
Octo
be

r 2
1,

20
04

Draf
t V

ers
ion

Towards Interactive and Automatic Refinement

of Translation Rules

Ariadna Font Llitjós

aria@cs.cmu.edu

Language Technologies Institute

School of Computer Science

Carnegie Mellon University

Thesis Proposal

October 21, 2004

Octo
be

r 2
1,

20
04

Draf
t V

ers
ion

Abstract

Although Machine Translation (MT) has advanced recently for language
pairs with large amounts of parallel data, translation quality has not yet reached
satisfactory levels, specially not for resource-poor languages with little if any
parallel text to train statistical or example-based MT systems.

Rule-based transfer MT systems are the only feasible solution for resource-
poor scenarios. However it can prove very costly and time consuming to refine
and extend translation rule sets manually by trained computational linguists
with knowledge of both languages. If the translation rules are written manually,
no matter how many rules there are, coverage and accuracy can always be
increased. If they are automatically learned, they might be either too general
or too specific. Either way, in the face of unseen examples, the translation rules
will need to be refined to account for new data. Thus, the goal of this thesis is to
generalize post-edition efforts in an effective way, by identifying and correcting
rules semi-automatically to improve coverage and overall translation quality,
especially for resource-poor languages.

This proposal describes a plan for developing a novel approach for automat-
ically refining translation rules from bilingual speakers’ feedback and presents
initial progress towards this goal. The main challenge is the development of the
Rule Refinement module. Given a corrected and word-aligned translation pair
as well as some information about the MT errors, determines the appropriate
Rule Refinement operations that can be applied to the grammar and lexicon
in order to extend and refine the existing translation rules and directly fix the
errors. The resulting refinements and extensions apply not only to the instance
translation corrected by the user, but also for other similar cases where the same
error would be manifest.

One practical application of this research is extending and refining automatically-
learned translation grammars for resource-poor languages, such as Mapudungun
and Quechua, into a major language, such as English or Spanish. An automatic
rule refinement module for at least one such MT system will be developed with
the ultimate goal of making the rule refinement method as language-independent
as possible.

Octo
be

r 2
1,

20
04

Draf
t V

ers
ion

Contents

1 Introduction 3

2 Thesis Statement and Scope 5

3 Related Work 8
3.1 Post-editing to Improve MT Systems 8
3.2 MT Error Information . 9
3.3 Rule Refinement . 10

4 Interactive Elicitation of MT Error Information 11
4.1 Interface Design and Implementation 11
4.2 MT Error Typology . 14
4.3 Evaluation: English-Spanish User Studies 19
4.4 Data Analysis . 20

5 A Framework for Rule Adaptation 21
5.1 The Transfer Rule Formalism . 22
5.2 Formalizing Error Information 24
5.3 Rule Refinement Operations . 25
5.4 Rule Refinement Simulations . 30

6 Comparing grammars for the purpose of RR 36
6.1 Comparing Grammar Output . 39
6.2 Error Analysis . 39
6.3 Rule Refinements Required for Each Type of Grammar 40

7 Automatic MT Evaluation 41

8 Discussion 42

9 Proposed Research 43
9.1 Training and test data . 44
9.2 Elicitation Method for MT Error User Feedback 45

9.2.1 TCTool V.0n . 46
9.2.2 Evaluation of TCTool . 47

9.3 Automatic Rule Refinement Module 48
9.3.1 Batch mode . 49
9.3.2 Interactive mode . 52
9.3.3 Searching the Feature Space 54
9.3.4 Evaluation of RR module 57

10 Research plan 59

11 Resulting contributions 60

1

Octo
be

r 2
1,

20
04

Draf
t V

ers
ion

References 60

2

Octo
be

r 2
1,

20
04

Draf
t V

ers
ion 1 INTRODUCTION 3

1 Introduction

Machine Translation (MT) has been an around for more than fifty years and
researchers have come a long way since Weaver’s memo in 1947, when inspired
by successes in cryptography, he suggested treating translation as a decoding
problem1. However, in spite of recent advances in the field that have made MT
systems available for new language pairs in just a few months, a few important
challenges remain unsolved. The two unsolved challenges this thesis is most
concerned about are how to automatically build MT systems for resource-poor
languages with acceptable translation quality, and how to semi-automatically
improve Transfer-based MT systems in general.

There are several factors that impede successful construction of an MT sys-
tem. Besides the traditional cost and time factors, the lack of parallel data
available in electronic format for a language pair has become the limiting fac-
tor. The growth of parallel corpora resulted in a proliferation of shallow MT
systems, such as Statistical MT systems (SMT) and Example-Based MT sys-
tems (EBMT), that have reached comparable translation accuracy rates with
those of traditional Transfer-based MT systems developed over many years by
a large number of people. Indeed, the general feeling in the community is that
large quantities of parallel data is a great substitute for linguists and even com-
putational linguists.

However, such statistical systems are only an option for major language
pairs where there are large amounts of parallel data. When there are little or no
electronic data available, only the traditional way to build MT systems applies.
Namely, hiring linguists or technical expert native speakers to write, test, refine
and expand translation rules.

When dealing with resource-poor languages, such as Mapudungun, Aymara
or Quechua, in addition to little or no electronic data available, there might
be very few or no native speakers who are also linguists or technical experts,
so none of the traditional MT techniques are practical. Such resource-poor
scenarios require a different approach. Probst et al. (2002) introduced an
automatic rule learning technique to build a translation grammar that only
requires the cooperation of a non-expert native speaker to translate and align
a previously designed Elicitation corpus (on the order of magnitude of a few
thousand sentences) and a computer scientist to train the system. This is a
major advance in the field, since even when large amounts of parallel data and
native technical experts are lacking, an MT system can be automatically built
for a new language pair. However, the translation quality of such a system is
still below that of hand-crafted MT systems (Lavie et al., 2003). In this context,
automatic refinement of translation rules becomes a crucial component of MT.

