parameterized controls and nonlinear 
programming to search the continuum of control space efficiently 
for an optimum trajectory while preserving the ability to do so in 
real-time. The numerical approach used also makes the approach 
applicable to arbitrary terrain shape and arbitrary vehicle models 
actuated in arbitrary ways. 

1.5 Layout 
This paper is divided into seven sections.  Section 2 describes the 
trajectory generator system architecture, including details about 
the boundary state definition, parameterized controls, numerical 
optimization, integration, and simulation steps in the process. 
Section 3 discusses initial guesses for the vehicle controls 
parameters and sections 4 and 5 detail the experiments used to 
test the capabilities of the algorithm.   Applications, conclusions, 
and future work are discussed in sections 6 and 7. 

2 Trajectory Generator System Architecture 
The trajectory generation algorithm exhibits a three-level 
architecture which separates the trajectory generation (numerical 
optimization which minimizes constraint error), motion 
prediction (numerical integration to predict motion), and the 
vehicle simulation methods (Figure 2).  The initial and final state 
boundary pair, the parameterization of the controls and the 
vehicle model comprise the inputs to the trajectory generator. 
The output is a trajectory, which we define as the union of the 
path (comprised of a vector of vehicle states) and the correct 
parameters for the controls.  The vehicle model is defined 
externally to render the approach vehicle independent.  Sections 
2.1, 2.2, 2.3, 2.4, and 2.5 will discuss the boundary state 
definition, parameterized vehicle controls, trajectory generation 
(numerical optimization), motion prediction (numerical 
integration), and the vehicle model respectively. 



 

 

 

2.1 State Constraint Definition 
One of the simpler forms of trajectory generation problems is a 
form of the two-point boundary value problem where it is 
convenient to constrain the vehicle state at the boundaries of the 
path.  The integration of the equations of motion requires the 
initial state of the vehicle, and the terminal state defines the 
target state of the vehicle at some forward time tf (Figure 2). 

The most basic types of state constraints include world-frame 
position (x,y,z) and orientation (φ,θ,ψ).  However, since roll (φ), 
pitch (θ), and elevation (z) are determined (under assumptions of 
terrain contact) by the pose and the interaction between the 
vehicle suspension and the terrain, only the position (x,y) or pose 
(x,y,ψ) boundary constraints on position and orientation can 
generally be specified.  Typically there are also requirements on 
the vehicle controls that must be satisfied at the initial and 
terminal states.  Linear and angular velocities (v) and 
accelerations (a) are often constrained for a dynamically feasible 
motion plan.  A state vector is formed for the initial (x0) and 
terminal states (xf) of the robot: 

[ ]T00000 ,,,,y,x Kωvx0 ψ=  (3)

[ ]Tfffff ,,,,y,x Kωvxf ψ=  (4)

The initial state constraint is typically satisfied trivially and its 
value is used to seed the numerical integration while the terminal 
state specifies the constraints at the end of the trajectory. We will 
write the constraints on the system in the following manner: 
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2.2 Parameterized Vehicle Controls 
In addition to the boundary states, the algorithm requires a set of 
parameterized controls that encode the motion of the vehicle 
(Figure 2).  While the space of parameterized controls may 
represent only a subspace of all feasible motions, an appropriate 
choice of parameterization can represent nearly all possible 
controls.  The set of all parameterized controls (u) for the vehicle 
is defined as a function of the parameter vector (p) and some 
distinguished independent variable (ζ): 

( )ζ= ,pfu  (6)Figure 2: Trajectory Generator System Architecture. The 
trajectory generation algorithm can be conceptualized as a three-level 
hierarchy.  The highest level is a numerical optimization that 
minimizes the constraint error by adjusting the free parameters in the 
controls. The next level, motion prediction, is simply the numerical 
integration of the equations of motion. The lowest level, the vehicle 
model, simulates the vehicle’s dynamics, motion, and suspension. 
This architecture is formalized and implemented to permit different 
vehicle models to interface with the same underlying algorithm. 

The free parameters in the parameter vector represent knobs that 
allow the algorithm to change the shape of the control.  The 
number of free parameters in the parameter vectors minus the 
number of constraints represents the number of remaining 
degrees of freedom in the system. 

2.2.1 Body-Frame Vehicle Parameterized Controls 
Choosing the proper set and parameterization for vehicle 

controls (u) requires an examination of typical wheeled mobile 
robot mobility systems (Figure 3):   

 

 

Figure 3: Mobility System Models. The choice of mobility system 
determines the vehicle’s capacity to execute complex motions. 
Omnidirectional mobility systems are most capable, allowing 
instantaneous motion in any direction in the local tangent plane.  All-
wheel steering mobility systems allow motion in any direction in the 
local tangent plane, but are restricted by nonholonomic constraints. 
The skid-steering, Ackermann steering and corner steering mobility 
systems are the least flexible mobility systems because their linear 
velocity is constrained along the forward x-axis of the vehicle frame.   
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Nonholonomic constraints are often conveniently expressed in 
the body frame when they can be expressed by simply 
eliminating degrees of freedom.  Neglecting articulations, 
wheeled mobile robots move rigidly with three degrees of 
freedom in the local tangent plane. Hence, body-frame linear 
(vx,vy) and angular velocities (ωz) are natural candidates for the 
controls because they reduce the dimension of the input space to 
a minimum.  This choice can be made without loss of generality 
because a specific implementation might elect to include a 
mapping from wheel level controls onto body motions before the 
steps discussed below.  Wheel velocities and steering angles are 
found by mapping the body frame linear and angular velocities 
through the suspension kinematics.   

Skid-steered, Ackermann, and corner-steered mobility 
systems are the simplest locomotion methods because their linear 
velocity is constrained to lie along the forward x-axis of the 
vehicle (vx).  Omnidirectional mobility systems have holonomic 
wheels which allow translation in any direction in the local 
tangent plane (vx,vy). All-wheel steering mobility systems allow 
translation in any direction in the local tangent plane so long as 
the path heading varies continuously.   

The parameterization of the controls in terms of the linear 
velocity in the x and y-directions is not always convenient. When 
the number of control variables exceeds the number of degrees of 
freedom in the system, explicit constraints must be formulated. A 
convenient set of controls for all-wheel steering mobility 
platforms encodes the independent linear velocities in the local 
tangent plane in terms of the speed in the local tangent plane (|v|) 
and the body frame referenced velocity direction (δ) (Howard 
and Kelly 06).  
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Notice that the skid-steered, Ackermann steered, and corner-
steered mobility systems are simply a special case of the all-
wheel steering mobility system definition where the continuous 
direction function (δ) is zero. 

2.2.2 Control Function Parameterizations 
Now that the control candidates for specific vehicle mobility 

systems have been defined, appropriate parameterized functions 
must be chosen to represent the freedoms in each vehicle control.  
The typical choices for the independent variable (ζ) in the 
parameterized controls are time (t) and arc-length (s).   

