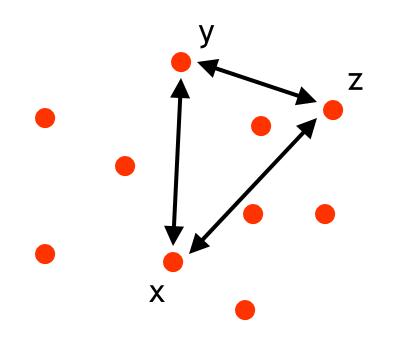
Metric Techniques and Approximation Algorithms

Anupam Gupta Carnegie Mellon University Metric space M = (V, d)

set \vee of points

distances d(x,y)

triangle inequality $d(x,y) \le d(x,z) + d(z,y)$



why metric spaces?

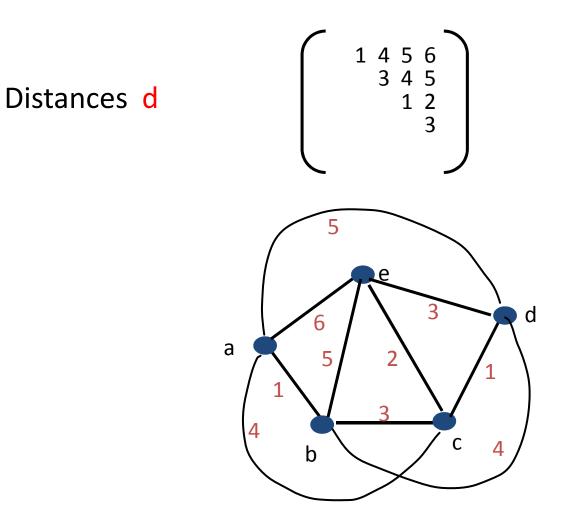
Metric spaces are inputs to problems

TSP round trip delays between machines distances between strings

but also,

Metric spaces are useful abstractions for various problems and interesting mathematical objects in their own right

Metrics



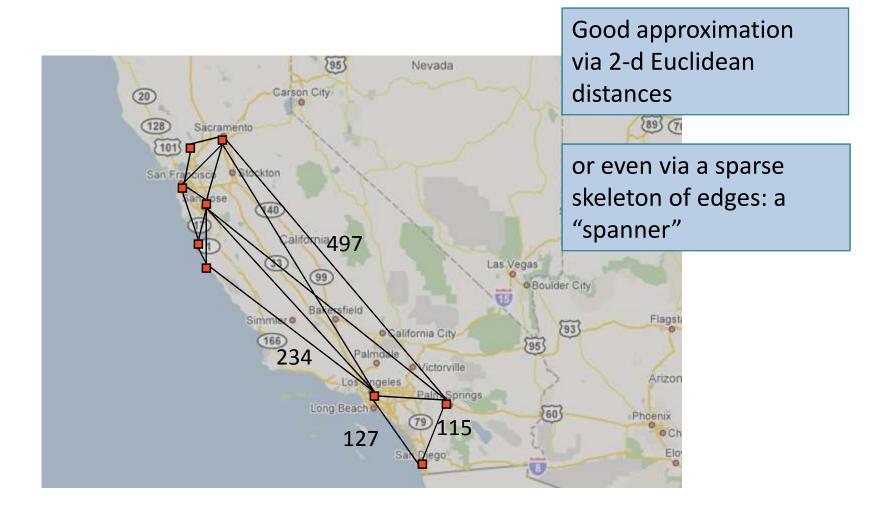
Choose your representation

	А	В	С	D	E	F	G	н	I
А	-	234	94	244	331	282	208	348	170
В	234	-	327	404	115	388	387	127	347
С	94	327	-	151	436	188	114	450	69
D	244	404	151	-	513	58	46	527	85
E	331	115	436	513	-	497	493	137	454
F	282	388	188	58	497	-	90	509	126
G	208	387	114	46	493	90	-	514	44
н	348	127	450	527	137	509	514	-	468
I	170	347	69	85	454	126	44	468	-