In general, most MT systems have failed to incorporate post-editing efforts
beyond the addition of corrected translations to the parallel training data for

1“One naturally wonders if the problem of translation could conceivably be treated as a
problem in cryptography. When I look at an article in Russian, I say: ’This is really written
in English, but it has been coded in some strange symbols. I will now proceed to decode’.”
Warren Weaver, March 1947.

Octo
be

r 2
1,

20
04

Draf
t V

ers
ion 1 INTRODUCTION 4

SMT and EBMT or to a translation memory data base. And thus, a largely au-
tomated method that uses post-editor feedback to automatically improve trans-
lation rules would constitute a great advance in the field. If an MT-produced
translation is incorrect, a bilingual speaker can easily diagnose the presence of
an error, and with a bit more work give us some information pertinent to the
type of error. But the informant cannot diagnose which complex translation
rules produced the error, and even less determine how to improve the rules.
The objective of the research proposed in this thesis is to automate the Rule
Refinement process based on just error-locus and error-type information from
the bilingual speaker, relying on blame assignment, compositional rule back-
trace and on Active Learning, treating the bilingual speaker as an oracle, and
measuring the consequent improvement in MT accuracy.

In this proposal, I motivate and describe a research plan for developing a
new method to improve existing Transfer-based MT systems. This method is
expected to be particularly useful in resource-poor scenarios, where statistical
systems are not an option and where there might be no experts with knowl-
edge of the resource-poor language, but need not be limited to them. Specific
emphasis is placed on the challenge of accurately extracting information about
MT errors from bilingual native speakers that is of particular interest and util-
ity for the purpose of automatic Rule Refinement. Locally-validated corrections
will be tested over a regression set of translation pairs, and kept if they do not
introduce errors in stored past translations.

The online graphical user interface (GUI) developed as a result of the pro-
posed approach, the Translation Correction Tool (TCTool), will be evaluated
on its ability to achieve high measures of precision on a specific set of MT er-
rors identified as critical for the task of automatic Rule Refinement. Given a
corrected translation and some basic information about the errors from the
user, the automatic application of Rule Refinement operations necessary to
improve the translation grammar and lexicon will be implemented. An ex-
ample of MT error is Gaudı́ was a great artist - *Gaudı́ era un artista

grande, which given the corrected translation Gaudı́ era un gran artista by
a bilingual user, can then be used to refine the noun phrase rule for general
noun-adjective order in Spanish so as to also cover the exception of prenominal
adjectives, such as gran. To see how this can be done with the Rule Refinement
module, see the last simulation described in 5.4.

For cases where the error information is incomplete, I will also explore the
use of interactive learning techniques to detect the set of necessary refinements
or the appropriate level of granularity of such refinements, at run time. In
such cases, we need to present users with other relevant sentences (minimal
pairs), so that the Rule Refinement (RR) module gathers enough informa-
tion to detect what is causing the user correction. For the example mentioned
above, Gaudı́ was a great artist - Gaudı́ era un gran artista, in order
to determine that this is an exception to the general NP rule for Spanish (N
ADJ), the RR module would present similar relevant sentences to the user, such
as Gaudı́ was an innovative artist - Gaudı́ era un artista innovador,
and detect that the original NP rule is correct, but that a specific rule (ADJ N)

Octo
be

r 2
1,

20
04

Draf
t V

ers
ion 2 THESIS STATEMENT AND SCOPE 5

needs to be added for some cases (namely the cases with pre-nominal adjectives).
The main challenge of the work described in this proposal is the develop-

ment of a RR module that, given a corrected and aligned translation pair as
well as some MT error information, needs to perform blame assignment to de-
termine what rules are to be corrected and to apply the appropriate set of Rule
Refinements required to correct the original translation. The RR module will
be evaluated on its ability to improve coverage and overall translation quality
as measured by a sensible measure. Initial experiments have shown that both
BLEU (Papineni et al., 2001) and METEOR (Lavie et al., 2004) are sensible
enough to automatically distinguish between raw MT output and corrected MT
output, even for a small set of sentences (Section 7).

The overriding technical objective of the preliminary research was to develop
a system capable of eliciting just the right information from a non-linguist and
to use that information to the appropriate set of Rule Refinement operations
that can be applied fully automatically on the existing translation rules. The
proposed research will deal with implementing such set of refinement operations
to be able to generate refinement hypotheses and explore ways to validate such
hypotheses with and without further user interaction.

2 Thesis Statement and Scope

Thesis Statement

Given a rule-based Transfer MT system, one can extract useful informa-
tion from non-expert bilingual speakers about the corrections required
to make a Machine Translation output acceptable and about the MT
errors present in an easy and structured way.
Furthermore, we can automatically refine transfer rules, given corrected
and aligned translation pairs and error information, performing blame
assignment, feature detection and, when necessary, resorting to further
user interaction, so as to improve coverage and overall Machine Trans-
lation quality.

The following issues will be directly addressed in the thesis:

• Translation Correction Tool: Designing and implementing an online
GUI to elicit information from non-expert bilingual speakers biased to-
wards high precision rule corrections, complementing the high-recall prop-
erty of the original Rule Learner. The TCTool will allow users to easily
correct machine translations, by adding, deleting or modifying words, or
changing their order in the translation, and to give as much information
as possible about the errors, given a set of non-technical questions, the
source language sentence and, optionally, context information.

Octo
be

r 2
1,

20
04

Draf
t V

ers
ion 2 THESIS STATEMENT AND SCOPE 6

• MT Error Information: Identifying an appropriate set of non-technical
questions about MT errors with the goal of achieving high classification
precision.

• User Studies: Designing and running user studies with non-expert users
to validate the online GUI-based methods and methods to extract MT
error information for the purpose of automatic rule refinement. This will
result in data collection and analysis of MT error classification and detec-
tion.

