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Abstract 
 

This paper presents field experiments of two novel 
approaches to local and regional motion planning 
applied to planetary rover navigation.  The first 
approach solves the two-point boundary value 
problem using a model-based trajectory optimization 
technique that inverts an arbitrary dynamics model to 
generate a feasible motion plan.  The second approach 
utilizes this result to build a special discretization of 
the state space that allows employing standard search 
algorithms for solving the motion planning problem. 
These approaches enable robot autonomy by 
considering the robot’s dynamics, efficiently searching 
a finely discretized state space, and allowing the reuse 
of previous planning computation to improve runtime. 
We present results from the experiments on the Rocky 
8 and FIDO planetary rover prototypes in the 
NASA/JPL Mars Yard. 
 
1. Introduction 
 

Autonomous rover navigation is an enabling 
technology for space exploration. It offers a number of 
significant benefits: 
• lower cost and effort for mission management 
• increased scientific return 
• efficient multi-robot coordination for exploration 

or construction 
• improved motion quality when teleoperation is 

infeasible or impractical 
Experience from the recent Mars Exploration Rover 

(MER) mission shows that significant improvements in 
rover autonomy, including navigation, are necessary. 
Severe environmental hazards such as significant 
wheel slip and dense obstacle fields make autonomy 
difficult.  This makes autonomous rover navigation a 
challenging problem because the terrain can be 
arbitrary, dynamics can be challenging, perceptual 

horizons and computational resources are typically 
limited, and motion efficiency and energy expenditure 
must be considered (Figure 1).   

 

 
 
Figure 1.  Rover operating in rough terrain. 

 
In this paper we present the results of field tests 

conducted at JPL of two new motion planning 
algorithms developed at Carnegie Mellon. The 
algorithms are applied to both local and regional rover 
navigation problems. They address the above 
challenges by considering model dynamics during 
planning and by searching a considerably more 
expressive space of actions. In this paper, the term 
dynamics will refer generally to differential equations 
encoding the mapping from inputs to outputs. We used 
first order (e.g. kinematic velocity) models rather than 
second order (e.g. Newton-Euler) models. 
 
1.1. Technical Approach 
 

We are concerned with the problem of 
nonholonomic motion planning in complex 
environments. In general, this involves finding a 
trajectory between a pair of boundary states while 
satisfying a number of constraints [1].  Typically, these 
approaches take the form of a continuum optimization 
or a sequential search process.  Continuum 
optimization provides a continuum solution provided 
an initial guess is within the radius of convergence of 
the global optimum. Conversely, sequential search 



processes provide a globally optimal motion plan, but 
generate a solution only if it exists at the chosen 
resolution. 

In this paper, we describe the application of two 
motion planning algorithms: a model-based trajectory 
generator and a state lattice planner.  The model-based 
trajectory generator [2] is based on the continuum 
optimization techniques and minimizes boundary state 
constraint error by optimizing parameterized control 
inputs.  The state lattice planner [3][4] is a sequential 
search process executed on a search space that captures 
the full maneuverability of the rover at a finite 
resolution.  The state lattice planner can be used for 
regional or global motion planning in complex 
environments, due to its resistance to the effects of 
local minima.  The model-based trajectory generation 
algorithm can be applied in local motion planning, path 
following of state lattice planner solutions, and for 
generating the lattice primitives used by the state 
lattice planner. 
   
1.2. Prior Art 

 
Robot navigation in unknown environments has 

been explored extensively. Some leading approaches 
[5][6][7][8] evaluate a number of local motion 
alternatives sampled in control or input space.  While 
these approaches work well in open or simple areas, 
the limited expressiveness of these search spaces leads 
to suboptimal behavior in complex or cluttered 
environments (Figure 2).   

 

 
 
Figure 2.  Robot navigation in complex 
environments.  A typical search space is 
shown in (a), where every sampled trajectory 
intersects with an obstacle.  By searching a 
better approximation to the entire reachable 
space of the vehicle, a solution can be found 
(b). 

 
Such limitations have been addressed in other work 

by enabling the rover to evaluate several layers of 

motion alternatives in a tree-like structure. Such 
structures are evaluated by a graph search to determine 
the best trajectory, consisting of several concatenated 
path elements [9]. Our method in [3][4] further extends 
this approach by framing the path selection process as 
a problem of constrained motion planning. Thanks to 
the efficiency of our motion planner, it fits directly into 
the rover navigation framework. 

Motion planning under mobility and environmental 
constraints has received considerable attention. A 
standard motion planning method that satisfies global 
constraints is grid search [1]. Due to its efficiency, it is 
commonly applied in robot navigation [6][7]. Its 
efficiency results from its reduced dimension (2D), 
reduced outdegree (4 or 8 edges per node) and its 
network (graph) topology which permits the use of 
efficient search algorithms.  