Choose your representation

	H.C.	LA	Mntr	Napa	PS	Sac	SF	SD	SJ
Hearst Castle	-	234	94	244	331	282	208	348	170
LA	234	-	327	404	115	388	387	127	347
Monterey	94	327	-	151	436	188	114	450	69
Napa	244	404	151	-	513	58	46	527	85
Palm Springs	331	115	436	513	-	497	493	137	454
Sacramento	282	388	188	58	497	-	90	509	126
San Francisco	208	387	114	46	493	90	-	514	44
San Diego	348	127	450	527	137	509	514	-	468
San Jose	170	347	69	85	454	126	44	468	-

Choose your representation



Representations

- Just a distance matrix
- Shortest-path metric of a (*simple*) graph
- Points in \mathbb{R}^k with the ℓ_p metric
- low-dimensional geometric representations

Tree metric

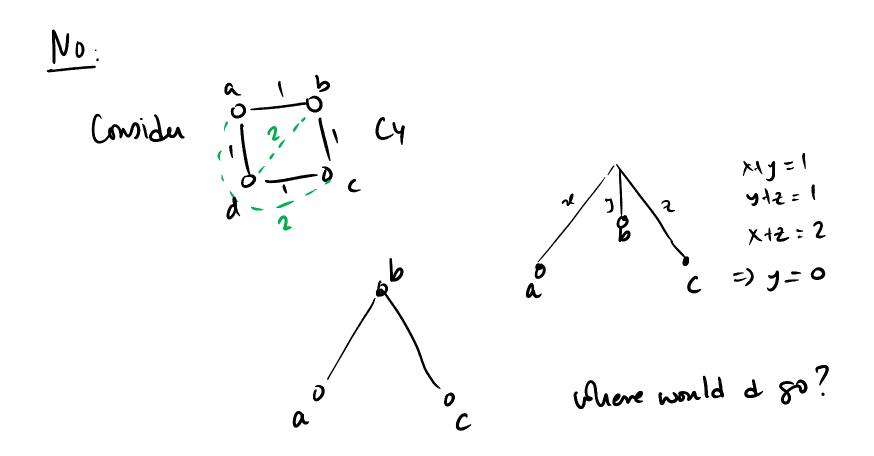
Tree metric

A metric M = (V,d) is a *tree metric* if there exists a tree T = ($V \cup X$, E) (with edge-lengths)

such that

$$d = d_T \mid_{V \times V}$$

Is every metric a tree metric?



... "close" to a tree metric?

What is "closeness" between metric spaces? $M_{z}(V,d) \qquad M' = (V',d')$ $f: V \rightarrow V'$ $contraction(f) = max \qquad \frac{d(x,y)}{d'(f(x),f(y))}$ $e \times pausim(f) = max \qquad \frac{d'(f(x),f(y))}{d(x,y)}$

distortion (f) = un traction (f) × expression (f)

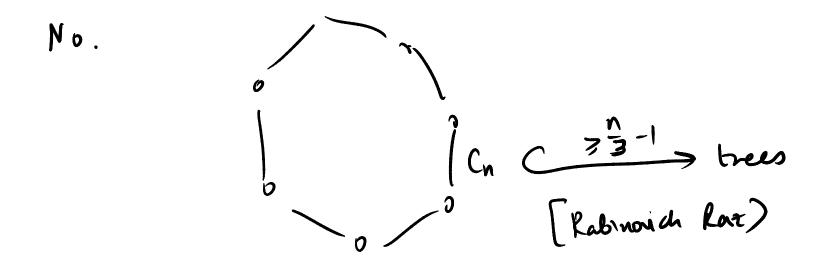
Properties of distortion

- invariant under scaling

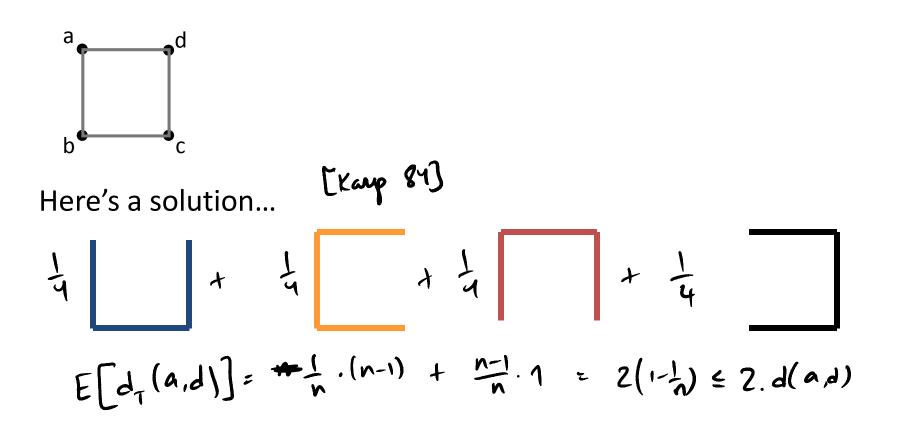
- Notation: $f: M \rightarrow M'$ has distortion D we write $M \subset D \rightarrow M'$

... close to a tree metric?