• Automatic Rule Refinement: Designing and implementing a set of re-
finement operations to modify inaccurate translation rules in both learned
and hand-crafted grammars and lexicons to reflect user corrections. Each
correcting action allowed by the TCTool goes hand-in-hand with a set of
refining operations that perform the appropriate changes in the translation
rules, according to the error information available.

• Interactive Learning: Exploring interactive learning methods to find
relevant minimal pair translation sentences to be presented to users to
determine the appropriate level of generalization (word or POS) of the
constraints that have been identified by the Rule Refinement module as
necessary to fix a specific translation rule or, if crucial error information is
missing, to discover the set of features that triggered a specific correction,
possibly using Active Learning methods to optimize user time.

• Evaluation: Testing the improvement on coverage (both in terms of
number of words and phenomena) and translation accuracy of the rule
refinement operations, as measured by one or more sensible measures. Es-
tablishing human oracle scores to obtain an upper-bound on how well any
automated method can do given specific user feedback.

The following items fall outside the scope of this thesis and will not be
directly addressed in my work. However, they are being developed in parallel
by other researchers in the context of the Avenue project:

• Data collection: The existence of an Elicitation corpus with wide linguis-
tic coverage used to collect diverse data and of a fully inflected dictionary
for at least one resource-poor language is assumed.

• Morphology: For the purpose of this thesis, I do not rely on the existence
of a morphology module or the resource-poor language; even though I
might run some experiments with it if a working morphology learning
system is available before 2006 (Monson et al., 2004).

• Transfer engine: I assume a transfer engine capable of producing candi-
date translations using a lexicon and learned or hand-crafted rules, with
back-tracing in rule space to determine which rule(s) are potentially re-
sponsible for identified errors (Peterson, 2002).

Octo
be

r 2
1,

20
04

Draf
t V

ers
ion 2 THESIS STATEMENT AND SCOPE 7

• Decoder: The decoder scores the partial translations and finds their most
likely combination.

• Rule Learning: Part of this thesis focuses on improving the output of
an automatic Rule Learner, especially designed to build a transfer-based
MT system from languages with scarce resources into a major language.
However, it is beyond the scope of this thesis to address the issue of non-
interactive rule learning. For more details about this line of research, see
Probst et al. (2002)

Octo
be

r 2
1,

20
04

Draf
t V

ers
ion 3 RELATED WORK 8

3 Related Work

3.1 Post-editing to Improve MT Systems

Post-editing has been defined as “the correction of MT output by human lin-
guists/editors” (Veale & Way, 1997). For the task of automatic rule refinement,
though, the editors are actually bilingual speakers with no expertise in lin-
guistics, translation or computers, and their goal is to evaluate and minimally
correct MT output, in a way that is similar to what has been referred to as
minimal post-editing in the literature.

Allen (2003) defines the guiding objective of minimal post-editing as to be the
smallest number of changes possible for producing an understandable working
document, rather than an optimal quality document. This implies that minimal
post-editing is often associated with lower MT output quality. The minimal
correction method we are proposing for the task of rule refinement should not
compromise final translation quality, and what we consider minimal changes for
this task also involves grammar correctness and fluency, in addition to meaning.
Stylistic changes, however, are not considered minimal post-editing for this task.

Some researchers have looked at ways of including user feedback in the MT
loop. Callison-Burch et al. (2004) developed a statistical MT system that can
be improved by dynamically learning the correct translation of new phrases,
through simple editing, as well as by allowing advanced users to correct mis-
aligned sentence pairs from training data. One of the nicest things about their
approach is the demystification of statistical MT as a black box. In their sys-
tem, users can find out which way the MT system translated a sentence and
which phrases are wrong, and change the behavior of the system by altering the
underlying representations, i.e. the alignments.

Allen and Hogan (2000) proposed an automated post-editing (APE) proto-
type module which is meant to automatically fix up the highly frequent, repeti-
tive errors in raw MT output before such texts are given to human post-editors,
in order to speed up their work. The inspiration behind this work is very similar
to ours in that they also react to the observation that if an MT system makes
a particular error when translating a document, it is very likely to commit the
same error each time the same set of conditions are presented. And if the error
is fixed in a similar way, then it is possible to capture these modifications and to
implement them automatically so that such repetitive errors can be reduced in
MT output (Allen, 2003). The advantage of automatic post-editing is that it is
system independent. In comparison with the Rule Refinement system proposed
in this thesis, though, if two rules are incorrect but are easy to fix automatically,
the combinatorics of the interaction of such rules might result into hundreds or
thousands of sentences that need to be post-edited.

Su et al. (1995) have explored the possibility of using feedback for a corpus-
based MT system to adjust the system parameters so that the user style could
be respected in the translation output. Su et al. proposed that the distance
between the translation output of the system and the translation preferred by
the user should be proportional to the amount of adjustment to the parame-

Octo
be

r 2
1,

20
04

Draf
t V

ers
ion 3 RELATED WORK 9

ters involved in the score evaluation function, and should be minimized over
time. We could not find, however, any papers reporting testing of these ideas.
In the context of data sparseness, such a system is not feasible, since there is
not enough data to estimate and train system parameters. Moreover, we are
interested in improving the translation rules themselves, which in the case of au-
tomatically learned grammars will typically lack some of the feature constraints
required for the correct application of the rule, rather than just tweaking the
evaluation parameters, which in their system are conditional probabilities and
their weights.

Menezes and Richardson (2001) and Imamura et al. (2003) have proposed
the use of reference translations to “clean” incorrect or redundant rules after
automatic acquisition. The method of Imamura et al. consists of selecting or
removing translation rules to increase the BLEU scores of an evaluation corpus.
The idea of using already existing reference translations to automatically refine
MT rules is extremely appealing, and, time permitting, we plan to run some
experiments to see how well this works in our system. In contrast to filtering
out incorrect or redundant rules, though, we propose to actually refine the
translation rules themselves, by editing valid but inaccurate rules that might be
lacking a constraint, for example.

