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Abstract

We consider computational aspects of alternating move
games, repeated games in which players take actions at
alternating time steps rather than playing simultane-
ously. We show that alternating move games are more
tractable than simultaneous move games: we give an
FPTAS for computing an ε-approximate equilibrium of
an alternating move game with any number of players.
In contrast, it is known that for k ≥ 3 players, there
is no FPTAS for computing Nash equilibria of simul-
taneous move repeated games unless P = PPAD. We
also consider equilibria in memoryless strategies, which
are guaranteed to exist in two player games. We show
that for the special case of k = 2 players, all but a neg-
ligible fraction of games admit an equilibrium in pure
memoryless strategies that can be found in polynomial
time. Moreover, we give a PTAS to compute an ε-
approximate equilibrium in pure memoryless strategies
in any 2 player game that admits an exact equilibrium
in pure memoryless strategies.

1 Introduction

Consider a pair of gas stations situated across the street
from each other, competing for customers: each has
the benefit of observing the price set by the other,
and can update its own price at any time. Such
a scenario can be modeled as an infinitely repeated
game in which players alternate making moves, rather
than playing simultaneously. Although the game is
now one of perfect information, equilibrium behavior
is still not obvious: Despite the fact that myopically
undercutting the opponent’s price is a best response
in the short term, because the game of selling gas
is repeated indefinitely, the gas stations may wish to
instead try and optimize long term revenue and avoid

setting off a price war. Such scenarios motivate the
study of equilibria in alternating move games. In fact,
in the absence of a synchronizing mechanism, many
repeated games are better modeled with alternating
moves than with simultaneous moves. For example,
ad-word auctions are repeated auction games in which
players may (directly or indirectly) observe the actions
of their opponents, and then update their bids at any
time. When Yahoo used a first price auction, price
cycling behavior was observed, indicating that players
were iteratively changing their actions with knowledge
of their opponent’s bids [11]. As we shall show, our
model captures asynchrony in games more generally: it
is strategically equivalent to random-move models.

In this paper, we study (infinitely) repeated k-
player n-action games.1. Each player i has a utility
function over actions ui, and the players take turns
playing actions, producing a sequence of action vectors
a1, . . . , at where at′ = (a1

i , . . . , a
k
1). Player i only

changes his action on time steps congruent to imod k.
At every time t, every player player i receives utility
ui(at). Players wish to maximize their own limit average
payoff as t →∞.

The main conceptual result of this work is the exis-
tence of an FPTAS for computing simple ε-approximate
equilibria in any alternating move game. This provides a
formal separation between the alternating move model
and the simultaneous move model, showing that find-
ing approximate equilibria in alternating move games
is strictly easier than in simultaneous move repeated
games: it is known that there does not exist an FPTAS
for computing approximate equilibria in simultaneous
move games with k ≥ 3 players unless P = PPAD

1In section 5 we consider the special case of games with k = 2
players



[5]. This result is technically simple: we show that
the folk theorem yields efficiently constructable approx-
imate equilibria in the alternating move model, unlike
in the simultaneous move model.

We then also consider the special case of 2-player
games. In this case, we show that the alternating
move model is equivalent to more general random-move
models of asynchrony. Although the strategy space
in a repeated game can in principle be a complicated
function of the entire history of game play, these games
are guaranteed to have a particularly simple set of
equilibrium strategies in which each player plays a
stationary strategy : a unit-memory strategy that only
depends on the most recent action of his opponent. We
note that the large literature on best-response dynamics
in games (see e.g. [14, 2, 22]) can be seen as studying a
particular (possibly) non-equilibrium pair of stationary
strategies in alternating move games. Here, we consider
the problem of finding pairs of stationary strategies that
are at equilibrium.

Even the set of pure stationary strategy strate-
gies for each player is extremely large: in an n × n
bi-matrix game, each player has nn possible pure sta-
tionary strategies. Hence, infinitely repeated alternat-
ing move games can alternatively be viewed as con-
cisely represented simultaneous move games. This gives
some pause, since even when a pure strategy Nash equi-
librium is guaranteed to exist, computing even an α-
approximate pure Nash equilibrium in concisely rep-
resented games is PLS-complete, for any computable
α [23].The problem of finding equilibria in stationary
strategies is less difficult, however: we give a PTAS
for computing pure stationary strategies that constitute
an ε-approximate pure equilibrium in any alternating
move game that admits a pure equilibrium in station-
ary strategies. We further show that all but a negligible
fraction of alternating move games admit pure exact
equilibria in stationary strategies which can be found in
polynomial time.

1.1 Related Work

1.1.1 The Complexity of Simultaneous Move
Games It is standard in game theory to study the Nash
equilibria of simultaneous move games. Unfortunately,
the complexity results in this area have been almost
uniformly negative. A series of papers has shown that
it is PPAD complete to compute Nash equilibria, even in
2 player games, even when payoffs are restricted to lie in
{0, 1} [9, 8, 1]. It was recently shown that this hardness
carries over to the repeated setting, even though the
prevalence of equilibria in repeated games guaranteed
by the “Folk Theorem” might suggest otherwise: it is

PPAD hard to compute equilibria (even approximate
ε-equilibria for sufficiently small ε) for repeated games
with n ≥ 3 players [5]. There has also been a body of
work studying approximate equilibria, giving algorithms
which achieve reasonably large constant approximations
(see, e.g. [10, 24, 6, 7]). No PTAS is known, and no
FPTAS exists unless P = PPAD.

Barany et al. considered two player games with
randomly chosen payoff matrices, and showed that with
high probability, such games have Nash equilibria with
small support [3]. Their result implies that in random
2x2 games, Nash equilibria can be computed in expected
polynomial time. We show a result that is similar in
spirit: random 2 player alternating-move games admit
stationary equilibria in pure strategies that can be
found in polynomial time, except with negligibly small
probability.