This section will detail several logical options for the 
parameterization of the controls. In general, any parameterized 
function can be applied provided it permits numerical 
linearization of the solution to the equations of motion. 

It is important to remember that these parameterized controls 
are the inputs to the system, not necessarily the response, so 
arbitrary parameterizations do not violate vehicle dynamics. 
Even discontinuous controls will generate a smooth response 
when passed through the dynamics.  

Linear Velocity Profiles 
Typically, it is convenient for local motion planning algorithms 
to control the speed and shape of the trajectory independently.  
The initial speed, traversal speed, and the terminal speed are 
often known along with the desired linear velocity profile.  An 
archetypal linear velocity profile for vehicles is the trapezoidal 
profile (Figure 4), defined by an initial velocity (v0), initial 
acceleration (a0), traverse velocity (vtraverse), terminal deceleration 
(af), terminal velocity (vf), and the traversal time (Δt).  Smoother 
(where acceleration and its derivative are defined), simpler 
(linear profile between v0 and vf), or more complex profiles 
(several intermediate velocities) can also be applied in the same 
framework.   

 

[ ]Tfftraverse00 tvavav Δ=vp  (8)

Figure 4: Trapezoidal Linear Velocity Profile. Typically most of the 
parameters defining the shape of the linear velocity control are known. 
For a trapezoidal velocity profile, the parameters in the control are the 
initial (v0), intermediate (vtraverse), and terminal (vf) velocities, initial 
(a0) and terminal (af) accelerations, and the duration (Δt).  

 
Angular Velocity Profiles 
The shapes of trajectories are primarily determined by the 
angular velocity profile, so it is effective to represent the most 
possible feasible motions with a minimum number of parameters.  
One effective parameterization of an angular velocity control is a 
polynomial function of time (Figure 5): 

 

 

Figure 5: Polynomial Angular Velocity Profile. A polynomial function 
of time is an effective parameterization of the angular velocity controls. 
The parameters in the control are the polynomial coefficients (a,b,c…) 
and the duration (Δt). 

[ ]Ttdcba Δ= K
zωp  (9)
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By the Taylor remainder theorem, the polynomial can 
represent all feasible motions to any desired degree of precision 
given enough terms. It is also differentiable, providing any 
desired degree of continuity.   

When solving parameterized optimal control problems, the 
computations are best conditioned if all of the freedoms are of 



 
the same scale.  Since interpolation schemes often use 
polynomial functions to join a set of control points, the control 
points themselves are an equivalent representation. Unlike 
polynomial coefficients, though, they have roughly equal scale 
(Figure 6): 
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2.3 Trajectory Generation (Numerical Optimization) 
Given the boundary states and the parameterized controls, the 
method used for finding the correct controls is nonlinear 
programming (Figure 2).  Slightly different solution methods 
apply depending on the degree of problem constraint.  For fully 
constrained problems, a constraint residual can be defined and 
when the algorithm is properly seeded, it will quickly converge 
to an acceptably small residual.  Underdetermined problems 
encode a family of solutions from which one “best” solution 
must be chosen.  The criterion of “best” is encoded by specifying 
some utility functional to be used to judge alternatives.  

2.3.1 Constrained Trajectory Generation 
The constrained trajectory generation formulation is the most 
straightforward approach.  The process modifies the variables in 
the parameterized control (p) until the terminal state of the 
forward simulated trajectory (x(tf)) is equal to the defined target 
terminal state (xf), thereby satisfying the constraint equations 
(C(x)).  Some of these boundary constraints are trivial to solve 
because they can be equated directly to certain parameters in the 
control (e.g. initial velocity).   Non-trivial constraints (e.g. 
position) must be solved numerically using numerical methods.  

The numerical method applied is Newton’s method, where the 
Jacobian of the solution to the equations of motion is inverted to 
find a correction to the parameters in the system needed to 
minimize the constraint error (Δxf(p)), which we define for the 
moment to be the difference in the simulated terminal state  and 
the terminal boundary constraints: 
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If the Jacobian of the constraints is non-square (when the 
constraint vector and the parameter vector are not of equal 
length), a pseudo-inverse can be applied to produce the least 
squares or least norm solution in order to generate a parameter 
correction vector.   
Since the partial derivatives of the integral of the equations of 
motion cannot generally be found analytically, (Howard and 
Kelly 05) estimates must be found numerically.  Forward (eq. 15) 
or central difference (eq. 16) linearizations of the forward 
equations of motion can be used to estimate these partial 
derivatives.  The algorithm derives its vehicle independence from 
the numerical estimation of all of the partial derivatives. 

Figure 6: Spline Angular Velocity Profile. An alternate 
representation of a polynomial function is a spline function.  The 
parameters in this control are the knot points (ω1,ω2,ω3…) that define 
the shape of the angular velocity control and the duration (Δt).  This 
representation is beneficial for numerical optimization schemes 
because all of the knot points have roughly equal scale. 
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2.3.2 Constrained Optimization Trajectory Generation 
In addition to the pseudo-inverse, optimal control methods can be 
used to solve the underconstrained formulation of the problem. In 
this case, the optimization process creates the extra needed 
constraints to define a locally unique solution. 

In the optimal control formulation of the problem, parameters 
in the linear and angular velocity controls (p) must be adjusted to 
satisfy the constraints and minimize some utility functional 
(J(p)).  As in (Kelly and Nagy 03), this is accomplished using the 
method of Lagrange multipliers  The Hamiltonian (H) is defined 
as the sum of the cost function and the product of the Lagrange 
multiplier vector (λ) with the constraints: 

( ) ( ) ( ) ( ) ( )( )f
TT tJJ, xxλppΔxλpλpH ff −+=+=  (17)

The utility functional is a description of what we want to 
optimize over the path.  In general, it takes the form of: 

( ) ( )∫= f
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The utility functional is conceived as a line integral of a 
potentially time-varying utility function (Y(x,p,t)) along an 
unknown path.  Equivalently, the problem can be formulated in 
terms of cost rather than utility.  The time-varying utility 
function can be considered to be a (potentially time varying) field 
over the state vector.  It represents any weighted combination of 
utilities or costs that are properties of a given state.  It may 
include instantaneous energy consumption, wheel slip, loss of 
mobility, risk, slope, path smoothness, proximity to an obstacle, 
or anything else of interest. 

( ) ( ) ( ) ( ) K+++= xxxpx smoothness3energy2risk1 Ywt,YwYwt,,Y  (19)

The weights in the utility functional inevitably represent 
tradeoffs – like how far the system should be willing to go 
around an obstacle in order to reduce the risk, at a cost of 
lengthening the time to the goal.  The tuning of these weights is 
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unavoidable and both application and platform specific, and is 
outside the scope of this article.  