3.2 MT Error Information

To automatically refine a grammar, we need users to tell the system as much
as possible about the MT errors that are present in the original MT output, in
addition to correcting the MT output. Hence, in order for non-expert bilingual
speakers to classify MT errors reliably and with high accuracy, we need to devise
an intuitive MT error classification which does not rely on technical terminology,
or knowledge of linguistics.

There are several ways to classify MT errors, but most MT evaluation meth-
ods described in the literature are designed to be used by either potential MT
users, and thus they focus on system comparison and on ways to measure trans-
lation quality from an end-user viewpoint (Flanagan, 1994), or by developers to
be used as a reference for manually modifying the grammar (White et al., 1994)
or tweaking a few system parameters.

Much like White’s approach, our MT evaluation method needs to capture
translation adequacy, fluency and informativeness. However, our approach is
based on a radically different method to extract MT error information. Instead
of having developers or translation experts make judgments on the translation
quality of the system, we have non-expert bilingual speakers correcting the
translations and narrowing down the cause of the error by answering a pre-
defined set of non-technical questions designed to allow automatic improvement
of translation grammars and lexicons. Thus, we hope that the result from the
error information elicitation process proposed in this thesis will shed a new
light on MT evaluation, providing information that is missing from existing
evaluation methods.

Octo
be

r 2
1,

20
04

Draf
t V

ers
ion 3 RELATED WORK 10

General Motors, in their project on Controlled Automotive Service Lan-
guage, used minimal post-editing following the Society for Automotive Engineer-
ing (SAE) J2450 standard metric for translation quality. This standard specifies
the following categories of errors, which are rated as unacceptable in translated
texts (Allen, 2003): wrong term, syntactic error, omission, word-structure or
agreement error, misspelling, punctuation error, miscellaneous error.

Niessen et al. (2000) present a tool to facilitate access to an MT evaluation
database. Their MT evaluation is based in the edit distance (number of inser-
tions, deletions and substitutions) as well as a predefined set of error classes
(missing, syntax, meaning, other), and it allows to ran different evaluation met-
rics automatically. This tool makes MT evaluation more consistent over time
and it can also be used to predict human scores.

3.3 Rule Refinement

The idea of rule adaptation to correct or expand an initial set of rules is an
appealing one. Researchers have looked at rule adaptation for several natural
language processing applications.

Lin et al. (1994) report research on automatically refining models to decrease
the error rate of part-of-speech tagging.

Lehman (1989) worked on adaptive parsing, and more specifically on gradual
augmentation of a kernel grammar to include each user’s preferred forms of
expression, when communicating with a computer. In her work, the existing
grammar is assumed to be correct and it is subsequently expanded through
interactions with users to learn their idiosyncratic style.

Brill (2003) introduces a new technique for parsing free text: a transforma-
tional grammar is automatically learned that is capable of accurately parsing
text into binary-branching syntactic trees with non-terminals unlabeled. The
system learns a set of simple structural transformations that can be applied
to reduce error. Brill’s method can be used to obtain high parsing accuracy
with a very small training set. Although small, the learning algorithm does
need the training corpus to be partially bracketed and annotated with part-of-
speech information, which is a lacking resource for minority languages. Even if
we had such a small initial annotated corpus, transforming translation rules is
non-trivial and cannot be done with simple patterns like the ones proposed in
Brill’s method. The rule refinement algorithm proposed here needs to deal with
the lexicon, the syntax and the feature constraints in the rules.

Corston-Oliver and Gamon (2003) learned linguistic representations for the
target language with transformation-based learning (Brill style) and used de-
cision trees to correct binary features describing a node in the logical form to
reduce noise.

In the same spirit as the research proposed in this thesis, Gavaldà (2000)
provided a mechanism that enables a non-expert end-user to dynamically ex-
tend the coverage of a natural language understanding (NLU) module, just by
answering simple clarification questions. Gavaldà relied on non-expert users to
automatically learn new semantic mappings for his NLU system.

Octo
be

r 2
1,

20
04

Draf
t V

ers
ion 4 INTERACTIVE ELICITATION OF MT ERROR INFORMATION 11

Yamada et al. (1995) use structural comparison (parse tree) between ma-
chine translations and manual translations in a bilingual corpus to adapt a
rule-based MT system to different domains. In order for this method to work,
though, a parser for the target language (TL) needs to be readily available,
which is typically not the case for resource-poor languages. Moreover, such a
parser must have coverage for the manually-corrcted output as well as the incor-
rect MT output to compute the differences. The actual adaptation technique is
not described in this paper.

In her thesis, Naruedomkul (2001) proposes a basic word-to-word MT sys-
tem, called the Generate and Repair MT system, that repairs a non-acceptable
translation if it has a different meaning from the SL sentence. In order to repair
a translation candidate, the system outputs an HPSG-like semantic represen-
tation for both the SL and the TL, detects the part of the TL that causes the
mis-translation and replaces it with the corresponding, appropriate SL semantic
representation. The system iterates until the semantic information of the SL and
the TL are acceptably similar. In a final step, the word ordering module makes
sure that the syntax is correct. All the examples given illustrate corrections of
sense errors.

In sum, even though adaptation has been researched for MT and other
natural language processing applications before, to my knowledge, none has
attempted to refine the translation rules themselves, and thus this thesis pro-
poses and interesting an novel approach to automatically refine and expand MT
systems. Even though the approach proposed is not completely system inde-
pendent, we believe that it can be easily adaptable to other Transfer-based MT
systems.

4 Interactive Elicitation of MT Error Informa-

tion

Even in resource-poor contexts, there is usually one resource available: bilingual
speakers. The research proposed in this document exploits this fact maximally
and relies on non-expert bilingual users to extract as much accurate information
possible to determine error location and cause for use by the Rule Refinement
(RR) module. In order to elicit MT error information from naive users reliably,
we propose a user-friendly GUI that is intuitive and very easy to use and that
does not assume any knowledge about translation, linguistics or computers.

