
 
 

 

  

Abstract— Exploring planetary surfaces typically involves 
traversing challenging and unknown terrain and acquiring in-
situ measurements at designated locations using arm-mounted 
instruments. We present field results for a new implementation 
of an autonomous capability that enables a rover to traverse and 
precisely place an arm-mounted instrument on remote targets.  
Using point-and-click mouse commands, a scientist designates 
targets in the initial imagery acquired from the rover’s mast 
cameras.  The rover then autonomously traverses the rocky 
terrain for a distance of 10 – 15 m, tracks the target(s) of interest 
during the traverse, positions itself for approaching the target, 
and then precisely places an arm-mounted instrument within 2-3 
cm from the originally designated target.  The rover proceeds to 
acquire science measurements with the instrument.  This work 
advances what has been previously developed and integrated on 
the Mars Exploration Rovers by using algorithms that are 
capable of traversing more rock-dense terrains, enabling tight 
thread-the-needle maneuvers. We integrated these algorithms on 
the newly refurbished Athena Mars research rover and fielded 
them in the JPL Mars Yard.  We conducted 43 runs with targets 
at distances ranging from 5 m to 15 m and achieved a success 
rate of 93% for placement of the instrument within 2-3 cm.     

I. INTRODUCTION 
INTEREST in planetary rovers conducting an autonomous 
traverse followed by  precise placement of arm-mounted 
instruments dates back to the first Martian rover: the 

Sojourner rover, which landed on Mars in 1997.  This 
capability enables scientists to collect measurements from 
targets that they can designate remotely. These targets would 
typically fall within 10 – 20 m from the rover, primarily 
limited by the resolution of the imagery.  The scientist would 
then triage these targets and revisit sites of high potential 
science return.   
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Operational scenarios used on the Mars Exploration Rovers 
(MER) require a total of three to four sols (Martian days) for 
each target measurement.  This autonomous capability would 
reduce this operational time to a single sol, thus increasing 
the overall science return for the mission [1].  When visiting 
multiple targets, the reduction in the number of sols would 
reach an order of magnitude. 
 To provide this capability, we developed and adapted a 
number of sensing and control algorithms and integrated 
them on the Athena research rover. For a robust 
implementation, we had to address a number of challenges 
including terrain variability, sensing limitations, lighting 
variations, and traverse challenges.  Because the rover is 
capable of traversing over small rocks, analyzing terrain 
traversability and handling the highly-variable 
wheel/rock/soil traction requires careful consideration. Figure 
1 shows a typical terrain that we used in our testing, where 
the rover would overcome rocks smaller than a wheel 
diameter.  For MER, the traversable obstacle had to be less 
than 20 cm in height, the equivalent of 80% wheel diameter. 
Only the final placement patch was chosen to be relatively 
free of obstacles to minimize rover slippage as the center-of-
mass shifts during instrument placement.  By using a rover 
prototype in the JPL Mars Yard, we tried to mimic the subtle 
conditions that would arise in an environment similar to that 
encountered on Mars.  

A. Related Work 
Motion planning and control of mobile manipulator systems 
have received significant attention over the past several 
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Figure 1: The Athena Mars Research Rover in the JPL Mars Yard 



 
 

 

decades. Even though our work shares some of the 
motivations with the general topic of mobile manipulation, 
the need for determinism coupled with the limited available 
sensing and computational resources on-board planetary 
rovers preclude the use of many sampling-based approaches 
that are commonly used in mobile manipulation.  A variety of 
field robotics applications, such as planetary exploration 
considered here, admit representations of low enough 
dimensionality that deterministic approaches can be applied 
directly. The present work can be viewed as a result in 
leveraging this property to design an efficient fielded system. 