A notable structural result of Lipton, Markakis,
and Mehta shows that there always exist ε-approximate
equilibria with support over at most O(log n/ε2) strate-
gies: this gives a subexponential-time algorithm for
computing ε-approximate equilibria [20]. This result is
similar in spirit to our own structural result: we show
that any game that admits an equilibrium in pure sta-
tionary strategies admits an ε-approximate equilibria in
pure stationary strategies which leads into a cycle of ac-
tions of length at most O(1/ε). Together with a reduc-
tion to a pair of zero sum games, this gives us a PTAS
for computing ε-approximate equilibria for alternating
move games.

1.1.2 Two Player Zero Sum Games Two player
alternating move bi-matrix games can be viewed as
being played on a complete bipartite graph, in which
player 1’s action set A is identified with the vertex set
on the right and player 2’s action set B is identified with
the vertex set on the left. Players take turns moving a
piece between vertices: whenever the piece is moved
from vertex a to b, player 1 receives payoff u1(a, b)
and player 2 receives payoff u2(a, b). In a different
context, under the name cyclic games, the special case
of zero-sum games was considered in a more general
model by Ehrenfeucht and Mycielski (on a bipartite
graph that need not be complete) [12]. They show
that zero-sum alternating move games have a value,
and that they always have equilibria in pure stationary
strategies, but give no algorithm for computing these
strategies. Gurvich et al. [18] independently consider
another variant of this zero-sum model (vertices are
divided into two classes, but the graph need not be
bipartite), under the name mean-payoff games, and
also show the existence of a value and pure stationary
strategies, using a general fixed-point theorem of Moulin



about stochastic games [21]. They give an exponential
time algorithm for computing these equilibria. Despite
several mistaken claims of polynomial time algorithms
for computing exact equilibria in the zero-sum case (See
[25] for discussion), the best known results are due to
Zwick and Patterson, who give a pseudo-polynomial
time algorithm for computing pure-stationary equilibria
in Gurvich et al.’s model, and Björklund and Vorobyov,
who give a strongly subexponential time algorithm[25,
4]. The problem of computing exact equilibria even for
the special case of zero-sum games remains open. An
FPTAS for computing approximate equilibria in two-
player zero sum games follows easily from [25], which we
use as a key subroutine in our algorithms, but as far as
we are aware, neither approximate equilibria nor general
sum games have been considered in this literature.

1.1.3 Best Response Dynamics There is a large
literature on best-response dynamics in games (see,
e.g. [14, 2, 22]). Best response dynamics represent
a particular pair of stationary strategies that can be
played in alternating move bi-matrix games, but are
usually not at equilibrium. It is often assumed that
players will play according to best-response dynamics,
and from this assumption, its convergence and social
welfare properties are investigated. In this paper, we
consider finding pairs of stationary strategies that are
at equilibrium. It should be noted that best response
dynamics do sometimes constitute an equilibrium2. It
is an interesting question (one not considered in this
paper) to study in which classes of games best response
dynamics actually form an equilibrium in this model.

1.1.4 Other Work Fabrikant and Papadimitriou re-
cently introduced the notion of unit recall equilibria,
which are equilibria of the usual simultaneous-move re-
peated game when players are restricted to playing pure
stationary strategies [13]. They show that not all games
admit unit recall equilibria, but that random games ad-
mit unit recall equilibria with probability approaching 1.
They conjecture that the problem of finding unit-recall
equilibria when they exist is in P, but give no general
algorithm either for exact computation or for approxi-
mation. Their model is the simultaneous move analogue
of ours, but the equilibrium structure is quite different:
for example, they show that the 2 × 2 zero sum game
“matching pennies” has no unit recall equilibrium. In
contrast, all zero sum games, and all 2× 2 general sum
games have equilibria in pure stationary strategies in

2For example, in the alternating move version of “Rock, Paper,

Scissors” the best response dynamic that always responds with
“Paper” to Rock, “Scissors” to Paper, and “Rock” to Scissors

form an equilibrium

our model. We take inspiration from their probabilistic
result to show a similar result in our model: random
n × n alternating move games have equilibria in pure
stationary strategies except with negligible probability.

2 Model and Preliminaries

We consider finite k-player n-action games. Such games
have finite action sets Ai for each player i ∈ [k]. The
game also has k utility functions ui : A1 × . . . × Ak →
[−1, 1] for each player i. Note that any finite game can
be rescaled so that utilities are bounded in [−1, 1]. Play
proceeds for an infinite number of periods t = 1, 2, . . .,
in which players take turns choosing actions, without
loss of generality in the order 1, 2, . . . , k. The game G
is formally specified by G = ({Ai}, {ui}).

Play proceeds in periods t = 0, 1, 2, 3 . . .. On
periods t = imod k, player i chooses an action ai

t ∈ Ai.
For convenience, we say that ai

t = ai
t′ for t 6= imod k,

where t′ is the most recent timestep t′ = imod k that
player i selected an action. We write at = (a1

t , . . . , a
k
t )

for the vector of actions at time t. The limit-average
payoff for player i is

lim
T→∞

1
T

T∑
t=1

ui(at)

when this limit exists, otherwise it is undetermined.
The history at period t is Ht = (a0, a1, a2, . . . , at−1),

the sequence of actions played so far. Denote the set of
finite histories by H = ((A1×. . .×Ak))∗ A pure strategy
for player i is a function si : H → Ai. A mixed strategy
for player i is σi : H → ∆(Ai), where ∆(S) denotes
the set of probability distributions over any finite set S.
A pure strategy profile is s = (s1, s2, . . . , sk), a mixed
profile is σ = (σ1, σ2, . . . , σk). As is standard, we use
σ−i to denote the set of strategies for all players other
than i.

The expected average payoff until period T for player
i in profile σ is the expected payoff over the choices of
aj

t drawn from σj(Ht) for t ≤ T , t = j mod k:

Pi,T (σ) = Eat←σ

[
1
T

T∑
i=1

ui(at)

]
.

The expected average payoff for player i is defined to
be Pi(σ) = limT→∞ Pi,T (σ), when this limit exists,
otherwise it is undetermined. A pure strategy is a
special case of a mixed strategy and we extend the
domain of Pi to pure strategies, as well. We are
interested in pairs of strategies that form equilibria.