4.1 Interface Design and Implementation

The Translation Correction Tool (TCTool) is a user-friendly online GUI inter-
face designed to accurately evaluate MT output and to obtain as much infor-
mation about MT errors as possible from non-expert bilingual speakers.

A first version of the TCTool has already been implemented and tested
with a first set of English-Spanish user studies (Font-Llitjós & Carbonell, 2004).
The current version of the TCTool presents users with a sentence in the source

Octo
be

r 2
1,

20
04

Draf
t V

ers
ion 4 INTERACTIVE ELICITATION OF MT ERROR INFORMATION 12

Figure 1: TCTool example of initial screen with incorrect translation (left), and
the same example screen with sentence in the process of being corrected (right).
Note that alignments, words and word order may be corrected.

language with up to five translations in the target language (TL), and asks them
to check all the correct translations, or, if none of the alternative translations
are correct, to fix the best translation with the least number of corrections
possible. In this context, we tell users that the best incorrect translation is the
one requiring the least number of changes to render the same meaning as the
original sentence, in a grammatically correct and fluent TL sentence, but not
necessarily in the most ideal form of expression.

This has been referred to as minimal post-editing in the literature, and the
main problem is how to quantify the amount of post-editing changes that must
be made to raw MT output text.

The most important aspect of the TCTool is that user feedback is not only
used to improve the translation at hand, but it is critical for the refinement of
the translation rules and will be used to improve the MT system at its core.
For this reason, we emphasize to users the great importance of only correcting
what is strictly necessary to obtain a correct translation of the original sentence
from the given translation. There are three parts to the translations: the words
in the TL and the alignments from the source language (SL) to the TL and the
order of the words. The alignments indicate the word-to-word correspondence,
namely what word in the SL translates as a word in the translation sentence.
The current implementation of the TCTool makes the assumption that if a
translation is correct, the alignments for that translation are also correct.

To illustrate what it means to correct a translation minimally, as well as how
the TCTool can be used, I wrote a 23-page long TCTool tutorial2, The tutorial
shows the possible actions to correct a translation with 4 example sentences.
Figure 1 shows the TCTool interface before and in the middle of the correction
of the first sentence in the tutorial.

2http://avenue.lti.cs.cmu.edu/∼aria/spanish/tutorial.html

Octo
be

r 2
1,

20
04

Draf
t V

ers
ion 4 INTERACTIVE ELICITATION OF MT ERROR INFORMATION 13

Figure 2: TCTool simplified data flow diagram. Discontinuous arrows represent
the flow if the translation is not correct and user decides to fix it; continuous
black arrows show the flow if translation is acceptable; everything in red are
help pages.

The TCTool interface is designed to abstract away as much as possible from
what is happening inside the MT system, and to allow users to correct errors at
a high level. Since we are aware of the intrinsic difficulty of the task at hand, we
tried to choose an interface that is easy and fun to use, and that will guide users
on how to correct a translation and, at the same time, will give them enough
flexibility. The simplified data flow diagram below in Figure 2 shows how the
core of the TCTool works.

As can be seen from Figure 1, when correcting a sentence, the user is pre-
sented with two columns of blocks, each block containing a word. The SL
sentence is displayed on the left column, and the TL sentence is displayed on
the right. The alignments between the source and target sides are originally
extracted from the translation rule(s) that generated the sentence and appear
as arrows from SL sentence to TL sentence.

There are six basic operations users can do to correct a sentence:

Octo
be

r 2
1,

20
04

Draf
t V

ers
ion 4 INTERACTIVE ELICITATION OF MT ERROR INFORMATION 14

Figure 3: Error types associated with modifying a word.

- modify a word
- add a word
- delete a word
- drag a word into a different position (change word order)
- add an alignment
- delete an alignment

For the first set of user studies, “modify a word” has a set of error types
associated with it, and the user is asked to pick all the one(s) considered to be
the cause of the error that they are correcting. Figure 3 shows the screen that
pops up when user edits a word. Since we expect many users not to know what
these types of errors stand for, each error type has a link to a brief explanation
with one or two examples3.

4.2 MT Error Typology

As part of this proposal, I defined an MT error typology mostly based on the
MT error types that occur when translating from English to Spanish4 with some
indication as to what Rule Refinement operations, abbreviated below as RR,
seem appropriate for each relevant type. Hence RR below refers to what the

3http://avenue.lti.cs.cmu.edu/∼aria/spanish/error-examples.html.
4Spanish is used here for broader understandability only.

Octo
be

r 2
1,

20
04

Draf
t V

ers
ion 4 INTERACTIVE ELICITATION OF MT ERROR INFORMATION 15

Rule Refinement module needs to do in each case, not to what users must do
or tell the system.

The first-level types are usually really error types, however, the second-level
types tend to denote more the cause of the error, and third-level types tend to
further specify features or constraints for that error/cause.

1. Misspelling
RR: correct spelling in the lexicon (given by user).

2. No translation
RR: add correct translation to lexicon (given by user).

3. Missing word

3.0 Translation not in the lexicon
Example: Mary and John fell

-> *Maria y Juan cayeron

-> Maria y Juan SE cayeron

RR: Add new translation to the lexicon by copying
existing lexical entry and updating TL side
([fell] -> [cayeron] + [fell] -> [se cayeron]) .

3.1 Part of another entry (lexical expression)
3.1.1 Original lexical entry is wrong/incomplete

Example: Me gustaria ir de viaje

-> *I would like travel

-> I would like TO travel

RR: If user aligns the new word to an already aligned SL
word and it’s contiguous to the aligned TL word, add the
new word to an existing lexical entry
([would like TO] -> [me gustaria]) or else add a lexicalized
rule ([V to V] -> [V V]).

