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Abstract

Mobile robot localization from large-scale appearance mosaics
has been showing increasing promise as a low-cost, high-perfor-
mance and infrastructure-free solution to vehicle guidance in
man-made environments. The feasibility of this technique relies
on the construction of a locally smooth and globally consistent
high-resolution mosaic of the vehicle’s environment, efficiently
done using observations that have low spatial and temporal per-
sistence. The problem of loop closure in cyclic environments that
plagues this process is one that is commonly encountered in all
map-building procedures, and its solution is often computation-
ally expensive. This paper presents a method that reliably gener-
ates consistent maps at low computational cost, while fully
exploiting the topology of the observations. Extensions to a real-
time implementation are discussed along with results using simu-
lated data and those from real indoor environments.

1 Introduction
Navigating from imagery is common technique in robotics, and a
considerable amount of research interest has been directed
towards using vision to provide localization and motion estima-
tion capabilities to autonomous vehicles, both on land and in the
sea.
Mosaic-based localization [10] is a technique employing real-
time imagery to track motion over a previously stored high-reso-
lution image of a known environment. By reducing the localiza-
tion problem to one of template matching, it provides absolute
position fixes which are used to damp the growth of errors that
occur in a primary position estimation system such as odometry.
Previous papers on the subject of mosaic-based position estima-
tion have discussed the feasibility of such an approach [10], pro-
vided a description of the tracking algorithm used to navigate the
mosaic [9], and a basic algorithm to construct the mosaic itself
[14].
A guidepath is a portion of a known vehicle trajectory. A set of
possibly intersecting guidepaths is called a guidepath network.
Each piece of mosaic associated with an edge of the guidepath
network of the vehicle, as collected during a single swath of the
vehicle is referred to a map segment. The images used to create a
mosaic are collected into larger one-dimensional segments by
passing a camera over the floor and recording both the imagery
and the locations of each image, as determined through dead-
reckoning. The mosaic is hereafter referred to as the map. 

1.1 Issues with Map Construction
Map construction using a mobile robot requires a solution to the
dual problems of recovering the motion history of the robot, as
well as constructing a model of its environment based on obser-
vations made during the course of the motion. For high-speed

visual tracking to be possible, the constructed map must satisfy
the conditions of local smoothness, whereby the error in tempo-
rally adjacent images is locally bounded to some acceptably
small value, and global consistency, whereby the position
reported at a particular location becomes neither time nor path
dependent, and is uniquely represented in the constructed model.
These requirements are common to any process involving the
construction of reliable maps, independent of the type of sensor
used for the observation. The observations made by the sensor in
mosaic-based localization, a calibrated downward-looking cam-
era, differ from those of other dense sensors like laser range-find-
ers and those used in beacon-based localization/navigation
systems in that the features observed have low persistence in
both spatial and temporal domains. The problem typically
involves the manipulation of thousands of images for mapping
loop-rich vehicle guidepaths in factories, and demands a time-
efficient solution to be tractable.

1.2 Prior Mosaicing work
The field of image mosaicing is a relatively old one, with no
dearth of research in automated mosaicing or its applications.
Several methods have been proposed, including the solution of a
linear system derived from the collection of pair-wise registra-
tion matrices [2], or the frame-to-mosaic scheme [7]. Only more
recently have near real-time [16] and globally-consistent [15]
solutions emerged. Recently, Kang et al. [8] presented a method
using a graph representation of the topology of the swaths to rep-
resent spatial and temporal adjacencies. Although the complexity
for global registration is O(mn) in the scheme, where is n is the
number of images and m is the maximum degree of a node in the
topology graph, the quality of the resultant mosaic seems to
depend implicitly on the proximity of each frame to its final posi-
tion, and on the relatively large number of non-temporal image
overlaps with respect to the number of images to be mosaiced.