Definition 2.1. For any ε ≥ 0, a set of mixed strate-
gies σ = (σ1, σ2, . . . , σk) constitute an ε-equilibrium if



no player i can unilaterally deviate to some other strat-
egy σ′i so as to gain more than ε in the long run: for
each i ∈ [k] and any mixed strategy σ′i,

lim sup Pi,T (σ′i, σ−i)− Pi,T (σ) ≤ ε.

A Nash equilibrium is a 0-equilbrium.

Note that strategies at Nash equilibrium do not neces-
sarily have to have a pair of well-defined limit average
payoffs.

In sections 3 and 5, we will discuss the special case
of stationary strategies in 2 player games. In a two
player game, we will denote the action spaces of players
1 and 2 as A and B respectively. A stationary (mixed)
strategy π1 : B → ∆(A) for player 1 is a function
only of the most recent action of player B. With a
slight abuse of notation, we view π1 as a pure strategy
where π1

(
a0, b1, . . . , bt) = π1(bt) for any t = 1, 3, . . .,

and similarly for player 2. For player 1, this must be
specified together with an initial action a0 in order to
determine a strategy in the game. Moreover, a standard
result from the literature on stochastic games can be
adapted to show that there always exists an equilibrium
in stationary strategies, and that it is independent of the
initial action. This theorem is proven using Kakutani’s
fixed point theorem and is nonconstructive:

Theorem 2.1. (See e.g. [18, 21]) For every game
G = (A,B, u1, u2), there exists a0 ∈ A and a pair
of mixed stationary strategies π1 : B → ∆(A) and
π2 : A → ∆(B) such that (a, π1), π2 constitutes an equi-
librium.

Remark 2.1. Note that (a, π1, π2) constitute an equi-
librium in the full strategy space, not just in the space
of stationary strategies: even though both players are us-
ing stationary strategies, neither can improve even with
a more complicated strategy.

Note that a pair of deterministic (pure) station-
ary strategies and a starting point (a, π1, π2) will even-
tually lead into a cycle of actions C(a, π1, π2) =
(a1, b2, . . . , ak, bk) of length k ≤ 2n. In this case,
Pi(a, π1, π2) is simply equal to the average payoff to
player i on this cycle.

The main result of this paper is an FPTAS to
compute ε-approximate equilibria in any alternating
move game, even for k ≥ 3 players. These simple
equilibria are in the spirit of the folk theorem, and are
not stationary. We also give a PTAS for computing ε-
approximate equilibria in pure stationary strategies in
any game that admits an equilibrium in pure stationary
strategies. This accounts for almost all alternating
move games: we prove that a random game will admit
an equilibrium in pure stationary strategies except with
negligible probability.

2.1 Random Move Model for Two Player
Games A possible alternative model of non-
simultaneous game play involves choosing a player
at random to move at each time step. If we suppose,
for simplicity, that A and B are disjoint, then a history
is specified by an arbitrary sequence in (A ∪ B)∗.
Again, a strategy for either player consists of a function
from histories to actions. A stationary strategy πi

is now implemented only when play changes – if a
player moves more than once in a row in the random
order game then the player does not change her play.
However, in order to specify a stationary strategy for
player 2, we also need to specify b0, the action player
2 would play if she is chosen first. Again the goal is
to maximize average payoff ui(at, bt), over t = 1, 2, . . ..
Since the definitions are quite similar to those given in
the previous section, we don’t formally define what an
equilibrium is in this model.

The random-move model is strategically equivalent
to the alternating move model. This robustness makes
the alternating move model a particularly compelling
model of asynchrony in games:

Theorem 2.2. For any equilibrium in stationary
strategies (a0, π1), π2 of an alternating move game G =
(A,B, u1, u2), there exists some b0 ∈ B such that
(a0, π1), (b0, π2) is an equilibrium of the random-order
game G, with the same expected payoff.

Proof Sketch:
It is easy to see that the expected payoffs are the same.

The equilibrium (a0, π1, π2) leads to a unique cycle
of actions. Take any b0 on that cycle. The claim is
that (a0, π1) and (b0, π2) are mutual best responses.
Suppose not. There are two cases, either player 1
can improve or player 2 can improve. First, say that
strategy σ2 : (A∪B)∗ → ∆(B) is better against (a0, π1)
than (b0, π2). There are two subcases. Either σ2 is
better when player 1 starts or when player 2 starts. Let
us first consider when player 1 starts.

From σ2, we construct a strategy in the alternating
move game, call it σ′2. This strategy works by sim-
ulation. Player 2 writes down on a piece of paper a
simulated play of (a0, π1) against σ2 in the random or-
der move game. Her sequence of plays in the alternat-
ing move game is then chosen to be the subsequence
of plays she makes just before play switches to player
1, in the simulation. For example, if the random move
simulation were β0, α1, α2, β2, β3, α4, β5, α6, . . ., her se-
quence of plays in the alternating move game would be
b1 = β0, b3 = β3, b5 = β5, . . .. Compare the following
two pairs of random variables. Let (X, Y ) be the pay-
offs on the first t plays of the alternating move game,
however we start counting either at t = 1 or t = 2 at



random. Let (X ′, Y ′) be the total payoffs on the pretend
sequence during the first t′ rounds, where t′ is chosen so
that the number of times control switches (the chosen
player switches) is t. It is not difficult to see that in the
case where player 1 starts in the random move model,
E[t′] = 2t, E[X ′] = 2E[X] and E[Y ′] = 2E[Y ].

Since E[t′] concentrates for sufficiently large t, this
implies that σ′2 is better against (a0, π1) than π2 is,
hence a contradiction.

Finally, it is well-known that any strategy that
works using additional state can be simulated without
state (by each period resampling the state freshly,
conditional on the observed play).

The remaining cases for the theorem are entirely
similar.