Satisfying local (differential) constraints adds 
further complexity. Our approach takes the best 
elements from the grid search approach and extends 
them to satisfy differential (nonholonomic and 
continuity) constraints.  

 
2. Model-Based Trajectory Generation 
 

The model-based trajectory generation algorithm in 
[2] is an optimization method that minimizes boundary 
state constraint error by modifying parameterized 
control inputs (Figure 3).  The controls are 
parameterized representations in the form of low-order 
polynomial spiral or spline primitives in order to 
minimize the degrees of freedom in the system and to 
achieve smooth trajectories between boundary states.  
The correction factor for the optimization is 
determined numerically through forward or central 
differences of simulations of the motion model in 
response to perturbing parameterized freedoms.   

 



 
 
Figure 3. Trajectory optimization considering 
terrain shape.  The model-based trajectory 
generator optimizes the response to the 
control inputs to minimize the boundary 
state constraint error. 

 
This approach is highly favorable for planetary 

rover applications because of the real-time 
performance of the algorithm and the flexibility of the 
motion model.  The model dynamics included in the 
motion model can be scaled in accordance with the 
difficulty of the environment (e.g. wheel slip, sliding, 
terrain shape), computational resources available on 
the platform, and even desired motion planning cycle 
rates.  The models can also be dynamic and adjust as 
the rover progresses through its mission, in response to 
changing terrain conditions or even partial failures of 
the locomotion system as outlined below.   

 
3. Global Motion Planning in State Lattices 

 
In our global motion planning field experiments, we 

validated our approach to global motion planning, 
previously described in [3][4].  This approach, briefly 
outlined in this section, consists of two components: 
the search space (along with methods for generating it) 
and the search algorithm itself. Most of the innovation 
resides in the former, while the latter can be any 
standard search algorithm. 

 
3.1 Search Space Generation 
 

Search spaces in global search typically consist of a 
simple primitive set that satisfies some or no mobility 
constraints.  A grid is the simplest search space 

typically applied. By allowing instantaneous changes 
of direction, it does not satisfy smoothness (dynamic) 
constraints (Figure 4, top).  A more sophisticated 
approach is the use of the controls of the Dubins or 
Reeds-Shepp car, where the vehicle mobility includes 
minimum turning radius turns (Figure 4, middle).   

Our method is an improvement over this standard 
approach because it extends the set of motion 
primitives to include actions that are more 
sophisticated and expressive than those of the Dubins 
and Reeds-Shepp cars, while also enforcing 
consistency  with a differential equation to guarantee 
smoothness of velocity and curvature (Figure 4, 
bottom).  Another differentiator includes the non-
uniform discretization of state, which relaxes the 
uniformity requirement, making it possible to choose 
convenient discrete values of state [3]. 
 

 
 
Figure 4.  Search space comparisons.  Three 
search spaces and their solutions navigating 
an obstacle field are shown.  The grid-based 
solution generates a short path but 
incorporates abrupt heading changes.  The 
arc-based primitive generates a solution that 
has smooth heading but discontinuous 
curvature.  A simple lattice structure with 
curvature states and edges based on a 
dynamic trajectory generator is automatically 
feasibility everywhere.   
 



3.2 Search Algorithms 
 

The other component of our constrained motion 
planning method is a search algorithm. It finds the 
path, represented as a sequence of motion primitives, 
that leads the rover to the goal, while minimizing the 
desired measure of cost (time or distance of travel, 
energy expenditure, etc.).  In general, any search 
algorithm can be applied to search the state lattice for a 
solution.  In order to support efficient replanning, we 
utilize the D* Lite search algorithm.  We apply the 
algorithm without any modifications, since the state 
lattice is a directed graph, similar to other applications 
of this algorithm. Our planner derives its advantages 
from the greater expressiveness and inherent feasibility 
of the state lattice. 

One important implementation detail is the method 
for computing the cost of motions in the state lattice 
efficiently.  In order to estimate this cost, it is 
necessary to simulate the behavior of the vehicle, 
subjected to the corresponding control in the 
environment. In mobile robotics applications, the cost 
of traversing the terrain is often represented via a 2D 
cost map. Then, the cost estimation can be achieved by 
summing the costs of the map cells covered by the 
robot’s swath as it moves. Since the search space 
consists of known motion primitives, their swaths can 
be pre-computed. Hence, instead of the costly vehicle 
simulation, edge cost computation can be reduced to 
accumulating the cost over a pre-computed set of map 
cells. Figure 5 illustrates a simulated rover that 
navigates in a previously unknown environment using 
the presented approach. As the rover travels, it re-plans 
its path (blue) according to new obstacle information 
that comes within the extent of its perception (green 
circle). 