The first-order necessary conditions for optimality are well 
known: 

( ) ( ) ( ) TTJ, 0
p

pΔxλ
p
p

p
λpH f =

∂
∂

+
∂
∂

=
∂

∂      (n equations) (20)

( ) ( ) 0
λ

pΔx
λ
λpH f =

∂
∂

=
∂

∂ ,      (m equations) (21)

There are a total of n+m equations for this system, where n is 
the length of the parameter vector (and the number of unknown 
parameters in the system) and m is the length of the Lagrange 
multiplier vector (and the number of constraints in the system). 

This system is solved by linearizing the first-order necessary 
conditions. The initial guess of free control parameters and the 
Lagrange multipliers are adjusted at each iteration until a locally 
optimal solution is found.  At this point, the gradient of the 
Hessian and the error in the boundary state both approach zero.  
Each iteration of the optimization involves a numerical solution 
of: 
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A correction factor for the control parameters and Lagrange 
multiplier vector is found by inverting the relationship in 
Equation 22: 
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A step size scaling factor (β) is used to enhance numerical 
stability when initial guesses are far from the local solution.  In 
place of the scale factor, the optimal step size could be 
determined by performing a more expensive line search. 

The Hessian of the Hamiltonian (H), like the Jacobian of the 
forward solution, cannot be solved analytically in our case. 
Again, forward or central differences are used to estimate the 
partial derivatives:   

( ) ( ) ( ) ( ) ( )
2

j,ikj,ilj,ilkj,i

lk

j,i
2

e
,e,e,e,e pHppHppHpppH

pp
pH ++−+−++
=

∂∂

∂
(24)

2.4 Motion Prediction (Numerical Integration) 
The process of numerically integrating the differential equations 
that govern the motion of the vehicle is essentially one of 
simulation (Figure 2).  Motion simulations are required to 
generate the trajectory corresponding to the parameterized 
controls and consequently the Jacobian and the Hessian of the 
Hamiltonian (because they are found by numerical linearizations 
of forward solutions).  The process is broken into three distinct 

steps: control dynamics, modeling of the wheel-terrain 
interaction, and motion simulation.  

The first step, modeling of the control dynamics, is very 
important for accurately simulating real-world systems.  Real 
systems have motor acceleration and torque limits, latency, and 
joint limits that must be modeled in order to produce an accurate 
simulation of how the vehicle will respond to its commands. The 
control dynamics modeling portion of the motion prediction 
stage simply determines the vehicle response to the body-frame 
linear and angular velocity controls: 

( ) ( t,,t, uxfux dynamicscontrol )=&  (25)

The control dynamics portion of the model determines the 
forces that the vehicle will exert on the environment, and 
therefore the resulting response forces from the environment.  It 
is here where models of wheel slip, sliding, and the actions of 
external forces on the system are applied.   
The last portion of the motion prediction is the actual motion 
simulation, which determines the change in vehicle pose (r|world, 
o|world) over a small time step (Δt): 

( ) ( ) ( ) tt,,ttt Δ+=Δ+ uxxxx &  (26)

Since ground vehicles generally cannot control their roll, 
pitch, or elevation rates (they are functions of the interaction 
between the environment and the suspension), new estimates of 
these states are computed by the suspension model at the end of 
each motion prediction step.   

2.5 Vehicle Model (Vehicle Simulation) 
From a coding perspective, the vehicle model portion of the 
trajectory generation algorithm is an instance of the abstract 
vehicle model class that determines how the robot will respond to 
the commanded body-frame linear and angular velocity controls, 
change its position and orientation, and interact with its 
environment (Figure 2). The vehicle model is generally broken 
down into four elements: a dynamics model, a wheel/terrain 
interaction model, a motion model, and a suspension model. 

2.5.1 Vehicle Dynamics Models 
Vehicle dynamics models simulate the response of the body-
frame vehicle commands to the torques on and/or velocities of 
the wheels.  By modeling the response to the parameterized 
controls, the solutions found are dynamically feasible.   

A few elements of vehicle dynamics models are rate limits, 
joint limits, and latency.  Rate limits represent constraints on how 
fast actuators can turn.  Modeling these effects can account for 
drive wheels that move slower than requested or steering servos 
that lag behind their desired orientation.  By contrast, joint limits 
bound entire regions of control space that contain infeasible 
motions.  An example of such infeasible motions is the 
impossible turn-in-place maneuver in automobiles.  The front 
wheels can never reach the steer angles required for this motion.  
Accounting for latency in the system is essential for generating 
correct trajectories when the vehicle state can change 
dramatically over the scale of the latency.   



 
These types of constraints can be handled in the trajectory 

generator by using the response to the input controls in the 
integration of the kinetic motion model instead of the controls 
themselves. Hard limits can be imposed on steering angles and 
models of actuator dynamics can simulate delays in the motor 
controller.   

The imposition of such joint and rate limits in the vehicle 
model requires a method for computing wheel direction and 
velocities given some body-frame linear and angular velocity.  
For determining the mapping from body-frame linear and angular 
velocity to wheel velocities, suspension articulation rates can be 
temporarily neglected to simplify the computations.  For such an 
assumed rigid body, the velocity of any point on the vehicle can 
be determined from the linear and angular velocity of the body 
frame. Specifically at the location of a wheel: 

wheelbodybodywheel rωvv ×+=  (27)

In the linear and angular velocity vectors, only the 
controllable velocities (vx,vy,ωz) need to be considered.  The 
vector r|wheel is the displacement from the body frame to wheel 
contact point.  The wheel speed and direction can then be 
determined from the computed wheel velocity vector.  

2.5.2 Wheel/Terrain Interaction Models 
By predicting the wheel/terrain interaction in the planning stage 
of the overall autonomy system, rather than accounting for it in 
the execution stage, more dynamically feasible vehicle motion 
can be generated.  Traversing high wheel slip environments is a 
major challenge for current planetary robotic systems, for 
example and the present algorithm promises to help compensate 
for such slip to the degree that it can be predicted by the 
specialized perception algorithms that are appearing (Angelova 
05).    

2.5.3 Vehicle Motion Models 
The vehicle motion model maps body frame linear and angular 
velocities to world frame position and orientation rates.  A body-
frame coordinate system is defined with the positive x-axis 
pointing forward, the positive y-axis pointing to the right, and the 
positive z-axis pointing down.  The mapping of linear velocities 
from the body-frame (v|body) to world frame (v|world) is completed 
by rotating the body-frame x, y, and z axes by the Euler angles 
roll (φ), pitch (θ), and yaw (ψ) respectively: 

( ) ( ) ( ) bodyxyzworldworld vROTROTROTvr φθψ==&  (28)
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This relationship can be inverted to determine the body-
frame velocity vectors in terms of the global position rates: 
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The mapping between the Euler angle rates and the body-
frame angular velocities (ω|body) can also be found by 
transforming the individual Euler rotation rates from their 
intermediate frames to the robot-fixed frame: 
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Just as with global position rates and body-frame linear 
velocities, this relationship can be inverted to determine the Euler 
rates in terms of the body-frame angular velocities: 
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Equations (29) and (33) form the basis of the time-based 
velocity kinematics.  The rate of change of global position and 
Euler angles can be determined given a set of controllable body-
frame linear and angular velocities: 
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2.5.4 Vehicle Suspension Models 
Vehicle suspension modeling is the problem of properly 
determining the attitude and elevation of a vehicle given other 
elements of its current state.  This is an embedded optimization 
problem because it is often highly underdetermined.  We solve 
this problem by conceptually allowing the vehicle to float in 
altitude and attitude, and articulate in suspension, while 
minimizing the residual between the wheels and the terrain 
elevations under (or above) them. 