The autonomous capabilities of planetary rovers have 
continued to increase with each rover deployment on the Red 
planet.  Back in 1997, the Sojourner rover achieved the first 
autonomous rover traverse on another planet. However, this 
autonomous capability was limited.  The hazard avoidance 
system used laser stripes with a camera system to detect rocks 
and determine contour lines [2]. By repeating this process at 
small, three-inch increments, the rover was able to build 
sparse terrain maps and avoid obstacles.  Using the above 
rock detection algorithm, engineers were able to command 
the rover to position itself in front of designated rocks.  These 
capabilities were exercised over distances of only a few 
meters.     
 In 2004, the Jet Propulsion Laboratory landed two more 
capable rovers on the opposite side of Mars.  Both Spirit and 
Opportunity enjoyed a greater level of sensing and compute 
capabilities compared to their Sojourner predecessor.  Each 
rover had a suite of stereoscopic cameras: front and rear 
camera pairs with wide field-of-view (FOV) lenses for hazard 
avoidance (“hazcams”).  Each rover also carried an 
articulated mast head with two stereo camera pairs with both 
wide and narrow FOV camera pairs (“navcams” and 
“pancams”).  These rovers were designed to traverse longer 
distances than their predecessor. To date, the Spirit and 
Opportunity rovers have logged a combined 30.5 km on the 
Martian surface [3]. A sixth of this traverse distance was 
accomplished with some level of autonomy for hazard 
detection and avoidance.  The rovers would either use active 
obstacle detection and avoidance or employ hazard detection 
only to affirm the safe traversal of a predefined rover path. 
Unlike the Sojourner rover that used laser stripes for 
generating terrain maps, the Mars Exploration Rovers 
generated three-dimensional maps using dense stereo at 
quarter resolution from their hazcams.  Then, they used 
goodness maps to assess terrain traversability.  Using their 
autonomous navigation capability, the MER rovers 
demonstrated, one time, a 6m autonomous traverse and 
precise placement [1]. While this marks another major 
milestone in autonomous capabilities for planetary rovers, the 
execution of this capability was done in a relatively benign 

environment and without any obstacles in the path of the 
rover1.   
 In addition to these developments on flight missions, active 
research in the autonomous traverse and instrument 
placement for planetary rovers was on-going at several 
institutions over the past decade.  Early work focused on 
instrument placement for single and multiple rock targets 
from a distance of 3-5 m [4].  This work was demonstrated on 
the Rocky 7 research rover [5] on fairly benign terrain and 
had a final instrument-placement precision on the order of 5-
10 cm.  Planning and execution for such tasks has been 
investigated at LAAS-CNRS [6].  Work by Pedersen et al. [7] 
demonstrated multiple-target single cycle instrument 
placement in terrains with only a few obstacles. 

B. State-of-the-Art 

To acquire measurements with the Spirit and Opportunity 
rovers at designated targets, MER scientists and operators 
spend a significant amount of time carefully planning and 
preparing a sequence of rover steps to (i) traverse and 
position the rover relative to the target (ii) verify a collision-
free path for the arm and (iii) deploy and orient the 
instrument on the target to acquire measurements.  When a 
rover is within 10 – 20 m from the designated target, it 
typically spends one or two sols navigating to a nearby 
location and positioning itself for the final approach to the 
target.  Then it approaches the target such that it is within the 
arm’s workspace with a high manipulability index [8].  After 
completing the final approach, the third sol will deploy the 
arm and acquire a measurement.  Each sol requires significant 
human oversight and control.  Were the rovers able to 
navigate to targets and take measurements autonomously—
human input only for target(s) selection—the speedup for 
taking certain kinds of measurements would increase by at 
least three fold for a single measurement and an order of 
magnitude for multiple targets in a single sol. 

C.  Challenges Addressed 
This work builds upon and extends prior work done by 
members of this team, other researchers at JPL[1][4][9], and 
researchers at Ames Research Center [7].  Our work focuses 
on advances to motion planning and terrain analysis for 
addressing the challenges of environments with denser rock 
distributions.  For instance, in very rocky environments the 
rover often needs to execute tight maneuvers with small 
clearances between rocks such as in “threading the needle” 
between multiple obstacles.  Such a capability is not available 
on the Mars Exploration Rovers: they always maintain a safe 
clearance for an in-place turn since their path planners require 
more obstacle clearance than [10].  Furthermore, we address 
situations that require the rover to traverse over small to 

 
1 Hardware limitations on the rovers have limited further utilization of this 

capability as of this writing. 
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variants of occupancy grids. Below is a brief description of 
each: 
• Edge effects: there are certain challenges that arise in 

binning algorithms that are related to the boundary 
effects of binning points and statistically analyzing bins.  
One such effect occurs when a small part of an 
untraversable obstacle spills into the rover patch being 
evaluated (see Figure 4).  The patch in Figure 4 would be 
dangerous for the rover, but determining that from plane-
fit statistics can be difficult.  In practice, the uncertainties 
in the pose estimate alleviate this problem as maps are 
merged: the grid slides around slightly as pose-
estimation varies.   

• Filtering artifacts: a plane fit approach on rover-sized 
patches reduces the effect of some obstacles: e.g. tall and 
narrow “tent pole” obstacles. The plane-fit height will 
get averaged out over the patch size and the residual 
histogram will be bimodal with lots of low-magnitude 
residuals for the flat part and some high ones 
representing the tall obstacle.  Because this histogram 
will look very close to an all flat patch, the thresholds 
must be carefully set to separate out obstacles.  Here we 
carefully tuned that threshold. 