 

 
 
Figure 5.  Simulation experiment in efficient 
replanning with a limited perceptual horizon 
using D* Lite. Note that the (always feasible) 
path adapts to the newly discovered 
knowledge about the environment. A turn-in-
place and a multi-point maneuver were 
generated by the planner automatically. 
 
4. Field Experiments  
 

In this section, we follow the dual exposition above, 
where we first describe the results of our approach to 
the trajectory generation and follow with the results of 
the state lattice motion planner. 
 
4.1. Model-Based Trajectory Generation Field 
Experiments and Results 

 
The set of field experiments concerning the model-

based trajectory generator were conducted with Rocky 
8, the JPL planetary rover prototype previously 
appearing in Figure 1.  Two significant results are 
presented in this section, including impaired mobility 
compensation and motion planning considering the all-
wheel steering maneuverability in Sections 4.1.1 and 
4.1.2 respectively. 
 
4.1.1 Impaired Mobility Compensation 
 

As previously mentioned, the ability to compensate 
predictively for model dynamics is important for 
robust motion planning in complex environments.  We 
must understand the feasibility and costs associated 
with an action before we choose to execute it.  This 
becomes more important when the mobility system 



operates in a suboptimal or unexpected manner.  We 
sought to demonstrate that the effects of an impaired 
drive wheel, as seen in the MER mission, could be 
compensated for predictively using the trajectory 
generator’s motion model.  Figure 6 illustrates the 
effect of a rover attempting to place itself in front of a 
target of scientific interest.  In this situation, the back 
left wheel has been disabled, causing the vehicle to 
drag the wheel and pull the vehicle to the left during its 
execution of the motion.  If a model of these effects 
were included in the motion model of the trajectory 
generator, the trajectory optimization would generate 
an action that would drive the vehicle harder to the 
right to compensate for the dragging of the impaired 
wheel. 
 

 
 
Figure 6.  Model-based trajectory generation 
with impaired mobility models.  A simple 
instrument placement task with a broken 
drive wheel (back left) is shown.  (a) shows 
the result of not compensating for these 
actions whereas (b) shows the result of 
allowing the trajectory generator to optimize 
the input to meet the terminal boundary state 
constraints with knowledge of the impaired 
mobility system.   

 
We were able to demonstrate this effect on Rocky 8 

by manually disabling the back right wheel’s drive 
motor on the platform for a simple instrument 
placement task (Figure 7).  With the drive motor 
disabled, the rover drags this wheel, digging a trench 
and causing the vehicle to pull to the right.  The result 
of executing the original action with the impaired 
mobility system is the vehicle positioned behind and to 
the right of the target terminal state.  Just as in Figure 
6, by incorporating a model of the effects of the 
impaired wheel, we can automatically generate a 
corrective action that drives the vehicle harder to the 
left to reach the target terminal state.  This experiment 
did not use a path following controller (feedback) in 
order to demonstrate the capacity of feed forward to 
eliminate this model error disturbance before it occurs. 

A complete implementation would also use feedback 
to remove any remaining uncompensated error. 
 

 
 
Figure 7.  Field experiments of impaired 
mobility recovery.  A simple instrument 
placement task (a) is attempted with the right 
rear drive motor disabled (b).  The dragging 
wheel causes the vehicle to pull to the right 
(c).  By including a model of these effects, a 
corrective action that drives the vehicle 
harder to the left (as in Figure 6) is generated 
and executed (d).   
 

This result demonstrates the value of the flexibility 
of the trajectory generator’s motion model and it is a 
good example of how this algorithm can enable more 
robust robot autonomy.  For the application of 
planetary exploration, it is difficult if not impossible to 
repair damaged mobility systems.  It will become 
necessary for mobile robots to understand the 
potentially changing capabilities of its mobility 
systems for missions with greater autonomy. 
 
4.1.2 All-Wheel Steering Motion Planning 
 

The ability to generate trajectories that can exploit 
the all-wheel steering maneuverability of the platform 
can lead to efficient, safe navigation in complex 
environments and to multiple target instrument 
placement maneuvers.  For example, consider the 
situation in Figure 8 where the rover must navigate to a 
target in an obstacle field.  If the robot can exploit the 
all-wheel steering maneuverability, it can generate 
more optimal (shorter, fewer reversals) trajectories [2].  
The corresponding field experiment in Figure 8 can be 
found in Figure 9. 
 



 
 
Figure 8.  Single target instrument placement 
in cluttered environments.  The all-wheel 
steering maneuverability can be exploited to 
generate safer and lower-cost trajectories.  
The all-wheel steering maneuver (a) reaches 
its target state by driving to and leaving with 
a direction 90° from the forward axis of the 
vehicle.  The corner-steering maneuver 
comes much closer to the obstacles and 
must back up to leave the target. 