3 Two Player Zero Sum Games

Zero sum games represent the special case when u1 =
−u2. Hence we will refer simply to a single utility func-
tion u(a, b), and a maximization player (who wishes to
maximize the limit average payoff), and a minimiza-
tion player (who wishes to minimize the limit average
payoff). Without loss of generality, player 1 is the max-
imization player. Two player zero sum games can be
reduced to mean payoff games, the class of games stud-
ied by the majority of the literature on alternating move
games (see, e.g. [12, 18, 25, 4]). It is known that mean
payoff games have a value, and that they always admit
equilibria in pure stationary strategies. Moreover, it is
known how to compute these strategies in time poly-
nomial in the number of actions, but only pseudopoly-
nomial in the utility function [25], and also in subexpo-
nential time (even with large utility) [4]. In this section,
we review the results that will be needed for our main
result.

A mean payoff game is defined by a directed graph
G = (V = {V1∪V2}, E) and an edge weighting function
w : E → {−W,−W + 1, . . . ,W − 1,W}, for integer
W . Players take turns choosing edges e1, e2, . . . along
a path: whenever play is at a vertex v ∈ V1, the
maximization player chooses the next edge. Whenever
play is at a vertex v ∈ V2, the minimization player
chooses the next edge. The maximization player wishes
to maximize the quantity limt→∞ sup

∑t
i=1 w(ei)/t, and

the minimization player wishes to minimize the quantity
limt→∞ inf

∑t
i=1 w(ei)/t.

Fact 3.1. (e.g. [12, 18]) Mean payoff games have a
value v(a) for every vertex a ∈ V1 and b ∈ V2: There
exists a pure stationary strategy π1 such that starting
at vertex a, player 1 can guarantee payoff at least v(a),
and there exists a pure stationary strategy π2 such that
starting at vertex b, player 2 can guarantee payoff at

most v(b). (a, π1, π2) constitutes an equilibrium of the
game for any starting point a.

Theorem 3.1. (Zwick and Patterson 96[25])
There exists an algorithm to compute the values of the
game and pairs of equilibrium strategies (π1, π2) in time
Õ(|V |4 · |E| ·W ).

We observe that (rational-valued) two player zero-sum
alternating move games can be easily reduced to mean
payoff games:

Fact 3.2. Given a two player zero-sum alternating
move game G = (A,B, u(·, ·)), the mean payoff game
defined by V = A ∪B, edge set E = {(a → b), (b → a) :
a ∈ A, b ∈ B}, and the weighting function that results
from rescaling u from [−1, 1] to have integer values has
the same set of equilibrium strategies as G. Since we
construct a complete bipartite graph, every state has the
same value.

Observation 3.1. There exists an FPTAS for comput-
ing pure ε-approximate stationary strategy equilibria in
zero sum games.

Proof. Given a game G = (A,B, u), we can discretize
u : A×B → [−1, 1] to take values that are multiples of
ε. This only changes the payoff of any pair of strategies
by at most ε,and the reduction from G to a mean-payoff
game now yields W ≤ 1/ε. Zwick and Patterson’s
algorithm then yields ε-approximate equilibria in time
Õ(n6/ε).

4 Alternating Move Games and the Folk
Theorem

In this section, we prove our main result: a separa-
tion between the complexity of computing approximate
equilibria of simultaneous move games, and of alternat-
ing move games. We give an FPTAS for computing
ε-equilibria of alternating move games, for an arbitrary
number of players. No FPTAS exists for computing
equilibria of repeated games with k ≥ 3 players in the
simultaneous move model unless P = PPAD [5].

We show that in any k player alternating move
game, we can find ε-approximate (non-stationary) pure
equilibria in time polynomial in the input size (nk) and
1/ε using the “Folk Theorem”. The equilibria that we
construct are not stationary, but will nevertheless be
simple and easy to implement: Each player i will play
according to a stationary “safety strategy” σi, which
will guarantee that he obtains utility at least vi, his
value of a residual zero-sum mean-payoff game, in which
all other players are adversarial. If any player i deviates
from σi, all other players j switch to playing according



to πj
i , a “punishment” strategy for player i which will

guarantee that player i cannot obtain utility greater
than vi. Thus, at any given time, every player is playing
according to a stationary strategy, and requires only
an additional log k bits of memory to keep track of
which, if any, player has deviated. This will constitute
an equilibrium in the spirit of the folk theorem: every
player will continue to play a simple stationary strategy,
for fear of punishment that will force a lower utility.

Theorem 4.1. There is an FPTAS for computing pure
equilibria in any k player n action alternating move
game.

Before we describe the algorithm, we define some conve-
nient notation. LetAi = Ai+1×. . .×Ak×A1×. . .×Ai−1

be the cross product of all action sets of players other
than i. This will represent the domain of a ‘history’ of
the last k − 1 actions taken when it is time for player
i to move. We will construct a series of mean-payoff
games with the maximization player representing player
i, with vertex set V1 = Ai, and the minimization player
representing a combination of all other players, with
vertex set V2 =

⋃
j 6=iAj . The edge set in these games

will represent legal game trajectories: there will be an
edge e from a vertex (ai+1, . . . , ak, a1, . . . , ai−1) ∈ Ai

to vertex (a′i+2, . . . , a
′
k, a′1, . . . , a

′
i) ∈ Ai+1

if and only if (a2, . . . , ai−1, ai+2, . . . , ak) =
(a′2, . . . , a

′
i−1, a

′
i+2, . . . , a

′
k). The weight of edge e

will be w(e) = u1(a1, . . . , ak).
Given a strategy π2 for the minimization player,

denote π
Aj

2 to be the restriction of π2 to the vertex
set Aj . Call the mean payoff game constructed in this
manner Gi.