So, does every metric admit a low-distortion embedding into a tree metric?



what do we do now?



"dominating trees"

Given a metric M = (V,d) let Υ = { tree T | d_T ≥ d }

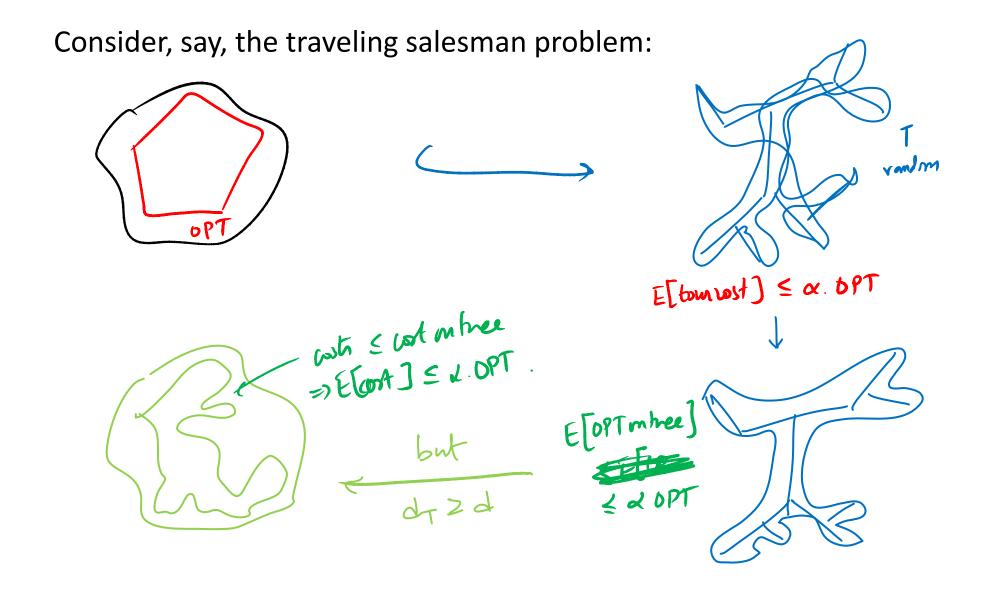
distances in T "dominate" distances in d

random tree embeddings

Given
$$M = (v, d)$$

want a probability distribution \mathcal{D} over $T(M)$
 $(\exists \sum_{T} \mathcal{D}(T) = I)$
 $st \quad tf(x, y) \in V \times V$
 $E_{T \in \mathcal{O}} \left[d_{T}(x, y) \right] \leq \alpha \cdot d(x, y).$

why are these useful?



quick recap of goals

Given a metric M = (V,d)find a distribution \Im over trees such that

1. $d(x,y) \le d_T(x,y)$ for all trees in \mathcal{Q}

2. $E_T[d_T(x,y)] \leq \alpha \times d(x,y)$

first results

[Alon Karp Peleg West '94]

$$\int (b_{3}n b_{3}b_{3}n)$$

[Bartal '96, '98]
 $O(b_{3}n)$
 $O(b_{3}n)$
 $O(b_{3}n)$

current world record

[Fakcharoenphol Rao Talwar '03]

O(hojn)

best possible

 $\Omega(\log n)$ lower bound for

- square grid
- hypercube
- diamond graphs

Time for some proofs...

useful notation

Given a metric M = (V, d)

• Diameter(S) for $S \subseteq V$

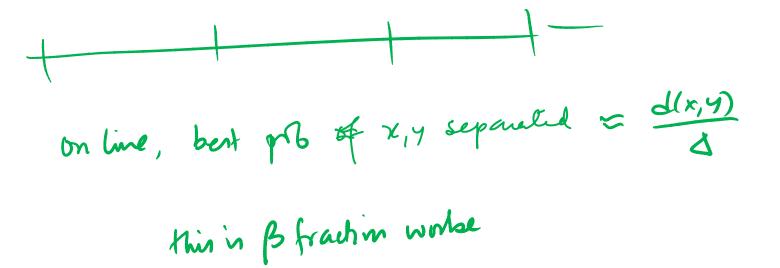
• Ball B(x,r) = $\{y \in V \mid d(x,y) \leq s\}$