1.3 Map Building in Cyclic Environments
Considerable research has been done in the field of real-time
video mosaicing of the ocean-floor for navigation, exploration
and wreckage visualization. Gracias and Santos-Victor [12]
present several algorithms based on a projective geometry frame-
work, and using robust matching techniques for frame-to-frame
alignment. Work by Fleischer et al [5] used iterative smoother-
follower techniques to reduce errors accumulated over an image
chain, but no mention was made of the tractability of its exten-
sions to networks. In the publication by Rowe and Kelly [14]
related to construction of mosaics for our current application, an
iterative scheme was used, whereby each segment in turn was
warped to confirm to the pose and position requirements at its
endpoints, in that order.
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Lu and Milios [11] recognized the need for a simultaneous solu-
tion in their work on automated mapping with a laser range-
finder. They distinguished spatial relationships between scan
poses into those supplied by odometry and those estimated from
rigorous scan matching done when revisiting areas. They then
solved an overconstrained system of measurements to compute
the left-pseudoinverse least-squares perturbation to absolute scan
poses to enforce global consistency. The complexity of the
method was however  in the number of scans, far too pro-
hibitive for our purposes. Their scheme also had the deficiency
of using hill-climbing approximations that were very sensitive to
initial estimates of poses. Furthermore, their suggested incremen-
tal implementation essentially performed the same computation
on all poses accumulated up to the current time instant without
computational savings.
Gutmann and Konolige [6] presented what they believe to be the
first real-time autonomous mapping system producing accurate
metric maps in large cyclic environments. A local registration
step linked scans in a K-neighborhood of the last scan to generate
a locally consistent patch, Loops were closed incrementally
whenever a patch correlation scheme returned a high match score
for revisited regions, with low variance and ambiguity. While the
first step was of computational cost depending solely on K, the
latter was essentially the same  operation of Lu and Milios,
with marginal cost reductions achieved by using sparse (perhaps
band) matrix techniques.
The methodology of perturbation of absolute pose is one that is
common to most relevant literature that the authors have come
across. Linearization of observation equations, formulating the
state variable to be estimated as a concatenation of perturbations
to absolute poses, discards second order effects by definition.
These effects are appreciable for problems of the scale of our
mosaicing application, because changes in absolute poses, unlike
relative ones are large. Furthermore, they contribute to violation
of the fundamental assumption in linearization, that the Jacobian
of the observation equations evaluated at the current (initial) esti-
mate is approximately equal to the same evaluated at the true
state value.
This paper presents a technique for cost-effectively mapping
cyclic network environments from low-visibility observations,
and that enforces global consistency while preserving existing
local continuity to give usable results. The method works best in
topology where the number of loops is small with respect to the
number of observations, which in practice is commonly encoun-
tered and realistic in areas of limited visibility. 

2 Linear mosaicing
Linear mosaics are the simplest mosaics to construct. A smooth
linear mosaic can be constructed simply by sequentially register-
ing images at each overlap as it is formed, so as to minimize the
feature position residual in the mosaic as it is traversed from start
to finish. This problem is solvable in insignificant time [13][18]
because the unknowns are not coupled at all. The linear mosaic,
or segment, is hence locally smooth, as the maximum distortion
error due to incorrect pose fits is small and bounded.
In practise, a reasonably well-calibrated differential-heading
odometer provides accurate estimates of relative pose over short
distances. On the platforms used in our project, this error has
been found to reflect on distortion that is less than a pixel
between successive images. The problem of interest, however, is
that of the correction of this error on its appreciable accumulation
over large distances. 

2.1 Total residual of a linear mosaic

A slightly more difficult problem than linear mosaicing is the
problem of distorting a linear mosaic so that its endpoint is
moved a small amount in position and orientation, so as to con-
firm to some known reference. Consider the situation outlined in
Figure 1 where a linear sequence of images overlap such that
each image contains a portion of the scene in common with both
the image before and the image after it in the sequence. Let each
image be assigned a unique index i in increasing order of image
capture, with absolute pose  expressed with respect to a world
frame w.
Suppose it is necessary to move image frame  to pose  in a
manner which minimizes the total residual of the point features
at each image overlap. Let at least two point features be identi-
fied and their new locations be used to constrain the pose of
frame  relative to frame . We define overlap i to be that
between images i and i+1. Let  refer to the residual of the m-
th feature in the i-th overlap, and  refer to the Jacobian
relating the change in world coordinates of the m-th feature in the
i-th overlap, with change in the absolute pose of image i+1. Then
the linearized change in residual in each overlap feature can be
expressed as a function of the Jacobian and the change in the
absolute pose as:

For the features relating the frames  and , the residual of
each feature is given by the difference of its position and a
desired world position. Alternately the features can be thought of
as lying in an overlap with i=5. Then, the change in their residu-
als can be related as:

Concatenating the equations for all features in a given overlap
gives:

where  refers to the number of feature points in the i-th over-
lap. Writing such a set of equations for all overlaps results in a
system of the form:
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Figure 1: Linear mosaic distortion
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where  is a column vector of adjoined absolute pose changes,
and  is a column vector of adjoined changes in feature residu-
als. Let the state covariance matrix, as estimated from a suitable
model of odometry, be  for  images. Note that
the uncertainty in the absolute pose of an observation, whose ini-
tial estimate is obtained from dead-reckoning, will be dependent
on the uncertainty in estimates of the absolute poses of preceding
observations. Hence, the matrix P will be dense.
The overdetermined system of equations are solvable using the
left pseudoinverse least-squares solution:

If the pose of the first image is kept fixed to its initial value, and
that of the last image is set to be equal to its desired value, the
first and last columns of J’s in H reduce to zero and can be
removed from the matrix altogether. This leaves the H matrix to
be of size , where m is the total number of feature
points.
Memory Usage and Computational complexity
It may be observed that for a linear mosaic of  images with 
features per overlap, the H matrix has approximately

 non-zero elements. P similarly has 
elements, and these can easily become unmanageably large num-
bers. The cost of computing  is . The cost of inver-
sion of  is  and typically dictates the overall
cost of this approach.
A commonly-made simplifying assumption is that the true abso-
lute poses are independent gaussian noise-corrupted versions of
the initial estimates of absolute pose. This effectively makes the

 matrix diagonal, and subsequently the  matrix to
be inverted takes a near block-diagonal form with a half-band
width of 5. Efficient inversion techniques for matrices of this
type are well-studied, and may be used to solve the equations
with sub-cubic time complexity in . However, such an unreal-
istic error model assumption weights perturbations in absolute
pose of each observation equally, leading to inaccurate warping
of the mosaic and slower overall convergence.
A solution of this general form does not scale well to a network
of images. Overlaps between non-temporally adjacent images
introduce off-diagonal block elements in the adjoined Jacobian
matrix. These entries are crucial to the generation of a globally
consistent mosaic, but destroy the near block-diagonal structure
of the  matrix. This in turn makes the problem of mosaicing
several thousands of images computationally intensive.
The next subsection attempts to formulate the problem in a man-
ner that utilizes and preserves the continuity of temporally adja-
cent images to reduce the dimensionality of the problem, while
enforcing consistency at the end-points.

2.2 Smooth distortion of a linear mosaic
Suppose it is necessary to move image frame  to pose  in a
manner which causes minimal overall distortion to an existing
smooth linear mosaic. We now choose to associate each image i
by its pose  expressed relative to the preceding image in its
segment.
Let two features, l and m, be identified and their new locations be
used to constrain the pose of frame  relative to frame . Let

 denote the Jacobian relating the perceived change in
absolute position of feature l with change in relative pose .
This change in residual can be written as:

where  is the vector of concatenated relative poses for images
1 to 5.
The second feature point, m, can be interpreted as constraining
the orientation of frame 5. The change in orientation residual can
be expressed as:

where the terms on the right-hand side represent the
change in relative orientation between successive frames, and the
term  represents the change in relative orientation of the fea-
ture m in frame , which is zero since frame  is fixed.
The adjoined equations can be represented as:

which is of the form:

Let the state covariance matrix, as estimated from a suitable
model of odometry, be  for  images. Note that
the uncertainty in relative pose of an observation, whose initial
estimate is obtained from dead-reckoning, will be independent of
the uncertainty in estimates of the relative poses of preceding
observations. Hence, the matrix  will be block diagonal with
block size 3-by-3. The equations are underdetermined, and will
therefore be solvable by the general right pseudoinverse, or
Moore-Penrose inverse as:

The resulting value of  gives the minimum norm perturbation
to the relative poses of the images that is required to achieve the
shift of frame  to the desired end frame position of . In this
formulation, it is essential that no more features be considered in
image 5 and that the number of equations, or the number of rows
of H, be at most 3 as any more would result in overconstraining
the pose of frame , whereby the matrix H would lose row rank.
It is also noteworthy that the residual after the correction of rela-
tive poses is zero, as there is an exact solution to the underdeter-
mined system.
Memory Usage and Computational complexity
It may be observed that for a linear mosaic of  images, the size
of the H and P matrices is  elements. The cost of comput-
ing  is only , and being of size 3-by-3 can be
inverted in constant time. Resultingly the order of the whole pro-
cess is .

