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Recently, the area of Social Networks has gained popularity in computer science partially
due to the increased efforts in the domain of security. One of the goals of analysis in this
area is to detect and evaluate relationships between individuals that may be part of terrorist
networks (Krebs, 2002). It should be noted, however, that statistical analysis of social
networks spans over 60 years. Since the 1970s, one of the major directions in the field was to
model probabilities of relational ties between interacting units (social actors), though in the
beginning only very small groups of actors were considered. Extensive introduction to earlier
methods is provided by Wasserman and Faust (1994). Two of the most prominent current
directions are Markov Random Fields (MRFs) introduced by Strauss and Frank (1986)
and Exponential Random Graphical Models (ERGMs), also known as p∗ (Wasserman and
Pattison, 1996; Anderson et al, 1999). The ERGM have been recently extended by Snijders
et al (2004) in order to achieve robustness in the estimated parameters.

The statistical literature on modeling Social Networks assumes that there are n entities
called actors and information about binary relations between them. Binary relations are
represented as an nxn matrix Y , where Yij is 1, if actor i is somehow related to j and
is 0 otherwise. For example, Yij = 1 if “i considers j to be friend”. The entities are
usually represented as nodes and the relations as arrows between the nodes. If matrix Y
is symmetric, then the relations are represented as undirected arrows. More generally Yij

can be valued and not just binary, representing the strength (or value) of the relationship
between actors i and j (Robins et al, 1999). In addition, each entity can have a set of
characteristics xi such as their demographic information. Then the n dimensional vector
X = x1, . . . , xn is a fully observed covariate data that is taken into account in the model
(e.g. Hoff et al, 2002)

Predominantly the social network literature focuses on modeling P(Y—X), i.e. on prob-
abilistically describing relations among actors as functions of their covariates and also prop-
erties of the graph, such as indegree and outdegree of individual nodes. A complete list
of graph-specific properties that are being modeled can be found in (Snijders et al, 2004).
Thus, the models are geared to probabilistically explain the patterns of observed links and
their absence between n given entities.

There are several useful properties of the stochastic models listed in a brief survey work
by Smyth (2003). Some of them are:

• the ability to explain important properties between entities that often occur in real
life such as reciprocity, if i is related to j then j is more likely to be somehow related
to i; and transitivity, if i knows j and j knows k, it is likely that i knows k.

• inference methods for handling systematic errors in the measurement of links (Butts,2003)
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• general approaches for parameter estimation and model comparison using Markov
Chain Monte Carlo methods (e.g. Snijders, 2002)

• taking into account individual variability (Hoff:2003) and properties (covariates) of
actors (Hoff,2002)

• ability to handle groups of nodes with equivalent statistical properties (Wang and
Wong, 1987).

There are several problems with existing models such as degeneracy analyzed by Hand-
cock (2003) and scalability mentioned by several sources (Hoff et al, 2002; Smyth, 2003).
The new specifications for the Exponential Random Graph Models proposed in Snijders et
al (2004) attempt to find a solution for the unstable likelihood by proposing slightly different
parametrization of the models than was used before. Experiments show that the parameters
estimated using the new approach yield a smoother likelihood surface that is more robust
and is less susceptible to the degeneracy problem. The scalability remains to be a major
issue. Datasets with hundreds of thousands of entities are not uncommon in the Internet
and co-authorship based domains. To our knowledge, there are no statistical models in the
social networks literature that would scale to thousands or more actors. Parameter estima-
tion in general for Markov Random Fields is well-known to be intractable for large number
of variables due to the computational complexity of the normalization constant which re-
quires summation over all possible graphs with n nodes. The scalability problem has also
been attributed to the tendency of the models to be global, i.e. most operate on the full
covariance matrices (Hoff et al, 2002). The use of MCMC approaches that tend to have slow
convergence rate may also hinder computational speed of the parameter estimation in high
dimensions.

One of the more recent directions is latent variable models that may be able to avoid
the problems related to the use of Markov Random Graphs. For example, the work of Hoff
et al (2002) proposes a model in which it is assumed that each actor i has an unknown
position zi in a latent space. The links between actors in the network are then assumed
to be conditionally independent given those positions and the probability of a link is a
probabilistic function of those positions and actors’ covariates. The latent positions are
estimated from data using logistic regression. The general form of the model is:

logodds(yij = 1|zi, zj , xij , α, β) = α + βT xij + d(zi, zj) (1)

, where d(zi, zj) is a distance metric between positions of the actors in latent space. This
model is though promising also suffers from the lack of scalability of the parameter estima-
tion.

It is also worth mentioning that a graph theoretic area of physics that studies complex
systems is directly applicable to social network modelling. Though modeling of complex
systems has developed seemingly in parallel to the statistical modeling of social networks in
social science, the findings in this area can assist in understand further the phenomenon of
real networks organization and structure. The assumptions are the same: there are n actors
(nodes) and there are N links between those nodes representing relationships among actors.
The goal is also to understand and model structural properties of the naturally occurring
networks. The base model describing random graphs was developed by Erdos and Reny
(1959,1969,1961), where expected number of edges in the graph is E(N) = p( (n−1)n

2 and

the probability of obtaining the observed graph is P (Go) = pN (1 − p)
n(n−1)

2 −n. However,
it was noted that the degree distribution in the random graphs does not follow power law
P (k) ∼ k−γ common to the realistic networks. Thus, ”scale-free networks” were introduced
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(Barabasi and Albert, 1999; Barabasi et al, 1999) . Newman et al (2001) have developed a
generalized random graph model where the degree distribution is given as an input param-
eter. The research in the field of physics gives more insight into graph growth, given the
proposed models, such properties of the emerging graphs as clusterability, graph diameter
and the formation of a large component. A great summary of the past and ongoing work
and it’s relation to statistical physics is given by Barabasi et al (2002).

One of the important properties of real life networks is evolution over time. It can be
expected that co-authorship networks can be relatively stable, whereas such dynamic online
communities as Friendster may significantly change in a matter of weeks. In terms of mod-
elling a change in a social network, emergence of a new interaction means an addition of a
new edge, whereas severing a relationship means deletion of an edge. The principles underly-
ing the mechanisms by which relationships evolve are still not well understood (Liben-Nowell
and Kleinberg, 2003). There are several potentially different approaches based on the ob-
jective the researchers are optimizing. Works of Jin et al (2001), Barabasi et al (2002) and
Davidsen (2002) in physics along with Van de Bunt et al (1999) and Huisman and Snijders
(2003) in social sciences, generally evaluate their models for network evolution by comparing
structural properties and features of the developed models to those of real networks. An-
other direction is to model evolution aiming to make inferences, i.e. based on the properties
of the network seen so far, to infer who are the most likely future friends or collaborators
(Newman, 2001; Liben-Nowell and Kleinberg, 2003). Such models are still in their infancy,
having similar problems with scalability and incorporation of secondary factors, such as
graduation or relocation that have great impact on real life networks.
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