• Merging of goodness maps: because of errors in pose 
estimation, the most recent data is generally weighed 
more heavily when merged with older data.  However, it 
is important to factor in the number of stereo points that 
are recorded in the cell at every instance.  This number of 
points is captured in the certainty (of goodness) measure 
used in our algorithm.  

To address these sensitivities, we added hysteresis to our 
goodness map calculation.  More specifically, we bound the 
rate at which the goodness measure of a cell can increase to 
5% but did not bound the rate at which it can decrease.  This 
causes the rover to be cautious about terrain that previously 
had a low traversability in recent steps but suddenly appears 
more benign.  

V. MOTION PLANNING 
While dual local and global planners have been fielded 
extensively in robot navigation, we opted for a single, multi-
resolution motion planner.  Dual planner methods are 
currently in use by the Spirit and Opportunity rovers on Mars.  
Even though such methods are computationally fast and 
perform very well in benign to medium-difficulty terrains, 
they have been noted to struggle in complex natural 
environments with very rocky terrain.  The reasons for these 
difficulties stem from the dual-nature of the planning 
component. Involving two separate planners to accomplish 
the global and local planning task requires explicit methods 
of integrating the planners and getting them to agree on 
compatible notions of costs of motions through the 

environment.  Moreover, there are often representational 
differences between the two planners, as it is typical for the 
local planner to satisfy the model of robot motion, e.g., 
differential constraints, and for the global planner to disregard 
them entirely for the sake of efficiency. These differences 
may result in conflicted behavior when the constraints of 
robot motion are most pronounced: e.g., aggressive 
maneuvering in difficult terrain.  Furthermore, local planners 
in this setting typically draw from a small set of arc motions, 
for the sake of efficiency. This simplified design operates in a 
reactive manner by picking a motion that is the best fit.  
Unfortunately, a small, limited set of possible motions is 
often a poor representation of the overall vehicle mobility.  
Furthermore, many motion planners, including those used by 
the MER rovers, utilize configuration space expansions that 
result in excessive obstacle clearance that is related to the size 
of the vehicle footprint as it were to perform a turn in place.  
While this is reasonable for robots of nearly circular shape, 
this can be restricting for robots with elongated footprints, 
especially as the terrain gets denser with obstacles. In order to 
address the above difficulties, we explored alternative 
methods of planning.  We investigated the use of a state 
lattice motion planner[10]. The planner generates motion 
trajectories with continuous curvature that maneuver through 
dense rock distributions.  This requires the rover to drive and 
steer simultaneously.  While this capability is not available in 
today’s flight rovers due to power limitations, it is available 
on the research rover prototypes.  

The planner is configured to plan aggressive paths through 
regions that would be too difficult for the current MER 
planner.  Generated rover motions are represented as cubic 
splines. It is important for the motion planner to be able to 
choose among most, if not all, feasible paths (the paths the 
rover is capable of executing).  Paths featuring continuous 

 
Figure 5: Goodness map and linear-approximation to rover path (splines 

not shown).  The path terminates at the target. 



 
 

steering have a greater expressive c
approximate a larger collection of the f
paths that are constrained to discrete steeri
of constant-curvature arcs.  A render
approximation to a path generated by the p
Figure 5.  Because the lattice planner sup
different fidelity of representation, it is 
distances and can simultaneously reason 
scales.  Thereby, we obtain the computatio
dual local-global planners, while avoiding
their different representations and separate

A.  Search space and algorithm 
Our motion planner consists of two prima
search space that represents the feasible m
and the search algorithm that evaluates 
selects the one for the rover to follow. The
is to select the motion that is optimal w
relevant measures of motion quality.  
implementation, the search algorithm wa

Figure 6: Tracking the target. Red dot: tracked 
predicted target location (pre-tracking).  Green fr

Red frame: reference 

Figure 7: Functional Diagram for the visual tar

capacity and can 
feasible paths than 
ing, e.g., consisting 
ring of a linear-
planner is shown in 
pports paths across 
scalable over long 
at local and global 
onal benefits of the 
g the challenges of 
 processes [10]. 

ary components: the 
motions of the rover 

these motions and 
e goal of the planner 
with respect to the 

In the presented 
as D* Lite[13] that 

was modified to allow gradua
described further in Section V-B
minimize path length.  The search
directed graph that consisted o
regular state samples, and (ii) ed
connecting the above state samp
dimensional state space, consis
heading. The motions were steer
the boundary value problem solve
represented as cubic polynomial 
length.  