3 Loop-analysis
The problem of generating a consistent mosaic of a network of
internally smooth linear segments can be solved by exploiting the
topology of the network to generate end-pose constraints at the
intersections. By representing the pose of images participating in
an intersection in terms of the relative poses of all images
encountered on traversing any path from a base image to the
overlap, we can compute minimal changes in image positions for
a required affected change in end image pose. For a network, this
means solving for perturbations in relative poses, subject to con-
straints imposed by the topological relations between the obser-
vations themselves [4].
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Example 1: One-cycle topology
Consider the simple single-cycled network shown in Figure 2.
The images pairs (h,a), (b,c), (d,e) and (f,g) form four overlaps,
and each image in a pair is registered to its counterpart. This
means that the pose of one image relative to the other in each pair
is known either through manual specification or through an auto-
mated prior stage of checking and appropriately registering can-
didate pairs of images that are in sufficient proximity of each
other to constitute a potential overlap. 

Let us refer to a lockdown point as a feature that encodes both
position and orientation information. The registration of two
images to determine the pose of one with respect to the other can
be interpreted as having determined a common lockdown point
in the two images. The observed pose of the lockdown point with
respect to each of the two image frames are related by the previ-
ously determined relative pose between the two image frames.
We can thus assign each overlap with a unique virtual lockdown
point, or equivalently with an associate coordinate frame termed
the lockdown frame. Let the image pairs (h,a), (b,c), (d,e) and
(f,g) have lockdown frames L1, L2, L3 and L4 respectively.
Let us assume for now that image indices corresponding to the
letters a, b, c and d are in increasing order. As per the convention
we will adopt, every image pose is referenced with respect to its
immediate predecessor having a smaller image index. Homoge-
nous transforms represented by lower-case  refer to constant
quantities, such as relationships between images that are deter-
mined by a prior registration process, or the relationship between
a lockdown point and the image that contains it. Transforms rep-
resented by upper-case  refer to unknowns which are to be
determined, but whose initial estimates are available from odom-
etry. A subscript index refers to the frame being referenced, and a
superscript index refers to the frame with respect to which the
reference is made.
Hence the homogenous transform relating frame b to a can be
written as:

and similarly for d to c, etc.
Figure 3 shows an alternate representation of the network,
termed a lockdown graph, which has the property of having the
same number of cycles as the original network of observations.
We define a lockdown graph as a combination of a vertex set ,
and an edge set . Each vertex  is composed of a lock-

down frame  unique to each lockdown point, and a set of sub-
nodes . Each sub-node  belonging to a vertex  repre-
sents a unique “footprint” of the lockdown frame associated with

, i.e. there exists a sub-node corresponding to each image of the
overlap set that contains the lockdown point.
The lockdown graph corresponding to the example network con-
tains one cycle. By traversing the kinematic chain corresponding
to this cycle, we can represent the frame of any image with
respect to any arbitrarily chosen base frame in two distinct ways,
corresponding to the two distinct image sequence paths that can
be taken to that image starting from the image containing the
base frame. It is clear that the homogenous transform expressing
the base frame relative to itself, as observed along the cycle (a-b-
c-d-e-f-g-h-a), should equal identity.
Mathematically,

or 

where the  elements, as defined earlier, are knowns determined
from the lockdown points from the four overlaps.
Taking the derivative of the above equation with respect to all the
relative pose variables yields 3 constraining equations that com-
prise a system of the form

where  is the augmented vector of change in relative poses of
all the images in the network, and  is the pose residual
observed along the kinematic chain of the loop broken at a. This
system is underconstrained, and its solution is a constrained esti-
mate of least-norm perturbation given by the right pseudo-
inverse as

The posterior estimate is thus the normal projection of the prior
estimate onto a hyperplane approximation of the constraint sur-
face described by the loop equation.

Example 2: Two-cycle topology
Consider Figure 4 where an additional segment has been incor-
porated so as to generate an additional cycle in the topology
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graph. This cycle addition generates another equation of the form
of that in Example 1.

Let the overlaps formed by the pairs (i,j) and (k,l) contain lock-
down points with associated frames L5 and L6 respectively.
Hence the equation set consists of:

from the cycle (a-i-j-k-l-f-g-h-a), as well as the equation

as before, yielding a total of 4 constraint equations in position
and 2 in orientation. Differentiating this equation system as
before yields an underconstrained system of equations in differ-
ential relative pose that can be solved as before using the right
pseudo-inverse.
It may be argued that the topology graph contains a total of 3
cycles with sequences given by (a-i-j-k-l-f-g-h-a), (a-b-c-d-e-f-g-
h-a), and (i-b-c-d-l-k-j-i); and that equations are to be written for
all three. In fact, the equations corresponding to the kinematic
chains described by the three cycles do not form an independent
set. Mathematically, the H matrix formed by using all three equa-
tions would be rank-deficient in its rows, and hence the right
pseudoinverse would not exist. Hence, any two of the three
cycles may be chosen in forming the H matrix for the system to
be solvable. In other words, the set of cycles that may be used
must form an independent and complete cycle cover - a set that,
in graph theory, is termed a fundamental cycle basis.