Algorithm 1 An FPTAS for finding ε-approximate
equilibria in any alternating move game.
FindApproximateEquilibria(ε,G):

for i = 1 to k do
Construct game Gi. Solve Gi to accuracy ε/2
using the FPTAS for mean-payoff games. Denote
the maximization player’s strategy π1, and the
minimization player’s strategy π2.
Let σi = π1 and let πi

j = π
Aj

2 .
end for

Let fi =
{

πj
i , If player j has deviated from fj ;

σi, If no player j has deviated from fj .
return ({fi}k

i=1)

Proof. First note that the input matrix is of size nk,
which is the parameter we wish to be polynomial with

respect to. Our algorithm runs in time poly(nk, 1/ε).
To see this, note that our algorithm solves k mean-
payoff games to accuracy ε/2, each with vertex size
|V | = k · nk−1 and edge size |E| = knk. By observation
3.1 and theorem 3.1, this takes time O(k6n5k−4/ε). It
remains to show that strategies {fi}k

i=1 constitute an ε-
approximate equilibrium. By fact 3.1, each game Gi has
a value vi such that if player i plays according to σ∗i ,
he can guarantee himself payoff at least vi (independent
of starting action). Since the game Gi is the reduction
from G to a mean-payoff game with edge costs equivalent
to player i’s utility, if player i plays in G according to
σi, he achieves payoff at least vi − ε/2, since σi is is an
ε/2 approximation to the optimal strategy for player i.
Similarly, any deviation from σi for player i will result
in all other players j switching to playing according
to their punishment strategies πi

j . When all players
play according to πi

j , they are playing consistently
with the punishment strategy π2 computed for Gi,
by construction. Since this is an ε/2 approximation,
when all other players are playing as such, no strategy
of player i can achieve better utility than vi + ε/2.
Therefore, for each player i, no deviation from fi can
achieve more than an ε gain in utility, which completes
the proof.

5 Stationary Equilibria in Two Player Games

In this section, we consider the special case of 2-
player games and the problem of finding equilibria in
stationary strategies. We give a PTAS for computing
pairs of stationary strategies that form approximate
equilibria. The result will follow from a structural
lemma, and a reduction to the FPTAS for two player
zero-sum games. First, we show that any game that
admits a pure-strategy stationary strategy equilibrium
admits a pure-strategy stationary strategy ε-equilibrium
(a, π1, π2) that traverses a cycle C = C(a, π1, π2) of
actions of length at most O(1/ε). We then show that
given the cycle C traversed by some ε-equilibrium, we
can complete a pair of strategies (π′1, π

′
2) consistent with

that cycle: C = C ′(a′, π′1, π
′
2), such that (a′, π′1, π

′
2) is

also an ε-equilibrium. We do this by considering two
residual zero-sum games: in game i, player i wishes to
minimize the payoff to player −i, but is restricted to
playing a strategy π′i that is consistent with cycle C. If
C is part of some ε-equilibrium, then the values of these
two residual games must be within ε of the values to
each player (respectively) of playing along C: otherwise,
some player would have a strategy that guaranteed an
ε-improvement in payoff. Therefore, given such a cycle,
we can complete a pair of equilibrium strategies by
solving the residual zero sum games. We now prove
the main result of this section:



Theorem 5.1. There is a PTAS to compute ε approx-
imate pure stationary strategy equilibria in games that
admit a pure stationary strategy equilibrium.

The algorithm follows. First we define some convenient
notation: Given a cycle C = (a0, b1, a2, . . . , ak−1, bk),
say that edge (a2i → b2i+1) ∈ C if (a2i, b2i+1) are
consecutive actions in C. Similarly, (b2i−1, a2i) ∈ C
if (b2i−1, a2i) are consecutive actions in C (this includes
(bk → a0)). We abuse notation and write the utility of
a cycle to player i as ui(C), to denote its average value
to player i:

ui(C) ≡ 1
k + 1

(ui(a0, b1) + ui(a2, b1)+

ui(a2, b3) + . . . + ui(ak−1, bk) + ui(a0, bk))

We will also refer to intervals I =
(a0, b1, a2, . . . , ak−1, bk) which are sequences of ac-
tions that are not closed into a cycle (bk → a0) 6∈ I.
Similarly, we may write ui(I):

ui(I) ≡ 1
k

(ui(a0, b1) + ui(a2, b1)+

ui(a2, b3) + . . . + ui(ak−1, bk))

Our algorithm will create and approximately solve pairs
of zero-sum (mean-payoff) games that correspond to
game G. The vertex sets of both of these games
correspond to the action sets of G: V = (A ∪ B). The
edge set corresponding to the unrestricted action set of
player 1 is E1 = {(b → a) : a ∈ A, b ∈ B}. Similarly,
the unrestricted action set of player 2 is represented by
E2 = {(a → b) : a ∈ A, b ∈ B}. We will also want to
restrict players to playing strategies that are consistent
with particular cycles C: A strategy πi is consistent
with C if there is some π−i such that for some a ∈ C,
C = C(a, πi, π−i). The C-restricted action sets of the
players are represented by edge sets:

EC
1 = {(b → a) : (b, a) ∈ C} ∪ {(b → a) : ∀a ∈ A, (a, b) 6∈ C}

EC
2 = {(a → b) : (a, b) ∈ C} ∪ {(a → b) : ∀b ∈ B, (a, b) 6∈ C}
GC

1 will be the mean payoff game in which player
1 wishes to maximize his utility with an unrestricted
action set, and player 2 wishes to minimize player 1’s
utility while being restricted to playing consistently
with C: GC

1 is the mean payoff game (V,E1 ∪ Ec
2, u1).

Similarly, GC
2 is the mean payoff game in which player 2

wishes to maximize his utility and is unrestricted, and
player 1 is the minimization player with a restricted
action set: GC

2 is the mean payoff game (V,EC
1 ∪

E2,−u2).

Lemma 5.1. Fixing a stationary strategy of one player,
we can compute a best response for the other player in
polynomial time.

Proof. This has been observed before (see e.g. [25, 13]).
The best response stationary strategy will be one that
traverses the maximum average weight cycle of the
bipartite action graph, fixing one player’s edge choices.
We can find this in polynomial time using an algorithm
of Karp [19]. Since when we fix the strategy of one
player, the best-response problem for the other player
is the solution to an MDP, the best response stationary
strategy will be a best response.

We are now ready to present the PTAS.