B. Graduated Fidelity 
Because the terrain information is
on-board sensors, we use a high-f
immediate vicinity of the rover (w
a lower fidelity representation in t
known or less relevant for the 
fidelity of representation is design
while higher fidelity provides bet
traditionally, grids have been util
the notion of varying the quality
has been identified with varying 
However, the proposed motio
discretization of both the state
“resolution” is typically used in 
confusing vocabulary use, we ref
of state lattice representation as gr

In designing the connectivity
fidelities, care must be taken to
consist of motions that are feasibl
mobility model.  Robot navigation
constraints are violated.  Requirin
include feasible motions avoi
example, suppose the high fidelity
motions; then the above require
connectivity of low fidelity region
the high fidelity regions. 

VI.  VISUAL TARG

Tracking a designated target acro
be challenging for a number of r
target changes significantly as the
(Figure 6), (2) the vantage point 
change significantly due to the m
to avoid local obstacles, (3) th
change on a slow moving rove
experience significant tilt as it trav
 We have integrated the vis
designed by Kim, Nesnas et al. 
normalized cross-correlation (NCC
roll-corrected template.  NCC 
performed quite well using limite
potentially more capable but comp

 
target.  Green dot: 
ame: search window.  

rget tracker (VTT) 

 

ated fidelity planning, as 
B. The algorithm sought to 
h space was a state lattice, a 
of (i) vertices, pre-defined 
dges, pre-computed motions 
ples.  We sampled a three-
sting of 2D position and 
ring functions computed by 
er in [14]. The motions were 
curvature functions of path 

s processed from the rover’s 
fidelity representation in the 
within its sensor range), and 
the areas that are either less 
planning problem. Lower 

ned to increase search speed, 
tter quality solutions. Since, 
lized in D*-like replanning, 
y of problem representation 

the resolution of the grid. 
on planner relies on the 
e and motions. The term 
2D scenarios; so, to avoid 

fer to managing the fidelity 
raduated fidelity.   
y of regions of different 
o ensure that all fidelities 
e with respect to the robot’s 
n quality degrades if motion 
ng that all levels of fidelity 
ds such difficulties. For 
y regions consist of feasible 
ment is satisfied when the 

ns is a strict subset of that of 

GET TRACKING 
ss a 10 – 20 m traverse can 

reasons: (1) the view of the 
e rover approaches the target 
of the tracking cameras can 

motion of the rover as it tries 
he lighting conditions can 
er, and (4) the rover can 
verses rocky terrain. 
sual target tracker (VTT) 

[1]. This algorithm uses a 
C) matcher with a scale and 

was adopted because it 
ed computation compared to 
putationally more expensive 



 
 

 

algorithms such as SIFT (Scale Invariant Feature Transform).  
NCC smoothly handled the (expected) large target-pixel 
displacements between frames.  We did not use iterative 
search based on image gradients since such methods typically 
require small target displacements. 
 We run the tracker at every rover step, which is typically 
every 0.75 m.  To compensate for rover movement, the 
tracker rolls and scales the template image based on its 
odometry and inertial pose estimates. It then uses NCC within 
a search window.  Figure 7 shows a functional diagram for 
the tracker described below:   
1. Setup: after target selection (and after the cameras are 

centered on the target), we initialize a fixed-sized image 
template—21×21 pixels—centered on the target pixel.  
This template represents the target. 

2. For each tracking iteration, we predict the new 3-D 
position of the target based on (i) last known target 
location and (ii) estimated change in rover pose. 

3. We point the mast cameras at the predicted 3-D target 
location (after rover movement).  Based on the estimated 
position change and the left camera model, we compute 
(i) a magnification / shrinking factor and (ii) a roll angle 
for the target template.  The target template is then scaled 
and rolled accordingly. 

4. We then run the NCC search within a search window 
centered on the predicted 2-D image coordinates of the 
target. 

5. The algorithm replaces the old target template image 
with a new one centered on the found target pixel.   

6. The algorithm uses stereo vision to compute the 3-D 
coordinates of the target.   

We added a tracker recovery mode.  In the event of tracking 
failure, the rover (i) retracts part of the last step before loss of 
target (ii) reacquires the image and (iii) re-attempts tracking.  
The tracker can lose the target for up to two consecutive 

steps.  A third tracking failure results in the rover stopping, 
declaring a fault, and calling home for help from the operator 
to confirm the target location. 