3.2 Preposition
Example: I am proud of you

-> *estoy orgullosa tu

-> estoy orgullosa DE ti

RR: add information about the preposition required to the
ADJ(orgulloso).

3.3 Syntactic restrictions apply
Example: I saw the woman -> *vi la mujer -> vi A la mujer

RR: add directly to the rule as a terminal ([V NP]->[V ‘‘a’’ NP])
and if no feature exists for animacy, create one and add it as a
constraint to the relevant rules and lexical entries.

4. Extra word

Octo
be

r 2
1,

20
04

Draf
t V

ers
ion 4 INTERACTIVE ELICITATION OF MT ERROR INFORMATION 16

4.1 Literal translation of a lexicalized form
Example: I would like to show you my home

-> *me gustaria QUE mostrar tu mi hogar

-> me gustaria mostrarte mi hogar

RR: add SL word that generated spurious translation as part
of an existing lexical entry ([would like]->[would like to]).

4.2 Overgeneralization
Example: John read the book

-> *A Juan leyo el libro

-> Juan leyo el libro

RR: add constraint that restricts the application of the rule
to the right context, in this case, [NP]->[‘‘a’’ NP] can
only apply in an object position.

5. Word order

5.1 Local - within a constituent
5.1.1 Single word
5.1.1.1 No word change

Example: John held me with his arm

-> *Juan sujeto ME con su brazo

-> Juan ME sujeto con el brazo

RR: create a new rule with the order flipped and
add a constraint specifying the features of the word moved,
in this case, that me is a pronoun.

5.1.1.2 Word change
Example: Gaudi is a great artist

-> *Gaudi es un artista GRANDE

-> Gaudi es un GRAN artista

RR: create a new rule with the order flipped and restrict its
application to prenominal adjectives.

5.1.2 Multiple words

5.1.2.2 Word change
Example: I will help him fix the car

-> *Ayudare A EL arreglar el auto

-> LE ayudare a arreglar el auto

RR: create a new rule with the order flipped and
add a constraint specifying the features of the word moved,
in this case, that le is a pronoun.

5.2 Long distance - across constituents

Octo
be

r 2
1,

20
04

Draf
t V

ers
ion 4 INTERACTIVE ELICITATION OF MT ERROR INFORMATION 17

Example: Where are you from?

-> *Donde eres tu DE?

-> DE donde eres tu?

RR: Feed back to the Rule Learning module to learn a new rule.

6. Incorrect word

6.1 Sense - semantic restrictions apply
Example: Wally plays the guitar

-> *Wally JUEGA la guitarra

-> Wally TOCA la guitarra

RR: Create a binary feature to distinguish between the
two senses of the verb play in Spanish; add this
feature to the verb as well as the noun that triggers
the right sense, in this case guitar.

6.2 Form - semantic restrictions apply
Example: *There were some flowers and MUCH trees
-> There were some flowers and MANY trees

RR: Create a binary feature to distinguish between
countable and uncountable nouns and mark quantifiers
as being able to quantify one or the other noun type

6.3 Sense/Form - syntactic restrictions apply
Example: I’m playing chess

-> *Soy jugando al ajedrez

-> ESTOY jugando al ajedrez

RR: Duplicate the general VP rule ([AUX V])
and add a constraint to the specific rule so that, when
followed by a gerundive verb, the verb to be

translates as estar instead of ser.

6.4 Selectional restrictions
Example: Today we are eating fish

-> *Hoy vamos a comer PEZ

-> Hoy vamos a comer pescado

RR: create a feature to distinguish between pez and pescado

and add the right constraint to comer so that it only combines
with pescado.

6.5 Preposition
Example: I was worried about you

-> *Estaba preocupada SOBRE ti

-> Estaba preocupada por ti

RR: Add the preposition (or word in question) as part of the

Octo
be

r 2
1,

20
04

Draf
t V

ers
ion 4 INTERACTIVE ELICITATION OF MT ERROR INFORMATION 18

lexical entry ([worry]->[worry about]) with the
appropriate translation ([preocupada por]), or add
a constraint that enforces the preposition following preocupado/a

to have the right form.

6.6 Idiom - lexicalized expression
Example: Paul bit the dust

-> *Pablo mordio el polvo

-> Pablo se murio

RR: Given correct user alignments, enter in the lexicon as a unit
([bite the dust]->[morir se]).

6.7 Form - morphology restrictions apply

6.7.1 Overgeneralization
Example: *wifes -> wives

RR: correct in lexicon

6.8 Form - phonetic restrictions apply
Example: *an wife -> a wife

RR: create a binary feature that has value + for wife
(and eventually all other words starting with a consonant), and
add the appropriate constraints so that a can only combine with
such words, and an can’t.

6.9 Other - wrong translation
Example: I drove to the movies

-> *Conduje al cine

-> Fui al cine (en coche)

RR: Add ir as an alternative translation for drive.

6.10 Translation not in lexicon
Example: I’m tired of you

-> *Estoy cansada de tu

-> Estoy cansada de TI

RR: If the right translation (according to the feature constraints)
is not in the lexicon (ti), the transfer engine picks the first existing
translation in the lexicon, in this case tu.
Need to add it to the lexicon, as indicated in 3.1.0.

7. Agreement (number, gender, person and tense)

7.1 Right form not in the lexicon
Example: They climb the mountain

-> *Ellos ESCALA la montana

Octo
be

r 2
1,

20
04

Draf
t V

ers
ion 4 INTERACTIVE ELICITATION OF MT ERROR INFORMATION 19

-> Ellos ESCALAN la montana

RR: If the right form cannot be generated by the morphology module,
add the correct from to the lexicon and make sure appropriate
agreement constraints are in place.

7.2 Missing agreement constraint

7.2.1 Within a constituent
Example: The tall chair was red

-> *El silla ALTO era roja

-> La silla ALTA era roja

RR: Add a gender agreement constraint to the NP rule between
N(silla) and the ADJ(alto).