4 Mosaicing Arbitrary Networks (N-cycle 
topology)

4.1 Construction of lockdown graph
Given the image location of lockdown points in each segment,
construction of the lockdown graph corresponding to the network
is simply as described below:
Start with empty graph
For each segment s

Set lastSeenImageID = lastSeenLockdownID = -1
For each image with index i,

If image does not contain a lockdown point, proceed
to next image in segment.

If there does exist a vertex with index of the current
lockdown point,

Create a new vertex with index of the current 
lockdown point.
Add a sub-node with current image number and
segment number to the list of sub-nodes of the
current vertex.

If (lastSeenImageID != -1),
Create an undirected edge to the vertex with
index = lastSeenLockdownID and with sub-node in
the current segment.

Set lastSeenImageID = i, and lastSeenLockdownID =
currentLockdownID.

4.2 Extraction of fundamental cycles
There is considerable literature on finding a fundamental cycle
basis of a given graph, given its several applications, including
solving electrical networks [1], processing of survey data and
others. Deo et al [3] have described several polynomial-time heu-
ristic algorithms for generating a set of fundamental cycles in a
graph and have analyzed their performance on the basis of mean
fundamental-cycle-set length and execution time for a number of
graphs. In our work we use a simple breadth-first-search routine,
modified along the suggestions in [3], to find a cycle basis for
graphs that are allowed to have multiple self-edges and multiple
edges between vertices.
If the edges of a lockdown graph are weighted by the number of
images constituting the part of the segment between the two
lockdown points (or more appropriately, the sub-nodes on which
the two lockdown points lie), choosing the smallest-sized cycle
basis will reduce computational cost in computing  to a
small extent. This problem of finding a cycle cover of smallest
total length for an arbitrary graph has been proven to be NP-hard
[19]. The solution to least norm perturbation is, however, not
dependent of choice of cycle basis, since the linearized equations
corresponding to any cycle basis form an independent set in the
same space of constraint equations. The extraction of the small-
est basis is therefore not crucial to the algorithm, and is not pur-
sued.

4.3 Computation of the Jacobian for pose residuals
Consider a fundamental cycle L represented by an ordered
sequence of lockdown point indices, say, .
Consider the portion of the chain between lockdown points 
and , which are adjacent in the sequence. Let both lockdown
points have a footprint on images in a common segment s, in
images  and  respectively. The expression relating the pose
of  with respect to  will then be of the form

or

depending on whether  or  respectively. Note that
the superscript in the constant  terms denotes both the segment
index s and the image number. The segment numbers have been
dropped in the super- and sub-scripts of the  terms for clarity.
We denote the former case of  as a path of forward tra-
versal, and the latter case as that of backward traversal of the
kinematic chain. We derive the Jacobian of an observation equa-
tion with respect to the term  for both cases.
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Ta
a

Ti
a

tL5

i
tj
L5 Tk

j
tL6

k
tl
L6 Tf

l
tL4

f
tg
L4 Th

g
tL1

h
te
L1⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅=

 I3 3×=

Ta
a

Tb
a

tL2

b
tc
L2 Td

c
tL3

d
te
L3 Tf

e
tL4

f
tg
L4 Th

g
tL1

h
te
L1⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅=

 I3 3×=

HHT

L1L2…LiLj…LnL1
Li

Lj

ki kj
Lj Li

tLi

s ki,
 
 

1–
Tki 1+

ki Tki 2+
ki 1+ …Tkj

kj 1–
tLj

s kj,
 
 

tLi

s ki,
 
 

1–
Tki 1–

ki Tki 2–
ki 1– …Tkj

kj 1+
tLj

s kj,
 
 

ki kj< ki kj>
t

T
ki kj<

ρi 1+
i



Page 6

Case A: Forward traversal
A kinematic expression containing  is of the form

from which we get two constraints in position as:

and 

where 

and the third constraint in orientation as

Case B: Backward traversal
A kinematic expression containing  is of the form

which can also be written as

From this, we get two constraints in position as:

 and  

where 

and the third constraint in orientation as

Concatenating the derivative terms of all the constraint equations
yields the underconstrained system of the form described earlier,
and the differential pose increment required is computed with the
right pseudoinverse.