Algorithm 2 A PTAS for computing ε-approximate
stationary strategy equilibria in two player games.
FindApproximateEquilibrium(ε,G =
(A,B, u1, u2)):

for all action cycles C of length at most 12/ε do
Construct mean payoff games GC

1 and GC
2 .

Compute the ε/2-approximate value v1(a) in G1

and let π2 be the corresponding stationary strategy
for player 2, for some action a traversed by C.
Compute the ε/2-approximate value v2(a) of ver-
tex a in G2 and let π1 be the corresponding station-
ary strategy for player 1.
Compute best responses for player 1 to π2 and
for player 2 to π1, and let v∗1 and v∗2 be the
corresponding utilities.
if v∗1 ≤ u1(C) + ε and v∗2 ≤ u2(C) + ε then

return (a, π1, π2)
end if

end for
return G has no equilibrium in pure stationary
strategies.

Note that our algorithm clearly runs in time poly-
nomial in nO(1/ε): It examines at most n12/ε cycles, and
for each, solves a pair of mean payoff games to accuracy
ε/2 which takes time O(n6/ε). The proof of correctness
begins with our main structural lemma:

Lemma 5.2. Any game that admits a pure strategy
equilibrium admits an ε-equilibrium on a cycle of length
6/ε.

Proof. Consider some pure stationary strategy equilib-
rium (a, π1, π2) that leads into the play cycle C =
C(a, π1, π2) = (a0, b1, a2, b3, . . . , aL−2, bL−1). If L ≤
6/ε, we are done. Therefore, we may assume that
L ≥ 6/ε. Say that the payoff of (a, π1, π2) to player
1 is v1, and the payoff to player 2 is v2: v1 = u1(C),
v2 = u2(C). We will consider intervals of C of length
L1 = 3/ε completed to form cycles of length L1 +1. For
r ∈ [0, L− 1], define the interval:

I(r) = (ar, br+1 mod L, ar+2 mod L, br+3 mod L,



. . . , ar+L1−1 mod L, br+L1 mod L)

to be the subinterval of C of length L1 beginning at ar.
Let I ′(r) = C−I(r) be the remaining interval of C, and
let C2(r) be the cycle that is formed by ”closing” I(r)
(by the single action deviation of player 1 that swaps a
single edge in C from (br+L1 mod L → ar+L1+1 mod L) to
e∗(r) ≡ (br+L1 mod L → ar)). Call the strategy resulting
from this single-edge deviation by player 1 π′1(r). Say
that I ′(r) has length L2 so that L1 +L2 = L. Note that
if player 1 unilaterally makes this edge-deviation, he
achieves payoff u1(C2(r)), and we have the inequalities:

v1 ≥ u1(C2(r)) ≥ u1(I(r)) ·
(

L1

L1 + 1

)
where the first inequality follows from the fact that
(π1, π2) is an equilibrium, and the second follows since
edge e∗ constitutes only a 1/(L1 + 1) fraction of cycle
C2(r). We recall that the average value to player 1 of
cycle C is the weighted average of the value to player 1
of interval I(r) and interval I ′(r). With this fact and
the inequality above, we obtain:

v1 =
L1u1(I(r)) + L2u1(I ′(r))

L

≤ L1v1(1 + 1/L1) + L2u1(I ′(r))
L

=
v1(1 + L− L2) + L2u1(I ′(r))

L

Solving for u1(I ′(r)) we find:

u1(I ′(r)) ≥ (1− 1
L2

)v1

since all utilities are in the range [−1, 1]. Similarly, since
player 1 can equally well deviate to play along a cycle
consisting of I ′(r) and two additional edges, and player
2 can make a symmetric deviation, we can go through
the same derivations to obtain:

u1(I(r)) ≥ (1− 2
L1

)v1(5.1)

u2(I(r)) ≥ (1− 1
L1

)v2(5.2)

So, u1(C2(r)) ≥ v2 · (1 − 2/L1)(L1)/(L1 + 1) = v2 ·
(L1 − 2)/(L1 + 1). Therefore, for any r, π′1(r) is a
3/(L1 + 1) < ε best response to π2 for L1 = 3/ε. It
remains to show that there exists some r so that π2 is
also an ε-best response to π′1(r).

We consider r selected from [0, L − 1] uniformly
at random. By the linearity of expectation, we have
that Er[u2(I ′(r))] = v2 since I ′(r) is a randomly
selected interval of C. Note that player 2 can at

any time deviate from (π1, π2) by playing along edge
e′(r) = (ar → br+L1 mod L) (e∗ in reverse) to yield
cycle I ′(r) ∪ {e′(r)}. Since (π1, π2) is an equilibrium,
it must be that Er[u2(e′(r))] ≤ v2, since otherwise cycle
I ′(r)∪{e′(r)} would be a beneficial deviation for player
2 in expectation, a contradiction.

Let π′2(r) be a best response to π′1(r) that leads into
a single cycle D(r) (player 2 always has a best response
that leads into a single cycle). Let v∗2 = Er[u2(D(r))].
If v∗2 ≤ u2(C2(r)) + ε, then there must exist some r
such that u2(D(r)) ≤ u2(C2(r)) + ε: that is, that π2

is an ε-best response to π′1(r). Otherwise, we have
v∗2 > u2(C2(r)) + ε ≥ v2. The last inequality follows
from equation 5.2, which gives us:

u2(C2(r)) ≥ u2(I(r))
L1

L1 + 1
≥

v2
L− 1
L + 1

≥ (1− ε)v2 ≥ v2 − ε

We have two cases to consider: In the first case,
there exists an r such that D(r) does not contain
edge e′(r). In this case, (a, π1, π

′
2(r)) also yields cycle

D(r) (since π1 and π′1(r) are identical except for edge
e′(r)). Since (a, π1, π2) is an equilibrium, in this
cases, u2(D(r)) ≤ v2, and so (a, π′1(r), π

′
2(r)) is an ε-

equilibrium. Therefore we can restrict our attention
to the second case: for each r, D(r) contains edge
e′(r). Recall that Er[u2(e′(r))] ≤ v2, and so it must be
that Er[u2(D − {e′(r)})] > v2. Now consider the path
D′(r) = D(r)−{e′(r)}∪ I ′(r). Since Er[u2(I ′(r))] = v2

we have Er[u2(D′(r))] > v2, and in particular, this must
hold for some fixed r. But since D′(r) does not include
edge e′(r), player 2 has some deviation f∗2 from the
original equilibrium (a, π1, π2) such that (a, π1, f

∗
2 ) leads

to path D′(r). But this is a contradicts the fact that
(a, π1, π2) is an equilibrium3. This completes the proof.