7.2.2 Across constituents
Example: The chairs were very tall

-> *Las sillas son muy ALTO

-> Las sillas son muy ALTAS

RR: Add a gender agreement constraint to the mother node
of the constituent containing sillas and the constituent
containing alto.

7.3 Extra agreement constraint - Overgeneralization
Example: John protects animals

-> *Juan protege al ANIMAL

-> Juan protege a los ANIMALES

RR: Eliminate overly general constraint. In this case, the
VP rule [V NP] has a number agreement constraint
between the verb and the direct object.

This error typology is by no means complete and is still under development.
I expect it to continue evolving during the time I take to finish the research
proposed here.

The actual RR formalization is described in section 5.3 and the question
whether the refinement operations suggested for each error type can be done in
a fully automatic way is addressed in section 9.3.

4.3 Evaluation: English-Spanish User Studies

A preliminary usability evaluation presented users with 32 simple English-
Spanish translations. The SL sentences were chosen from the Avenue Elici-
tation corpus, which was designed to cover a variety of linguistic phenomena
(Probst et al., 2001), so as to expose users with a wide range of different MT
errors.

The MT system used for this user study consisted of a very small manually
written English to Spanish grammar containing 12 rules (2 S rules, 7 NP rules

Octo
be

r 2
1,

20
04

Draf
t V

ers
ion 4 INTERACTIVE ELICITATION OF MT ERROR INFORMATION 20

and 3 VP rules) and 442 lexical entries, designed to translate the first 400
sentences of the Elicitation corpus.

The purpose of this first user study was twofold, to evaluate the TCTool
interface, as well as the initial MT error classification. For this task, we need to
think of MT error classification in a completely different way, and we need to
find a balance between simplicity and informativeness. Users of the TCTool, i.e.
non-expert bilingual speakers, have to be able to understand the different error
types and classify them accurately, and, at the same time, we have to obtain
the most information about errors possible, in order to be able to automatically
refine translation rules.

For this TCTool user study, we used an MT error classification based on
standard linguistic distinctions with 9 error types: wrong word order, wrong
sense, agreement error (number, person, gender, tense), wrong form, incorrect
word and no translation. We found that some of these distinctions are actually
not relevant for the purpose of Rule Refinement (i.e. wrong sense and wrong
form), but contribute to the task complexity faced by the user. Thus, a less tra-
ditional error classification seems more appropriate for this task, and is proposed
in Section 9.2.1 below for the next version of the TCTool.

There were 29 native speakers of Spanish with good knowledge of English
who completed the evaluation. Most users were from Spain (83%). Two thirds
of the users did not have any background in Linguistics, 75% had a graduate
degree and 25% of the users had a Bachelor’s degree. On average, users took
an hour and a half to evaluate the 32 translation pairs and fix 26.6 translations,
about 3 minutes per translation pair. But there was a significant variance
among users, the duration range being [28min-4:18hours]. For more details, see
Font-Llitjós and Carbonell (2004).

4.4 Data Analysis

To measure accuracy a gold standard was established, and 10 users were selected
according to demographics (to reduce possible dialectal differences) as well as
levels of education in order to represent as many different education levels as
possible. For these 10 users, we analyzed a total of 300 log files in detail, and
manually counted the times that the errors detected by users and the error
type associated with each error coincided with the gold standard. This count
was very strict and good corrections that were different from what the gold
standard indicated, were not counted as being 100% accurate. This might seem
more strict than necessary; however, I was trying to simulate what the process
would be for a language pair I am not familiar with, where I can not make any
judgments.

We found that users can detect translation errors with reasonably high accu-
racy (90%), but have a harder time determining what type of error it is. Given
our MT error classification, users identified the error correctly 72% of the time
(Table 1).

From the precision-recall viewpoint, we are interested in having users correct
and classify errors with high precision, even at the cost of lower recall. If users

Octo
be

r 2
1,

20
04

Draf
t V

ers
ion 5 A FRAMEWORK FOR RULE ADAPTATION 21

precision recall F1

error detection 0.896 0.894 0.895
error classification 0.724 0.715 0.719

Table 1: Average accuracy measures for 10 users and 32 sentences (300 log files)

do not detect or classify all the actual errors, this does not have a great impact
on the Rule Refinement module. However, when they do detect and classify
errors, we need them to do so as precisely as possible, so that the translation
grammar and lexicon are not refined incorrectly. User corrections were not
always consistent with each other; however, most of the time, when the final
translations differed from the gold standard, they were still correct. On average,
users only produced 2.5 translations that were worse than the gold standard (out
of 26.6 that they corrected). Users got most alignments correct.

5 A Framework for Rule Adaptation

Once we have elicited the error-locus and error-type information (Figure 4.1)
from non-expert bilingual speakers, we are half way towards being able to au-
tomatically refine the translation rules that generated each specific error. The
other half involves using the error information available to trace back the incor-
rect translation rules and fix them automatically so as to improve coverage and
translation quality.

More formally, the general goal of my thesis is to maximize coverage and
translation quality (TQ) of MT output given the following information: the
source language sentence (SL), the original target language sentence (TL), the
target language sentence corrected by users (TL’), a grammar (G) and lexicon
(L), the parser information (P) and a set of Rule Refinement operations (RR).

As a starting point, I have a G and a L, the SL and corresponding TL and
the P, hence the general goal can be divided into two sub-goals:

Sub-goal 1: obtain user corrections + error information (TL’) [This is done
with the TCTool as shown in the previous section]

Sub-goal 2: find optimal set of RR operations and apply to current G and
L, so that TQ2+C2 > TQ1+C1:

find best (RR operations |(G,L,SL,TL,TL’,P)) such that T Q2 + C2 > T Q1 + C1

Sometimes, TL’ (in addition to TL, SL, P) is enough to define an appropriate
set of RR operations, possibly with a small amount of Active Learning to be able
to make the refinement more robust through further user interaction. However,
some other times, TL’ is not enough, and in order to define the appropriate RR
operations we would need to make extensive use of Active Learning methods.
In such cases, the RR module would need to generate several relevant minimal
pairs to be evaluated by users to narrow down the cause of the error and the
nature of the fix. For concrete examples of these two cases, see Section 9.3.2.