3 Initial Guesses for the Vehicle Controls Parameters 
Good initial guesses for the vehicle controls parameters are very 
important to the efficiency of the trajectory generation algorithm.  
When initial guesses of parameters are close to the actual 
solution, fewer iterations of the algorithm are required to satisfy 
the boundary state constraints. Furthermore, when local minima 
exist, a good initial guess is insurance against falling into the 
wrong minimum. Since initial guesses for three-dimensional 
terrain, arbitrary vehicle dynamics, and arbitrary terrain models 
are difficult to calculate (because of their dimensionality), flat 
surface solutions with limited dynamics are considered. 
Historically, approximations of the solutions have been found by 
hand-tuning polynomial functions to data from a few dimensions 
(Nagy and Kelly, 2001).  This section discusses the problem of 
generating the dataset for the initial guesses and two methods of 
storing them: a initial guess lookup table and a neural network. 
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3.1 Lookup Table 
A lookup table is an efficient means of storing initial guesses for 
the vehicle controls parameters given that the space of solutions 
is low dimensional and is smooth.  This is yet another reason for 
using parameterized controls because they encode the entire 
shape of the trajectories in relatively little memory.  

Generally the most important boundary constraints which 
influence the shape of the path are the initial and terminal 
positions (x,y), headings (ψ), and initial and final curvatures 
(k0,kf), resulting in a five-dimensional lookup table of solution 
parameter vectors.  More dimensions, such as velocities, can be 
incorporated into the lookup table if they have dramatic effects 
on the accuracy of the initial guess.   

In order to generate the initial guess lookup table efficiently, 
we use previous solutions to seed neighboring trajectory 
generation problems in the table.  This requires a satisfactory 
initial guess for the first trajectory generation problem, which is 
ideally centrally located in the lookup table.   

 

 
In practice it may be necessary to adjust the order of the 

progression through each dimension of the initial guess lookup 
table if convergence problems (due to dynamic infeasibility or 
sparsity of the discretization) are observed. The resolution and 
dimensionality of the stored lookup table is a function of the 
robot’s storage and computing power and is therefore platform 
dependent.   

3.2 Neural Network 
Another method to generate the initial guess used in the 
trajectory generator is to use machine-learning algorithms to fit a 
function to a large training set of trajectory generation examples.  
The initial guess lookup table from Section 3.1 (or a sampled 
version of it) can be used as a good training set because the 
boundary state pairs are regularly separated.   

The motivating factor behind using such a representation is 
the space savings.  A high-dimensional initial guess lookup table 
can require tens or hundreds of megabytes of storage whereas a 
neural network, which requires that only the weights of the 
learned function be stored, requires only a few kilobytes.  This is 

important for applications with limited storage such as planetary 
rovers.  The solutions are good candidates for machine learning 
algorithms because the parameters of the solutions are generally 
smooth and continuous.  The downside to applying neural 
networks for such situations is the upfront cost of learning the 
entire function. 

4 Experimental Setup 
Using the methods and algorithms previously described, we have 
built a continuous primitive trajectory generator for arbitrary 
vehicles that accounts for terrain geometry in the motion 
prediction.  The experiments and simulations will use a vehicle 
model based on the Rocky 8 prototype Mars rover (Figure 8).  
The vehicle has an all-wheel steering mobility system that is 
artificially constrained in some of the subsequent examples in 
order to demonstrate trajectory generation for less capable 
mobility systems.   This section will outline the state constraints 
(Section 4.1), control parameterizations (Section 4.2), trajectory 
generation algorithm implementation (Section 4.3), suspension 
models (Section 4.4), vehicle dynamic models (Section 4.5), and 
the simulated environment used in the experiments. 

4.1 State Constraints 
For the series of examples in Section 5, we will solve the two-
point boundary value problems typically associated with 
trajectory generation.  It is important to note however that in 
general the algorithm does not require that the state constraints 
be specified at the boundaries.  The implemented error threshold 
used to declare convergence of the algorithm is shown in Table 
1. 

 Table 1: Convergence Criterion 

State Constraint Required Accuracy 

Position (x,y) 0.001 meter 

Heading (ψ) 0.001 radian 

Direction (δ) 0.001 radian 

Curvature (ω) 0.001 radian 

Figure 7: Neighboring Solutions for Initial Guess Lookup Table 
Generation. The initial guess lookup table is generated by continually 
solving neighboring trajectory generation problems in such a way that 
the last solution is a good initial guess for the next query.   

Only the terminal positions, headings, directions, and curvatures 
must be satisfied by the trajectory generator optimization.  The 
position, heading, direction, and curvature initial state constraints 
are solved trivially using the current state of the vehicle.   

4.2 Control Parameterizations 
This implementation employs a fifth-order polynomial spline 
function in curvature and linear profiles for the linear velocity 
and direction.  A curvature profile is used in the same way that 
the angular velocity is used and the two are interchangeable.   
There are artificial constraints on the initial controls - that they 
be equal to the initial curvature, linear velocity, and direction 
state constraints for maximum continuity.   

4.3 Trajectory Generation Algorithm Implementation 
Since the length of the parameter vector (8) exceeds that of the 
constraint vector (6), the system can be solved using the 
constrained or constrained optimization trajectory generation 



 
techniques.  The constrained trajectory generation technique 
(Section 2.3.1) is used in Sections 5.1 – 5.5 whereas the 
constrained optimization technique (Section 2.3.2) is used in 
Section 5.6.   

4.4 Suspension / Kinematic Model 
In order to map body-frame velocities to wheel velocities and to 
determine the orientation and configuration of the vehicle on 
arbitrary terrain, the suspension of the vehicle must be modeled.  
The body to wheel kinematics equations and were computed in a 
manner similar to (Tarokh 2005).  The vehicle can be modeled as 
a series of revolute joints and links as seen in Figure 8: 

 

 
The suspension model has been implemented as a numerical 

optimization (a different application of Newton’s Method) that 
minimizes the distance between wheel contact points and the 
terrain by adjusting the three rocker-bogie freedoms, roll, pitch, 
and elevation.  In general, the partial derivatives required by the 
optimization must be found numerically. However an estimate of 
the Jacobian can be found analytically by taking the partial 
derivatives of the forward kinematics equations of the wheel 
contact point with respect to the body-frame elevation, attitude, 
and suspension freedoms.     This solution is efficiently computed 
online in the forward solutions by using the previous state as the 
initial estimate for the suspension optimization.   