"padded" decompositions

A metric (V,d) admits β -padded decompositions, if for every Δ , we can output a random partition $V = V_1 \uplus V_2 \uplus ... \uplus V_k$

1. each
$$V_j$$
 has diameter $\leq \Delta$
2. Pr[x and y in different clusters] $\leq \frac{d(x,y)}{\Delta}$. β
 \uparrow^{\prime}
2'. Pr[ball B(x, ρ) split] $\leq \frac{1}{\Delta}$. β

why this expression?



"padded" decompositions

A metric (V,d) admits β -padded decompositions, if for every Δ , we can output a random partition $V = V_1 \uplus V_2 \uplus ... \uplus V_k$

1. each V_j has diameter
$$\leq \Delta$$

2. Pr[B(x, ρ) split] $\leq \frac{f}{\Delta}$. β

(weaker) theorems

Theorem 1.

Every n-point metric admits an $\beta = O(\log n)$ -padded decomposition

Theorem 2.

Embedding into distribution over trees with

$$\alpha = O(\log n \times \log diameter)$$

$$\gamma$$
assume min-distance = 1

(stronger) theorems

Theorem 3.

Every n-point metric admits an $\beta(x, \Delta)$ -padded decomposition with $\beta = \log \frac{|b(x, \Delta)|}{|b(x, \Delta)|}$

Theorem 4. Embedding into distribution over trees with $\alpha = O(\log n)$

we'll prove the weaker results

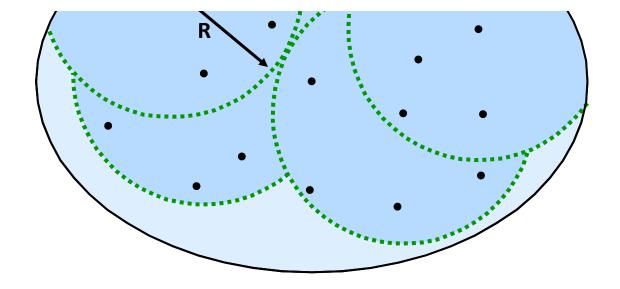
Theorem 1.

Every n-point metric admits an $\beta = O(\log n)$ -padded decomposition

Theorem 2. Embedding into distribution over trees with $\alpha = O(\log n \log diameter)$

decomposition algorithm

Given a metric M = (V,d) and a parameter Δ



decomposition algorithm

Given a metric M = (V,d) and a parameter Δ

- 1. Pick a random permutation π on V.
- 2. Pick a random radius R uniformly from the interval $(\Delta/4, \Delta/2]$.
- 3. Create a "cluster" C_v for each $v \in V$: assign $x \in V$ to C_v if v is the *first* vertex (according to π) such that $d(v, x) \leq R$.
- 4. Output all the non-empty clusters C_v .

1. each V_j has diameter $\leq \Delta$ 2. $\Pr[B(x,\rho) \text{ split}] \leq \frac{p}{\Delta} \cdot O(\log n)$

Now to show

Theorem 1.

Every n-point metric admits an $\beta = O(\log n)$ -padded decomposition

Theorem 2. Embedding into distribution over trees with $\alpha = O(\log n \log diameter)$

tree-building

Procedure FRT(X, i) (Invariant: $X \subseteq V$, diameter $(X) \leq 2^i$.)

tree-building

Procedure FRT(X, i) (Invariant: $X \subseteq V$, diameter $(X) \leq 2^i$.)

- 1. If |V| = 1, return X.
- 2. Use β -padded decomposition procedure on X with diameter bound 2^{i-1} to get random partition X_1, X_2, \ldots, X_k .
- 3. For each j, recursively call $FRT(X_j, i-1)$ to get tree T_j with root v_j .
- 4. For each $j \ge 2$, attach edges (r_1, r_j) of length 2^i to get connected tree T.
- 5. Return resulting tree T with root $r = r_1$.