VII.   EXPERIMENTAL RESULTS 
We adapted and integrated all these algorithms on the Athena 
rover and tested the system in the JPL Mars Yard. The 
Athena rover measures 1 m length by 0.8 m in width and 
stands 1 m off the ground.  We conducted 43 runs of the 
“traverse and precisely place instrument on target” under 
different lighting conditions (early morning, noon and 
afternoon) and terrain topographies (different rock 
distributions).  A typical, challenging terrain is shown in 
Figures 1 and 8, which had rocks and boulders varying in size 
from 7 cm to 0.5 m in radius.  Twenty eight tests were 
conducted with the target selection being 3-5m away.  Fifteen 
of the tests put the target 10 m away.  The 15 long-range tests 
all involved at least one major obstacle in the straight-line 
path to the target (see Figure 5).  The rover had a 93.33% 
success rate.  Failures were all attributed to tracking failure.  
Failures were graceful however.  For example, in a typical 
failed test run, the rover failed to track the target (despite the 
recovery mode).  The tracker declared a fault and called 
“home” for help from the operator to confirm the target 
location.  Once we reselected the target, the rover continued 
successfully.  The terrain conditions were such that the 
optimal path required the rover to incur the maximum change 
in azimuth (and therefore stress the tracker significantly).  We 
show a typical iteration of target tracking in Figure 6. 
 In several test cases, it was not apparent from the initial 
images whether or not a feasible path to the goal existed.  In 
those cases, the rover determined a feasible path’s existence 
after several move-sense iterations.  We focused our test 
cases on targets that can be approached from the visible side 
of the rock, because more complex scenarios that would 
require the rover to approach the target from behind the rock 
are very unlikely to be considered in an actual mission due to 
its higher risk. 
 The locations of (i) the predicted target pixel and (ii) the 
tracked target pixel differed on average by 22.48 pixels with a 
standard deviation of 30.4 pixels.  This average target-pixel-
prediction error can be used as a rough measurement of the 
accuracy of several of subsystems.  The predicted target pixel 
is based on (i) last rover pose (ii) predicted rover pose after 
moving (iii) accurate pointing of the cameras (to point at the 
predicted 3-D location of the target before acquiring an image 
for tracking).  Since 96% of the tracked-targets pixels were 
within 174 pixels of the predicted-target pixels, we safely 
used a tracking search window of 200 x 200 pixels.  
  The placement of rocks that were obstacles (as opposed 
to traversable rocks) was challenging enough to require the 
rover to come within 8–12 cm of significant boulders.  The 
rover did so without collision as a result of the aggressive 

 
Figure 8: Expanded view of tracking 



 
 

 

paths of the planner.  Using this path planner, we 
demonstrated that (a) we can move precisely through tough 
terrain and (b) we can compute precise paths quickly; re-
planning time took less than 1 second on all runs.  The 
rover’s movement through rocky terrain resulted in zero 
collisions over the course of the test runs. The combination of 
the terrain analyzer and path planner has resulted in 
aggressive but safe traverses.  The terrain analyzer is precise 
enough that we plan paths (i) without a configuration space 
expansion and (ii) with only a minor buffer space around 
obstacles.  The final placement accuracy was measured to be 
within 3 – 5 cm of the initially selected target.  

VIII. CONCLUSION 
In this paper, we have presented a fully autonomous “traverse 
then precisely place an instrument on target" capability for 
planetary rovers. We have successfully demonstrated this 
capability on the Athena research rover in the rocky outdoor 
terrain of the JPL Mars Yard.  To enable the rover to traverse 
rock-dense terrains, we modified the navigation system to 
handle tight rover maneuvers around rocks.  We extended the 
traversability analyzer and integrated it with the Lattice 
motion planner, which generates continuous curvature paths 
maneuvering within 8-12 cm of obstacles without collision.   

Our preliminary results showed good promise of the 
potential of this level of autonomy for future planetary 
exploration.   While we made several enhancements to the 
overall reliability, additional validation under different terrain 
and lighting conditions would still be warranted.  A more 
detailed error budget on final placement would need to be 
assessed; and the traverse of challenging terrain would need 
further validation for future insertion into flight missions.  

This level of autonomy would have significant impact on 
the science return when multiple targets could be assessed in 
a single sol.  Compared to state-of-the-art planetary 
operations, the saving could amount to an order of magnitude 
reduction in the number of sols.  However, this technology 
would need to be assessed relative to available on-board 
instruments and the time that they would need to acquire and 
process their measurements.  
 Future work would include demonstrating autonomous 
instrument placement on multiple targets on rocky and sloped 
terrains.  Several components of this capability are being 
considered for the Mars Science Laboratory mission and the 
entire system could be integrated onto the proposed joint 
NASA/ESA ExoMars mission currently planned for 2018.  
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