4.5 Vehicle Dynamic Models 
Varying dynamic models, including models of wheel slip and 
sliding are demonstrated in section 5.5.  The examples in 
Sections 5.1-5.4 and 5.6 apply ideal vehicle dynamics models in 
order to isolate effects of different aspects of modeling.  In 
general, all of these applications can use arbitrarily complex 
vehicle models (joint limits, motor models, etc…) at the burden 
of higher computational costs.   

4.6 Simulated Environment 
The terrain in the experiments is represented as an elevation map 
generated using fractals.  A third-order Lagrangian interpolation 
scheme was implemented to determine the elevation at any given 
position in the environment.  This method was preferred over 
simpler and less costly linear interpolation schemes because 
third-order Lagrangian interpolation provides continuous 
derivatives at the boundaries between map cells. 

5 Experiments and Results 
This section demonstrates some uses of the developed trajectory 
generator. A comparison of paths generated using the rough 
terrain and traditional trajectory generations is shown first to 
demonstrate the need to include the terrain geometry in the 
forward model.  Then, the observed rate and behavior of 
convergence of the algorithm is discussed followed by examples 
of motion generation for different mobility systems, cases where 
vehicle dynamics are important, and the generation of optimal 
trajectories. 
Results are presented for a simulated vehicle because this is the 
best way to test the algorithm on a statistically significant set of 
cases. The main purpose of the algorithm is to invert a model to 
produce feasible motions that meet the dynamic constraints 
encoded in the model and the boundary constraints encoded in 
the problem specification. The fidelity of the model used is an 
important but separate and independent question that can only be 
evaluated on a real vehicle. We assert that, however the 
parameters of the vehicle model may change in order to calibrate 
it better to reality; our trajectory generator will still be able to 
invert it. The algorithm has been integrated into the CLARAty 
system at the Jet Propulsion Laboratory and successfully field 
tested on the Rocky 8 prototype mobile robot platform.   Figure 8: Kinematic Models for Rocky 8. A kinematic model can 

easily be generated for mobile robots with Rocker-Bogie suspensions 
using a series of revolute joints.  The kinematic model is used to map 
body frame velocities to wheel frame velocities and to determine the 
attitude and elevation of the robot given its position. 

Due to space limitations, a relative few examples are 
presented in detail but the algorithm has been under continuous 
use and evaluation for over two years. 

5.1 Rough Terrain Trajectory Generation 
Accounting for terrain geometry in trajectory generation is 
important in rough terrain environments.  Figure 9 shows two 
forward simulations of trajectories generated by alternately 
assuming and then not assuming flat terrain. The rough terrain 
solution meets the stringent terminal constraints (in three 
iterations), whereas in this example the flat terrain solution is off 
by 24.1% in relative position and 11.5% in relative heading.   
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There are three important points to take from this figure:  

1) Neglecting the influence of the terrain geometry in the 
motion model leads to incorrect trajectories.  

2) Any path generated assuming flat terrain will be shorter than 
the real three-dimensional path between two arbitrary states 
on general surfaces. Trajectories generated by ignoring 
terrain geometry will make turns too early because the 
vehicle will not recognize that it has only displaced a 
fraction of its apparent (x,y) position change.     

3) The flat terrain solution is close enough to the real solution 
to provide an initial guess to initialize the rough terrain 
trajectory generation algorithm.  Even in the presence of 
large terrain undulations like the ones shown in Figure 10, 
convergence typically requires less than three iterations. 

Of course, in modern robotic systems, such errors are typically 
treated using feedback control and path tracking. However, the 
main point here is that such errors can be avoided entirely, before 
the fact, using the methods of the article because perception used 
in local planning can inform the algorithm on terrain geometry.   

5.2 Algorithm Convergence 
To demonstrate robustness to poor initial guesses for the vehicle 
control parameters, the same problem as section 5.1 was solved 
using an artificially poor initial guess for the parameters of the 
control and a smaller step size scaling factor (α = 0.625).  
Figures 10 and 11 show trajectories representing each of the nine 
iteration steps required by the trajectory generator to converge to 
a solution that reaches the target terminal state. 

 

 

Figure 10: Trajectory Generation Convergence. The same problem 
in Figure 8 is solved using an artificially poor initial guess to
demonstrate robustness of the algorithm.  As the method progresses, 
successive iterations of the optimization minimize the distance 
between the simulated state and the target terminal state until the error 
reaches an acceptable level. 

Figure 9: Trajectory Generation Compensating for Terrain 
Geometry. An example motion plan between a pair of boundary states 
is shown with and without compensating for terrain geometry.  The 
trajectory plan ignoring the terrain geometry does not reach the target 
terminal state. 

 

 

Figure 11: Trajectory Generation Convergence. The position and 
heading errors are shown for each trajectory in Figure 10.  Given an 
artificially poor initial guess of the vehicle control parameters, the 
trajectory generator determined the correct solution in nine iterations 
of the optimization.   

Figure 11 demonstrates the convergence property of Newton’s 
Method as the parameter correction is proportional to the current 
state error.  Even when provided with a relatively large error in 
the initial guess, the algorithm is able to converge to the correct 
solution because of the relative convexity of the solution space. 

5.3 Rough Terrain Trajectory Generation for Instrument 
Placement with Restricted Mobility 

Instrument placement problems for mobile robots typically 
require a local planning algorithm to generate a trajectory to a 
terminal state where its position and heading are defined.  The 
position and heading boundary constraints are typically set such 
that the target is within the range of motion of scientific 
instruments or the field of view of sensors or cameras.   

To demonstrate a more general example of the presented 
trajectory generation algorithm, we have used the algorithm to 
plan trajectories to visit seven sequential scientific targets as seen 
in Figure 12.  Here the simulated mobile robot’s all-wheel 
steering capability is constrained to demonstrate motion planning 
for skid-steered, Ackermann, and corner-steering mobility 
systems (linear velocity is restricted to be along the x-axis of the 
vehicle).  The generated motion plan consists of seven forward 
and five reverse trajectories all subject to the vehicle’s 
nonholonomic constraints.  The trajectories used trapezoidal 
velocity profiles with zero initial and terminal velocity, ±2.0 
meters/second2 acceleration and deceleration, and a traverse 
speed of ±1.0 meters/sec.  Figure 12 shows views of the 
simulated instrument placement scenario and Figure 13 plots the 
position and heading errors as functions of the number of 
iterations of the algorithm.   



 

 

 

 

 
In this situation, the termination conditions are satisfied by all 

twelve trajectories in fewer than four iterations of the algorithm 
when considering the terrain geometry. As in the previous 
examples, this demonstrates fast convergence of the algorithm in 
relatively difficult terrain geometry while illustrating a typical 
application for the presented method.   