Proof. [Proof of Theorem] By our structural lemma,
if G admits an equilibrium in pure stationary strate-
gies, the algorithm will consider some cycle C∗ that
is part of an ε/2 approximate equilibrium in pure sta-
tionary strategies. It remains to show that the re-
sulting strategies and starting action a (a, π1, π2) that
result from approximately solving the residual zero-
sum mean payoff games G1,G2 form an ε/2-approximate
equilibrium. By assumption, there exists some pair
of ε/2-equilibrium strategies (π∗1 , π∗2) such that C∗ =
C(a′, π∗1 , π∗2) = C(a, π∗1 , π∗2) (Since C traverses action a).
That is, for all π′1, π

′
2, P1(a, π′1, π

∗
2) ≤ u1(C∗)+ ε/2, and

3Note that D′(r) is not necessarily a cycle (it may repeat some
edges), and f∗

2 is not necessarily a stationary strategy. However,

the equilibrium condition holds in the space of all strategies, not
just stationary strategies.



P2(a, π∗1 , π′2) ≤ u2(C∗) + ε2. Since π∗1 and π∗2 both are
consistent with cycle C∗, they represent possible strate-
gies in the residual mean-payoff games G2 and G1 re-
spectively. Therefore, by the definition of value, we have
that the values of G1 and G2 satisfy v1(a) ≤ u1(C)+ε/2,
and v2(a) ≤ u2(C) + ε/2. Since we compute ε/ approx-
imations to v1(a) and v2(a), v∗1 and v∗2 respectively, we
have that v1(a) ≤ u1(C)+ε, and v2(a) ≤ u2(C)+ε. We
therefore have that no player has an ε-improving devi-
ation from C∗ = (a, π1, π2), and so (a, π1, π2) define an
ε-approximate equilibrium by definition.

5.1 The Existence of Pure Stationary Strategy
Equilibria We have given a PTAS to compute approx-
imate equilibria in pure stationary strategies in games
that admit equilibria in pure stationary strategies. How
common are such games? It has long been known that
all zero-sum games admit equilibria in pure stationary
strategies. Moreover, in general sum games, Gurvich
showed that for every integer k, all 2 × k games admit
equilibria in pure stationary strategies [17]. We include
a new simple proof for the 2× 2 case in appendix A, for
intuition. Unfortunately, in subsequent work, Gurvich
exhibited a 3 × 3 game that only admits equilibria in
mixed stationary strategies [16]. Fortunately, pure sta-
tionary strategy equilibria are common. We show that
a random n × n matrix game admits pure stationary
strategy equilibria except with negligible probability.

Theorem 5.2. An n × n bi-matrix game with payoffs
chosen independently and uniformly at random from
the unit interval [0, 1] admits an equilibrium in pure
stationary strategies with probability at least 1 − 1/nc

for any constant c.

Proof. We show that with high probability over a ran-
dom game G = (A,B, u1 ∈r [0, 1]n

2
, u2 ∈r [0, 1]n

2
),

there exists a simple length-1 cycle consisting of a pair
of actions c∗ = (a∗, b∗) that has utility for each player
higher than the value of the residual zero-sum game
outside of c∗. In particular, there exists a simple equi-
librium if two events occur:

1. There exists an a∗ ∈ A and b∗ ∈ B such that
u1(a∗, b∗) ≥ 1 − log(n)/4n and u2(a∗, b∗) ≥ 1 −
log(n)/4n.

2. There exists an aP ∈ A and bP ∈ B such that for
all a ∈ A, u1(a, bP ) ≤ 1 − log(n)/2n and for all
b ∈ B, u2(aP , b) ≤ 1− log(n)/2n.

If both events occur, then the following strategies
together with the starting point (a∗, b∗) constitute an
equilibrium:

π1(b) =
{

a∗, b = b∗;
aP , otherwise. π2(a) =

{
b∗, a = a∗;
bP , otherwise.

To see this, note that if neither player deviates, then
he achieves payoff at least 1 − log(n)/4n because of
event 1. Consider the deviations available to player
1: he can either deviate to play into another length
1 cycle (a′, bP ) for some a′ and achieve payoff at most
1−log(n)/2n < 1−log(n)/4n (by condition 2), or he can
deviate to play into some length 4 cycle (a∗, b∗, a′, bP ),
and achieve payoff at most: (1+1+(1−log(n)/2n)+(1−
log(n)/2n))/4 ≤ 1− log(n)/4n. The analysis for player
2 is identical, and so neither player has any beneficial
deviations given conditions 1 and 2. We now bound the
probability of both events occurring:

First, we consider the probability of event 1, Ev1.
Let G(a, b) be the indicator random variable denoting
the event that action pair (a, b) ∈ A × B satisfies the
conditions of event 1. We therefore have E[G(a, b)] =
log2(n)/(16n2). Note that each of the n2 variables
G(a, b) are independent. We therefore have:

Pr[Ev1] ≤
(

1− log2(n)
16n2

)n2

≤

exp
(
− log2(n)

16

)
=

1
nlog n/16

Next, we consider the probability of event 2, Ev2.
Let R(a) be the indicator random variable denoting the
event that a ∈ A satisfies the condition on aP of event
2, i.e., R(a) is the event that for every b ∈ B we have
u2(a, b) ≤ 1−log(n)/2n. Let C(b) denote the event that
b ∈ B satisfies the conditions on bP . For all a ∈ A and
b ∈ B,

E[R(a)] = E[C(b)] = (1− log(n)
2n

)n

≥ 1
e ·
√

2

log(n)/2

>
1√
n

Therefore, E[
∑

a∈A R(a)] = E[
∑

b∈B C(b)] >
√

n, and
so by a pair of Chernoff bounds and a union bound:

Pr[Ev1] ≤ Pr[
∑
a∈A

R(a) = 0]+Pr[
∑
b∈B

C(b) = 0] ≤ 2e−
√

n/2

Since both events occur except with negligible probabil-
ity, the theorem follows from a union bound.