 

 
 
Figure 9.  Exploitation of the all-wheel steering 
maneuverability for efficient path generation.   
 

Another important example is that of the multiple 
target instrument placement problem.  If a scientist is 
interested in acquiring several samples in a small and 
confined space, it is appropriate to optimize the entire 
path that includes all boundary state pairs (Figure 10).  
In this example, it is much more effective to rely 
simply on the all-wheel steering maneuverability than 
to execute a longer action with forward and backward 
sections.  Figure 11 exhibits the ability to generate 
trajectories that can exploit the all-wheel steering 
maneuverability of the platform on actual hardware.   
 

 
 
Figure 10.  Multiple target instrument 
placement with all-wheel steering 
maneuverability.  The two motion plans 
above demonstrate the efficiency gain by 
exploiting the all-wheel steering 
maneuverability (a) and not (b).   

 

 
 
Figure 11.  Exploitation of the all-wheel 
steering maneuverability for efficient path 
generation.   
 

While the all-wheel steering maneuverability does 
not apply to the MER-type robots (they are limited to 
corner-steering mobility), other research platforms, 
including Rocky 8, FIDO, and the Athlete rover 
prototypes, exhibit this capability.   
 
4.2. State Lattice Motion Planner Field 
Experiments and Results 

 
In our experiments, the motion planner was capable 

of guiding the vehicle to a specified goal, while 
repeatedly and frequently re-planning, thanks to D*, to 
take into account the perception information acquired 
during execution of the plan. When coupled with 
several related components, the planner performed in 
the capacity of a complete rover navigation system. 
Additional components included:  
• stereo perception for obtaining a 3D map of the 

environment,  



• a terrain analyzer for computing traversability cost 
of the terrain, derived from Morphin [8],  

• rover motion control, state estimation, telemetry 
and visualization provided by CLARAty. 

The resulting system performed well and was 
capable of running all of the above modules plus our 
planner on-board, autonomously, and continuously, i.e. 
while interleaving planning and execution so that the 
rover did not stop moving for re-planning. This 
suggests that the proposed planner offers runtime that 
is acceptable for rover hardware and compares well 
with state of the art solutions.  

Several implementation specific details are 
described below, followed by field results. The motion 
planner was implemented on the FIDO rover at the 
JPL Mars Yard. FIDO was equipped with a 1.6GHz 
Pentium M CPU and 512MB RAM on a PC104 stack, 
running VxWorks. Similar to Rocky 8, the rover 
features six independently steerable wheels. A pair of 
navigation cameras in the rover’s mast was used for 
stereo perception, utilized for terrain analysis. The 
rover’s motion control was performed in software in a 
centralized fashion by the main CPU (which certainly 
affected processor availability). 

Several parameters that were used by the planner 
are specified in the Table 1. Branching factor refers to 
the number of edges that emanate from the lattice 
nodes. The particular state lattice used included four 
dimensions: translational coordinates (x and y), 
heading and curvature. The set of motion primitives 
that resulted from these choices of discretization is 
shown in Figure 12. 

 
Table 1.  Parameters utilized by the state 

lattice motion planner. 

Branching Factor 45 – 60 
(heading dependent) 

Translational (x, y) 
Discretization 

20cm cell size, uniform 
(square cells) 

Heading Discretization 16 values, non-uniform: {0, 
atan2(1, 2), 45°, etc} 

Min. Turning Radius 0.5m (FIDO platform) 

Curvature Discretization 9 values, uniform 

 

 
 

Figure 12.  State Lattice Control Set Designed 
for Rocky 8 / FIDO Mobile Robot Platform. 
 

Figure 13 illustrates re-planning as performed by 
the motion planner during navigation. Figure 13-A is a 
view of the planner cost map and a solution path early 
in the traversal, before some high-cost areas became 
visible to the perception system. Note that the planner 
was configured to operate in optimistic mode, 
following typical D* practice, where unknown areas 
were assumed to be traversable until determined 
otherwise. Figure 13-B is a view of the same 
experiment later in the traversal, where the path was 
visibly modified by the planner due to the newly 
discovered obstacles. Average runtime of the planner 
in the experiment featured above was 1.3 seconds. An 
illustration of the FIDO rover during our field 
experiments with the global planner is shown in Figure 
14. The dotted line in the figure is the feasible, 
continuous-curvature path that the planner computed 
and the rover executed. 

 

 
 
Figure 13.  Sample of field experiments with 
the state lattice motion planner.  A) shows 
an initial plan, and B) demonstrates re-
planning due to new perception information. 
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