5.4 Rough Terrain Trajectory Generation for Instrument 
Placement and All-Wheel Steering Mobility Systems 

The ability to generate paths in arbitrary terrain for all-wheel 
steering mobility systems can endow the robot with the capacity 
to move efficiently through the environment.  This is especially 
important for planetary robotics applications where energy is 
limited, the environment may be cluttered with obstacles, and the 
orientation of the robot is important (to deploy scientific 
instruments).  The same instrument placement scenario as in 

section 5.3 is presented in Figure 14 except that now the robot 
can use the all-wheel steering mobility system. The motion plan 
illustrates how the algorithm can exploit all-wheel steering to 
generate smoother, more efficient motion plans for multiple 
sequenced instrument placement problems.  Figure 15 plots the 
position and heading errors as functions of the number of 
iterations of the algorithm. 

 

Figure 12: Instrument Placement using Corner Steering Mobility 
Systems. Sequences of trajectories are planned for an example 
instrument placement task using a corner steering mobility system. 
The targets must be aligned with the front of the robot chassis because 
of the location of the scientific instruments.  Each of the seven science 
targets are achieved by planning twelve trajectories that include 
forward and backward motions.   

 

Figure 14: Instrument Placement using All-Wheel Steering 
Mobility Systems. The same instrument placement problem in Figure 
12 is solved using an all-wheel steering mobility system, allowing the 
vehicle path heading to change independently from the body yaw. 
Each of the seven science targets are achieved by planning only seven 
motions.  The overall motion plan (black path) is more efficient than 
the corner steering motion plan (white path) by effectively exploiting 
the all-wheel steering mobility.   

 

Figure 13: Trajectory Generator Convergence for Instrument 
Placement Tasks using Corner Steering Mobility Systems. For the 
sequence of trajectories shown in Figure 12, the maximum, average, 
and minimum position and heading errors of the twelve planned 
trajectories are shown as a function of the number of iterations 
executed by the trajectory generation algorithm. 

 

Figure 15: Trajectory Generator Convergence for Instrument 
Placement Tasks using All-Wheel Steering Mobility Systems. For 
the sequence of trajectories shown in Figure 14, the maximum, 
average, and minimum position and heading errors of the seven 
planned trajectories are shown as a function of the number of iterations 
executed by the trajectory generation algorithm. 

In this situation, the termination conditions are satisfied by all 
seven trajectories in fewer than six iterations when considering 
the terrain geometry and the all-wheel steering capability of the 
vehicle.  The constraint error is larger because the initial guess 
used does not account for the all-wheel steering capability of the 
vehicle.  In practice, such solutions could be encoded into the 
initial guesses for the vehicle controls parameters. 
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In comparing the motion plans for the instrument placement 
scenarios presented in sections 5.3 and 5.4, the all-wheel steering 
motion plan is clearly shorter and more efficient.  The planned 
all-wheel steering mobility system capable is 42.3% shorter 
(24.33 seconds vs. 42.15 seconds) than the corner steering 
mobility system path.  Of particular interest are the all-wheel 
steering trajectory sequences (2-3) and (6) in Figure 14, which 
allow the mobile robot to circle a target while continuously 
pointing its instruments towards the target.  Trajectory generation 
algorithms that can exploit all-wheel steering systems can enable 
for more capable and efficient local motion planning algorithms.   

5.5 Trajectory Generation Considering Vehicle Dynamics 
One advantage of the numerical linearization is that arbitrary 
models of vehicle dynamics can be incorporated.  Often, 
dynamic effects are neglected at the local motion planning level 
and dealt with at a lower level through feedback control.  Our 
formulation allows dynamic models of wheel-terrain interaction 
and other vehicle dynamics to be treated beforehand in the 
trajectory generation solution. 

5.5.1 Trajectory Generation Considering Wheel Slip Models 
Compensating for wheel slip is presently one of the most 
important mobility problems for planetary mobile robots 
(Biesiadeki 05).  Algorithm convergence is not guaranteed for 
any wheel slip model since a reasonable initial guess of the 
solution is required.  However, if a reasonable initial guess is 
provided and convergence is still not achieved, then there is 
likely no dynamically feasible motion.   

Since the trajectory generator uses the response of body-frame 
velocity controls, it is necessary to first determine individual 
wheel velocities, apply a slip model on each wheel, and then 
invert the body kinematics to estimate of the body-frame velocity 
response.  While this approach is not as principled as force-based 
models of wheel slip, this approximation is often used in 
practice, so we will use it here.   

An often encountered problem involving wheel slip is 
planning trajectories for planetary rovers while climbing hills as 
seen in Figure 16.  Typical wheel slip models for such 
applications, respond with an attitude dependent percent of the 
commanded velocity.  When wheel slip is not modeled in the 
trajectory generator, paths come up short.  We can, however, use 
the presented trajectory generation algorithm to compute paths 
that meet the target state constraints subject to these wheel slip 
models. 

 

 

Figure 16: Compensating for Wheel Slip in Trajectory Generation.
Wheel slip models can be included in the vehicle model used by the 
trajectory generator to plan motions.  Notice that the forward 
simulation of the solution generated by the motion without a wheel slip 
model slides moves significantly less than predicted and it does not 
reach the target terminal state.  Improved performance of path tracking 
algorithms can be expected by modeling these effects instead of relying 
on feedback control to account for such errors. 

The wheel slip model used here calculates a percent wheel 
slip for each wheel based on the vehicle attitude.  The model 
parameters used were consistent with observations from field 
experiments.  In general, any wheel slip model can be 
implemented in the vehicle model for such situations. 

 



 

 
Figure 17 shows the commanded and response linear and 

angular velocities of the two paths shown in Figure 16.  Notice 
that the path generated by incorporating the wheel slip model 
takes longer to execute (9.21 seconds vs. 6.16 seconds) because 
the net velocity response of the wheel slip model is always lower 
than the commanded velocity.  Also, note that the response 
velocities are not particularly smooth functions despite the 
smoothness of the commands.     

5.5.2 Trajectory Generation Considering Vehicle Dynamics 
Models 

Wheel slip is not the only form of dynamics that can be 
accommodated.  Sliding or slipping dynamics can be 
incorporated in the control dynamics model in order to generate 
trajectories that compensate for these motions automatically.  For 
example, the planetary robot in Figure 18 is attempting to follow 
a provided trajectory while crossing a slope.  If the plan is 
generated and followed without modeling the sliding effects of 
the slope, the robot will slide down the hill.  This effect can 
easily be modeled as a velocity proportional to the gradient of the 
terrain, resulting in a planned trajectory that drives up the hill to 
compensate for the downward sliding effects.   
 

 

 

Figure 17: Compensating for Wheel Slip in Trajectory Generation.
Wheel slip approximations can be used in the forward model to enable
predictive compensation for these effects in the trajectory generator. 
The plots on the left show the commanded and response linear and 
angular velocities of the unmodelled solution. The plots on the right 
show the commanded and response linear and angular velocities of the 
solution that models these effects.  Notice that the solution that 
accounts for wheel slip takes longer to execute (9.21 seconds vs. 6.16 
seconds) because the response net velocities on the slopes are always 
less than the commanded net velocities.   