Remark 5.1. In contrast, the probability of there ex-
isting a pure strategy simultaneous move equilibrium in
a random game tends to 1 − 1/e as n tends to infinity
[15]. Moreover, we believe that the above theorem ac-
tually substantially underestimates the probability of a
random game admitting a pure equilibrium in station-
ary strategies. In searching for counterexamples to the



conjecture that all games admit such equilibria, we gen-
erated 500,000 random 3x3 games and 100,000 random
4x4 games and found that all of them had pure equilibria
in stationary strategies.

We note that in the proof of theorem 5.2, we
actually show that a randomly generated n×n bimatrix
game admits a particularly simple stationary strategy
equilibrium except with negligible probability: one that
is parameterized by only 4 actions. An equilibrium of
this type can be found efficiently simply by considering
all combinations of 4 actions, and checking whether they
can be used to form a pair of equilibrium strategies of
this type. We therefore get the following corollary:

Corollary 5.1. A pure stationary strategy equilib-
rium can be found in polynomial time, given an n × n
bi-matrix game with payoffs chosen independently and
uniformly at random from the unit interval [0, 1] except
with probability at most 1/nc for any constant c.

6 Discussion

Not all repeated interactions are best modeled as syn-
chronized, simultaneous move repeated games. When
agents take actions without a synchronizing mechanism
and with knowledge of the past (as they do in models in
which best response dynamics are studied), their inter-
action might be better modeled as an alternating move
repeated game.

In this paper, we have shown that the problem of
computing ε-approximate Nash equilibria in the alter-
nating move model is strictly easier than in the simul-
taneous move model, because there exists an FPTAS to
find equilibria in the spirit of the folk theorem, even for
k ≥ 3 players. Is the problem of computing exact equi-
libria easier? We note that even in the two-player zero-
sum case (in which exact equilibria can be computed in
the simultaneous move model via linear programming),
we do not know of a polynomial time algorithm to com-
pute exact equilibria in the alternating move model.

We also propose stationary strategy equilibria as a
compelling solution concept for two-player general sum
alternating move games. Unlike in simultaneous move
games, in which pure strategy Nash equilibria fail to
exist with constant probability even in randomly gen-
erated games, pure stationary strategy equilibria exist
and can be found in polynomial time in randomly gen-
erated two player games, except with negligible proba-
bility. We note that best response dynamics constitute
a specific, easy to compute set of stationary strategies.
In what classes of games are they at equilibrium? We
suggest that the alternating move game model provides
a nice framework in which to ask this question.
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111, 1976.

[22] T. Roughgarden. Intrinsic Robustness of the Price
of Anarchy. In Proceedings of the 40th annual ACM
symposium on Theory of computing. ACM New York,
NY, USA, 2009.
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A Pure Stationary Strategy Equilibria

In this section, we write down games in matrix form.
Given a matrix A, if A(a, b) = (x, y) this denotes that
u1(a, b) = x and u2(a, b) = y.

Theorem A.1. All general sum games with |A| =
|B| = 2 have an equilibrium in pure stationary strate-

gies.

Proof. Consider a generic two person matrix game G:

L R
U (a,b) (c,d)
D (e,f) (g,h)

We first observe that if G has a pure strategy (simulta-
neous move) Nash equilibrium, then it also has a pure
strategy alternating move stationary strategy equilib-
rium: without loss of generality, assume that (U,L) is
a pure strategy Nash equilibrium: then the constant
function strategies π1 ≡ U , π2 ≡ L constitute an equi-
librium of the alternating move game: they induce the
cycle (U,L), and any deviation by the first (row) player
either induces the same cycle, or cycle (D,L). Simi-
larly, the second player can only deviate to induce cycle
(U,R). However, by the assumption that (U,L) is a
Nash equilibrium of the simultaneous move game, nei-
ther of these deviations yield improvements. Therefore,
we may assume that G has no pure strategy Nash equi-
libria in the simultaneous move game, since otherwise
we are done. So, without loss of generality, we have the
following inequalities on the values in the payoff matrix:

e > a h > f c > g b > d

Consider the pair of strategies that induces the cycle
(D,R,U, L) for which player 1 receives utility (a + e +
g + c)/4 and player 2 receives utility (b + f + h + d)/4:
π1(L) = D,π1(R) = U, π2(U) = L, π2(D) = R.
If neither player has a beneficial deviation, we are
done. Otherwise, assume player 1 has some beneficial
deviation. Player 1 can deviate to either cycle (U,L)
or (D,R). Without loss of generality, assume that
the unique improving cycle is (U,L) (recall that it
cannot be that both (U,L) and (D,R) improve over
(D,R,U, L) by the inequalities above). In this case,
the pair of strategies π1(L) = U, π1(R) = U, π2(U) =
L, π2(D) = R which leads into cycle (U,L) giving player
1 utility a and player 2 utility b is a stationary strategy
equilibrium. This is because player 1 can only deviate to
cycle (D,R, U, L) or cycle (D,R), both of which are not
improvements, and player 2 can only deviate to cycle
(U,R), but since b > d, this is not an improvement for
player 2.

Unfortunately, there exists a 3x3 game that has
no equilibrium in pure stationary strategies. Gurvich
showed that the following game has no pure stationary
strategy equilibria for ε sufficiently small [16]

b1 b2 b3

a1 (0,1) (0,0) (1,0)
a2 (ε,0) (0,1) (0,0)
a3 (0,1− ε) (ε,0) (0,1)