Memory Usage and Computational complexity
The approximate size of the H matrix is  where  is
the number of fundamental loops and  is the number of
images. P is of block diagonal form and is described by  ele-
ments. Cost of computing  is  and cost of inver-
sion is . In typical networks,  and the
computational cost of the algorithm for medium to large net-
works is bounded by a comfortable .

4.4 Incorporating external information
It is possible to incorporate information available through periph-
eral measurements in the map creation process by expressing the
information as a known relationship between observations that
contain the related features. If, for instance, the observed image a
contains a feature  and observed image b contains , and that
the two features are separated by a known (perhaps surveyed)
distance, say d. We can introduce nodes for the two images, say

 and , in the lockdown graph, corresponding to their posi-
tion in the segments containing each of the two images. Any path
from  to  in the lockdown graph can be then associated
with a unique sequence of transformations that expresses one
image frame which respect to the other.
The linearized form of this expression relating the position of
frame a with respect to frame b constitutes another constraint
equation, or another row in the H matrix. Subject to the condition
that this path does not close to form a cycle, the inclusion of this
additional equation incorporates extrinsically available informa-
tion between non-temporally adjacent images, without introduc-
ing rank deficiency in matrix H. This can be used to enforce
external conformity to known landmark positions in the world
frame, or retain known spatial relationships between non-adja-
cent observations of different features.

5 Results
Figures 5-8 show results from images captured by a vehicle, sim-
ulated at 1/10th scale, moving at 0.5m/s with a differential-head-
ing odometer calibrated to 99% accuracy in wheel velocity
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Figure 5: Mosaic constructed using only odometry-based
initial pose estimates. Note the discrepancy in alignment of
the circled feature at the crossover point (lower left corner).
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measurements. In this toy problem consisting of 121 images, the
figure illustrates the indication of a systematic rightward drift by
dead-reckoning measurements. It can be observed that the result
from correction based on loop-analysis are very comparable to
that based on total-residual minimization. While the total resid-
ual is less in the latter, local smoothness is shown to be preserved
to a greater extent by our proposed method. The absolute heading
error in the final mosaic is also bounded to less than . 

Figure 9 shows the outline of a 170m long vehicle guidepath in
our indoor laboratory mapped using pose estimates only from
dead-reckoning. The guidepath was mapped with our test plat-
form using a total of 1836 images, and has 4 intersections that are
unresolved. Figure 10 shows the resulting map after loop closure
was enforced, with the overlap regions highlighted.

1°

Figure 6: Mosaic after cycle closure with loop-analysis

Figure 7: Comparison of observed and corrected trajectories
with ground truth

Figure 8: Comparison of residual in absolute heading
and position

Figure 9: Map built using only initial pose estimates from
odometry. Observe absence of cycle-closure at the two lower
right locations, including discrepancy in overlap of the
numbered features at the top left intersection.
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6 Possible Extensions and Conclusions
It is feasible to extend the work presented to an online algorithm.
Along the lines of the Local Registration Global Correlation
(LRGC) algorithm [6], images are registered within the K-neigh-
borhood of the current in constant time. On revisiting an area, the
algorithm is run using only the constraint equation corresponding
to the newly added cycle in the topology graph, using the state
covariance propagated from the last such iteration.
What we have presented is an algorithm that resolves inconsis-
tencies in mosaics of cyclic environments in  time,
where commonly the number of loops . Local continuity,
which is more crucial to the task of high-speed tracking than glo-
bal consistency, is also shown to be preserved to a significant
extent. In our work, we have generated reliable mosaics ranging
from 80m to 800m in length, in laboratory as well as real factory
environments. They have been used by our test vehicles at speeds
exceeding normal operating conditions for up to 40hr stretches
without error requiring human intervention.
The sensitivity of the mapping algorithm to false positives is cur-
rently being addressed using reliable techniques for registering
images at intersections with sub-pixel accuracy. We also use a
diagonally weighted form of the right pseudoinverse solution to
compute pose perturbation in a unit that ensures the same amount
of distortion at pixels on the boundary of an image for a given
small increment in position or orientation. Development of a
suitable uncertainty model accounting for the trajectory-depen-
dent nature of odometry error, extensions to mosaicing 2-dimen-
sional areas, and the incorporation of online auto-calibration
techniques are also being pursued.
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Figure 10: Map after loop-closure. Regions of the
final mosaic at the intersections are highlighted.
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