Figure 18: Compensating for Sliding Dynamics in Trajectory 
Generation. Sliding dynamics models can be included in the vehicle 
model used by the trajectory generator to plan motions.  Notice that the 
forward simulation of the solution generated by the motion without a 
sliding dynamics model slides down the slope and does not reach the 
target terminal state.  Improved performance of path tracking 
algorithms can be expected by modeling these effects instead of relying 
on feedback control to compensate for such errors. 

In this example, the trajectory generator was able to meet the 
boundary state constraints in five iterations of the algorithm.    
Figure 19 shows the commanded and response velocities for the 
modeled and unmodeled vehicle dynamics solutions.  Notice that 
the unmodeled solution does nothing to account for sliding down 
the hill, so the angular velocity remains constantly at zero (the 
terminal state is straight ahead of the initial state).  The solution 
that incorporates these effects understands that to compensate for 
these effects, it must initially turn up against the slope, and hence 
it has a non-zero angular velocity profile.     

 

 

Figure 19: Compensating for Vehicle Sliding Dynamics in 
Trajectory Generation. Vehicle sliding dynamics models can be 
incorporated in the forward model of the vehicle to predictably 
compensate for these effects in trajectory generation.   

5.6 Rough Terrain Trajectory Generation using 
Constrained Optimization 

The optimal control formulation is applicable whenever there are 
sufficient degrees of freedom to optimize something.  We 
illustrate two different cases of trajectory optimization, 
specifically using minimum-cost and minimum-slope dwell 
utility functionals.  It is important to note that these trajectories 
are optimal only over the space of feasible motions spanned by 
the polynomial control set. However, we have also argued that 
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this space is a very good approximation to the continuous 
function space of arbitrary controls. 

5.6.1 Minimum-Cost Performance Index 
In this type of formulation, obstacles are represented as costs in a 
field that the robot traverses. If a high-cost obstacle is observed 
to be in the planned trajectory, typically the vehicle must either 
replan at the global level or temporarily swerve from the target 
path and reacquire it behind the obstacle.  The swerve motion can 
be generated dynamically in the optimal control formulation of 
trajectory generator, where a tradeoff between minimum-cost and 
minimum-time is encoded in the overall cost functional.   

To find a best compromise, the utility functional (Y(x,p,t)) is 
defined as the sum of 1 and the weighted value of the cost map at 
the current position (x,y).   

( ) ( ) ( )∫∫ α+== ff t

0

t

0
dty,xcost1dtt,,YJ uxu  (35)

The “1” term in the integral represents the time that it takes to 
traverse a cell and the “cost(x,y)” is the cost of its traversal. The 
parameter  α controls the trade-off between finding the shortest 
path and the one that minimizes the cost line integral.    As α 
approaches zero, the minimum-time path will be found.  
Conversely as α approaches infinity, the locally minimum cost 
path will be found.   
A straightforward example demonstrating the effectiveness of 
this utility function is that of avoiding a simulated localized 
obstacle.  A cost field can be generated by penalizing proximity 
to the obstacle as shown in Figure 20.  

 

 
The solution for zero α is trivial, there is no cost contribution 
from the simulated obstacle and the minimum-time solution (a 
straight-line path directly to the terminal state) is found.  As α is 
increased, the paths deflect away from the high cost regions at 

the cost of longer path lengths. This example is applicable, for 
example, to operator interfaces where the operator might 
designate the obstacle by clicking at its location.   

5.6.2 Minimum- Slope Dwell Performance Index 
For planetary rovers operating in rough terrain, it is sometimes 
necessary to minimize the amount of time spent on slopes to 
reduce risk.  An advantage of the rough terrain constrained 
optimization trajectory generation formulation is that we can 
gather information about vehicle orientation along the path at no 
added computational cost.  We can therefore define a utility 
function that penalizes high roll and pitch values along the path 
to avoid slopes: 

( ) ( ) ( )∫∫ θ+φα+== ff t

0
22t

0
dt1dtt,,YJ uxu  (36)

Just as with the minimum-cost example from section 5.6.1, 
the “α” term represents the tradeoff between the minimum-time 
and minimum slope-dwell solutions.  Since the numerical 
techniques that we use are descent algorithms, we will find only 
local optima so the technique cannot be used without 
modification when many such minima are prevalent.  

To demonstrate the use of this utility functional, we try to find 
the shortest path that drives over a large pyramid-shaped hill.  On 
flat terrain, the trajectory is trivial – it is a straight line between 
the two states. However, driving on the side of a hill can be 
dangerous (tip-over, sliding, loss of traction, etc.).  We get a 
straight-line motion when our weight (α) is equal to zero because 
it is the minimum-time solution to the problem.  As the weight 
(α) is increased toward unity, the algorithm converges to a path 
that moves around most of the hill.  It does not plan entirely 
around the hill because it is still looking for the shortest solution 
subject to this penalty for high attitude.  An increase of the 
weight (α) towards two causes the path to avoid more of the hill 
at the cost of increasing the time to the goal.  Figure 21 shows 
how the paths differ from one another given the different weights 
in this formulation of the problem. 

 

Figure 20: Minimizing Path Cost. The optimal control formulation of 
the trajectory generator can be used to minimize an arbitrary path cost 
function over the course of a trajectory.  This example demonstrates 
avoidance of high cost regions (proximity to a simulated obstacle) at 
the expense of longer path lengths. 



 

 

5.7 Runtime Performance 
The complexity of the vehicle model and the terrain shape used 
in trajectory generation has significant effects on the expected 
runtime of the algorithm.  This section benchmarks the expected 
performance with the presented rough terrain trajectory 
generation algorithm with a real vehicle model.  All tests were 
run on a 1.866 GHz Pentium M notebook computer with 1 GB of 
RAM.   

Runtime can be very dependent on the terrain roughness 
because of the complexity of the suspension model used since, at 
each step of the numerical integration, the elevation, attitude, and 
the new suspension angles must all be computed via nonlinear 
optimization.  In order to investigate the effect of terrain 
roughness on runtime, we ran 4,096 trajectory generation queries 
using the Rocky 8 vehicle model on a series of fifty different 
terrains of increasing roughness.  Each world was generated by 
scaling a single elevation map by roughness index.  Views of the 
different height maps used throughout the tests are shown in 
Figure 22 and the average runtime vs. terrain roughness plot is 
shown in Figure 23.   

 

 

 

 

Figure 23: Runtime vs. Terrain Roughness. A series of tests 
were conducted to determine the effect of terrain roughness on 
the runtime of the algorithm.  The number of optimization steps 
required by the algorithm and hence the runtime of the 
algorithm is observed to increase proportionally with respect to 
the terrain roughness.   

Figure 21: Minimizing Slope Dwell. Just as in the minimum path cost 
example from section 5.6.1, the optimal control formulation of the 
trajectory generation algorithm can be used to mitigate risk involving 
high slopes when navigating rough terrain.  This example demonstrates 
how increasing the slope weight (α) causes the trajectory to avoid the 
hill at the cost of longer path lengths. 