Initially call with FRT(V, log(diameter))

- 1. Distances in tree are at least d(x,y)
- 2. E[distance(x,y) in tree] $\leq O(\log n \log diam) d(x,y)$

have seen

Theorem 1.

Every n-point metric admits an $\beta = O(\log n)$ -padded decomposition

Theorem 2. Embedding into distribution over trees with $\alpha = O(\log n \log diameter)$

extensions

 $\mathbf{root} r$ • embedding into Hierarchically well-Separated Trees \boldsymbol{L} (MSTs) L/k L/k^2 o skiner noder ?ⁱ⁻¹ 21

extensions

• embedding special classes of graphs

Duta glanar graphs

extensions

 embedding graph metrics into distributions over their sub-trees

2 logh by lan	(akpw)
Olby'n by hyn)	(EEST)
Ol by n prylybyn)	[APPN 08]

Padded decompositions

padded decomps very useful

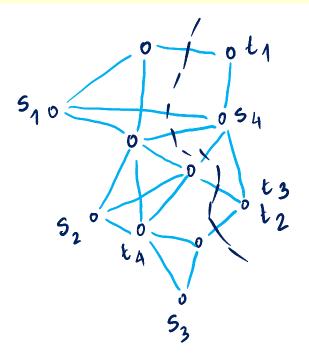
- We'll see applications to other embeddings later
- applications to finding neighborhood covers in exercises
- here's an application to another approximation algorithm

multi-cut

Given graph G = (V,E) with k source-sink pairs

Find the fewest edges to delete to separate all source-sink pairs

NP-hard, APX-hard for k ≥ 3.
Best known: O(log k) approximation
[Garg Vazirani Yannakakis]



relaxation of multi-cut

Suppose we want lengths on edges

such that shortest-path-distance(s_p, t_p) ≥ 1 for all p.

One possible setting: length of cut edges in OPT = 1, all others = 0 total length = OPT.

So, find (fractional) setting that *minimizes total length* \Rightarrow at most OPT.

and can be found by linear programming.

algorithm idea

Given such fractional edge-lengths (with total length L ≤ OPT)

Use these lengths to figure out which edges to cut

```
and E[ number of edges cut ] \leq O(\log n) \times L
\leq O(\log n) \times DPT
```

 \Rightarrow we'd have a logarithmic approximation !

randomized algorithm for multi-cut

Given lengths on edges

shortest-path-distance(s_p, t_p) ≥ 1 for all p.

Take a O(log n)-padded decomposition of this metric with $\Delta = 1/3$. $rac{1}{p_{NMN}} = 1-\epsilon$ Wmld do!

Facts:

- 1. Each terminal pair separated.
- 2. Pr[edge e cut] \leq length(e) \times O(log n)

$$E[\# edges cut] \leq \frac{(1/3)}{2}$$
 Chanles O(Logn) $\in Opt.Ollogn)$

embeddings into trees

used for these problems

k-median **Group Steiner tree** min-sum clustering metric labeling minimum communication spanning tree vehicle routing problems metrical task systems and k-server buy-at-bulk network design oblivious network design oblivious routing demand-cut problem

...

app: oblivious routing

We've seen: given a metric, output a random tree maintains distances to within expected O(log n) factor

[Räcke 08] Given an undirected flow network G with edge-capacities output a random tree T (with edge-capacities)

any multicommodity flow in G routable in T exactly. any flow in T (almost) routable in G (edge-capacities exceeded by expected O(log n) factor.)

app: "universal" TSP

Given a metric (V,d), you find single permutation π adversary gives you subset $S \subseteq V$ you use order given by π to visit cities in S. How close are you to the optimal tour on S?

If adversary does not look at actual permutation π when choosing S \Rightarrow O(log n) factor worse in expectation. What if adversary can look at π and then choose S? can use variant of tree embeddings to get O(log² n)

open: randomized k-server problem

Given a HST have k servers located at some nodes Requests come one-by-one at nodes must move one of the servers to the requested node Minimize total movement

Deterministic algorithm: k-"competitive" (and this is tight!)

Better randomized algorithm: ???? [Cote Meyerson Poplawski]: O(log diameter)-competitive on *binary* HSTs

recap...

Two general techniques:

Padded decompositions.

Embeddings into random trees.

Coming up:

- Embeddings into geometric space
- Dimension reduction and other dimensionality issues