The average runtime of the algorithm is observed to increase 
proportionally with terrain roughness.  This is expected because 
the suspension optimization must perform more iterations to 
adapt the vehicle to rough terrain and the initial guess of the 
control parameters (which are based on the flat terrain solutions) 
are going to be worse on rougher terrain.    

It is important to note that the complexity can be scaled 
appropriately depending on the computational capabilities of the 
platform.   

6 Applications 
Our algorithm can endow a mobile robot with an unprecedented 
capability to predict the consequences of its own actions in 
relatively challenging environments.  Using it, we can expect 
intelligent behaviors in applications such as local planning and 
obstacle avoidance, path following, and global planning as 
outlined in this section.   

6.1 Local Motion Planning  
The most logical application for the developed trajectory 
generation method is local motion planning in complex 
environments.  

One such approach to local motion planning is ego-graphs, 
which are body-centered search spaces often used for obstacle 
avoidance (Lacaze et al 98).  The presented algorithm is highly 
effective for generating ego-graphs (Figure 24) because it is 
efficient and it can encode vehicle dynamics constraints. 

 

Figure 22: Terrain Roughness Tests.  In order to conduct a fair 
series of runtime vs. terrain roughness tests, motions plans are 
generated on a series of terrains of increasing roughness ranging from 
a roughness index of 0.0 (nominally flat terrain) to 1.0 (very rough 
terrain).   

 

Figure 24: Ego-graph Generation.  The presented trajectory 
generation algorithm can be used to generate ego-graphs, which are 
body-frame fixed obstacle avoidance and local navigation search 
spaces.  The above two ego-graphs, comprised of 630 individual 
trajectories each, were generated with different initial states using the 
present algorithm.  Note that only the first level of the search space is 
dependent on the current vehicle state.  

Ego-graphs can be initially generated with a flat terrain 
assumption and subsequently adapted to arbitrary rough terrain 
and dynamics models in order to better evaluate feasibility and 
true path cost (Figure 25).  Since the ego-graphs generated using 
this algorithm are simply a collection of paths solved between 
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pairs of boundary states, the algorithm can efficiently adapt the 
solutions to rough terrain using the flat terrain solution as its 
initial guess.   

 

 

6.2 Path Following 
Path following is the problem of finding vehicle controls which 
will allow the mobile robot to track its target path.  Typically 
path following algorithms rely on a relatively fast feedback 
control loop using a low-order motion primitive that reacquires 
the target path at some forward point (e.g. pure pursuit).  This 
method has been implemented successfully for many years 
because a fast update rate can compensate for unmodelled errors. 

 

 
A more robust path tracking algorithm can generate vehicle 

controls based on realistic models of dynamics and wheel-terrain 
interaction as in (Howard et. al 06).  In this approach, a set of 
candidate path following motions are generated by the optimal 
rough terrain trajectory generation algorithm that reacquire the 
path at some forward vehicle posture, ensuring position, heading, 
and curvature continuity (Figure 26).  An optimal selection of the 

corrective trajectory is chosen that minimizes some utility 
function based on cross-track error, smoothness, and any other 
arbitrary factors (Figure 27).   

 

 

Figure 27: Reacquiring the Target Path. The rough terrain trajectory 
generation algorithm can be employed in a constrained optimization 
sense to determine the optimal corrective path to reacquire the target 
path.  A cost function based on cross-track error, smoothness, and 
other factors is minimized in order to determine the optimal corrective 
trajectory.   

Figure 25: Terrain-Adaptive Ego-graphs.  The ego-graphs generated 
in Figure 21 can be adapted to rough terrain using the developed 
trajectory generation algorithm in order to better evaluate dynamic 
feasibility and path cost. The fact that individual trajectories all pass 
exactly through the intended terminal states indicates compensation for 
terrain shape. 

6.3 Global Motion Planning 
Trajectory generation can be used to create an inherently feasible 
search space for global motion planning. One technique, 
illustrated in Figure 28, is to create a regular lattice of states and 
to connect them with feasible motions that serve as the edges to 
transition between states. Initially, the edges can be generated 
based on a flat terrain lookup table and very few distinct shapes 
are needed since the node relationships are symmetric under 
translations and rotations whose magnitudes are consistent with 
the cell sizes.  

Thereafter, the edges can be adapted individually to terrain 
shape to enforce continuity once they are actually traversed in 
search, and potentially once again when perception information 
refines the terrain shape during plan execution. 

 

Figure 26: Corrective Trajectory Continuity.  This figure 
demonstrates several different trajectory generation boundary 
conditions that lead to increasingly higher levels of continuity for 
corrective trajectories.  The corrective trajectory becomes increasingly 
complicated at the benefit of higher degrees of terminal state 
continuity. 

 

Figure 28: Connectivity of a State Space Lattice in Rough Terrain. 
The states of a lattice which is equally distributed in (x,y) can be 
connected with minimum-time paths in general rough terrain using our 
trajectory generator.   



 
7 Conclusions 
This article has presented a highly generic approach to trajectory 
generation for mobile robots of somewhat arbitrary mobility 
characteristics.  Such a general formulation is proposed because 
it permits the predictive elimination of model errors at planning 
time rather than reactive elimination at execution time.  To the 
degree that models of terrain following, vehicle dynamics, and 
wheel/terrain interaction have any utility at all, our approach can 
extract and exploit the signal in such models while leaving the 
remaining unpredictable components to be compensated during 
control execution. 

This algorithm can endow a mobile robot with an 
unprecedented capacity to predict the consequences of its own 
actions and to take corrective actions in relatively challenging 
environments.  Using it, we can expect such intelligent behaviors 
as the following: 
• An automated passenger bus can start turning early by 

precisely the correct amount in order to change lanes in 
traffic because the actuator dynamic models model the 
sluggishness of the steering system. 

• A planetary rover that can exploit its predictions of wheel slip 
by approaching a hillside goal on the high side in anticipation 
of sliding into the goal as the trajectory executes. 

• An unmanned ground vehicle executing a sweep for buried 
mines can alter its trajectory in response to real time high-
resolution terrain information. Such alteration will ensure that 
the present sensor swath is precisely parallel to the last, 
regardless of how poor the aerial terrain map generated by the 
deployment aircraft may have been. 
Performance in real applications is of course subject to the 

fidelity of the models being inverted and is outside the scope of 
this work.  However, even imperfect nominal models are better 
that the complete lack of a model which characterizes the state of 
the contemporary art with respect to the elements introduced 
here.  

Current and future work includes the use of this algorithm in 
multiple contexts.  First, it is being applied in the generation of 
corrective maneuvers in rough terrain path following 
applications.  Second, it is being used to generate well-separated 
trajectory sets for obstacle avoidance computations on rough 
terrain vehicles.  In addition, it is being evaluated and refined as 
the search space generation component of a larger scale 
nonholonomic motion planner. 
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