Octo
be

r 2
1,

20
04

Draf
t V

ers
ion 5 A FRAMEWORK FOR RULE ADAPTATION 22

I am interested in having in place both interactive and batch modes for the
Rule Refinement module. However, since I anticipate situations where only the
batch mode is possible (for example, when user availability is limited or when
we need to compute refinements with all data gathered so far), some reasonable
defaults can be set (such as always adding the constraint at the most specific
level), so that the rule refinement process can take place even when no further
user interaction is possible.

In the rest of the document, I will clarify the distinction between cases that
are only solvable through further user interaction, and cases that can be refined
on the sole basis of static information (which include initial user corrections).

In addition to having user corrections trigger a particular RR operation, at
run time (interactive mode), once I define a set of RR, I can also apply the
whole set to the existing G and L, so as to maximize TQ of MT input (batch
mode):

max T Q + C(TL|(TL’,SL,P,RR(G,L))

For this, we would need to find a way to measure TQ and C automatically
and run a program to try all the possible RR combinations (order matters),
until it found the RR operation sequence that maximizes TQ and/or C given a
particular input and a particular G and L.

In order for BLEU or any other automatic measure to be able to asses a real
improvement in TQ, we would need to pick RR so as to maximize TQ directly
over a corpus (C):

max T Q + C(CTL|(CTL′ ,CSL,G, L,RR))

For a resource-poor language, I would need a set of reference translations
from the Elicitation corpus, which currently has about a thousand sentences
and is expanding.

In sum, the main goal of this thesis is to find a computable minimal extension
of an original grammar (and lexicon) that is consistent with user corrections,
namely that is able to translate the SL sentence into the correct TL sentence,
as indicated by users.

Before going into details about the formalization of the Rule Refinement
operations, let me briefly describe the formalism used for the translation rules.

5.1 The Transfer Rule Formalism

In the Avenue MT system, translation rules can be written by hand, or can
be acquired automatically by the Rule Learning module. The Rule Learner au-
tomatically infers hierarchical syntactic transfer rules, which encode how con-
stituent structures in the source language (SL) transfer to the target language
(TL). Automatic structure learning is done in two main steps: Seed Generation
and Compositionality. For more details, see Probst et al. (2002).

For both types of grammar, the translation rules are comprehensive in the
sense that they include all information that is necessary for parsing, transfer,

Octo
be

r 2
1,

20
04

Draf
t V

ers
ion 5 A FRAMEWORK FOR RULE ADAPTATION 23

a {NP,9} ;; Rule identifier

b NP::NP : [ADJ N] -> [N ADJ]

; x0 y0 x1 x2 y1 y2

c ((x1::y2) (x2::y1) ; alignments

d ((x0 mod) = x1) ; the adjective is the modifier

d (x0 = x2) ; the noun is the head

e (y2 == (y0 mod))

e (y1 = y0)

e ((y2 agr) = (y1 agr)))

Figure 4: English-Spanish translation rule for NP; x here means source and y,
target.

and generation, similar to the modified transfer approach used in the early
Metal system (Hutchins & Somers, 1992). In this regard, they differ from
“traditional” transfer rules that exclude parsing and generation information.

In our system, translation rules have 6 components: a) the type information,
which in most cases corresponds to a syntactic constituent type; b) part-of-
speech/constituent sequence for both the SL (x-side) and the TL (y-side); c)
alignments between the SL constituents and the TL constituents; d) x-side
constraints, which are defined as equality of grammatical features in the SL
sentence; e) y-side constraints, which are defined as equality of grammatical
features in the TL sentence, and f) xy-constraints, which provide information
about which feature values or agreements transfer from the source into the target
language.

Figure 5.1 shows an example of an English to Spanish translation rule for
noun-phrases containing a noun and an adjective. This translation rule swaps
the original English word order, from adjective-noun to noun-adjective, and
enforces their agreement in Spanish. In this case, there are no xy-side constraints
specified by the rule.

In Figure 5.1, the notation NP::NP indicates that a noun phrase (dominated
by an NP node) on the SL side translates into another noun phrase on the
TL side. The constituent sequences are [ADJ N] - > [N ADJ]. The remaining
portion of the transfer rule specifies alignments and constraints. Following a
basic unification-based approach, we assume that each constituent structure
node may have a corresponding feature structure. The feature structure holds
syntactic features (such as number, person, and tense) so that they can be
checked for agreement and other constraints. The feature structure may also
specify the grammatical relations that hold between the nodes.

The feature unification equations used in the rules follow a typical unification
grammar formalism. For more details about the rule formalism, see (Probst
et al., 2002).

Octo
be

r 2
1,

20
04

Draf
t V

ers
ion 5 A FRAMEWORK FOR RULE ADAPTATION 24

5.2 Formalizing Error Information

The MT error typology described above (section 4.2) provides us with a first
approximation to the different refinement operations that we might be able
to perform to improve a translation grammar and lexicon. But how does the
system know when to apply which operation automatically?

In order for any system to apply refinement operations efficiently in an au-
tomatic way, we need to formalize the different kinds of user corrections and the
refinement operations that they should trigger.

We represent TL sentences as vectors of words from 1 to n (n=sentence

length), indexed from 1 to m (m=corpus length)
−−−→
TLm=(W1,...Wi...,Wn),

and the corrected sentence TLm’ as follows:

1.
−−−→
TL′

m=(W1,...,Wi’,...,Wc,...,W
′

n) where Wi represents the error,
namely the word that needs to be modified, deleted or dragged into a different
position by the user in order for the sentence to be correct; and Wi’ represents
the correction, namely the user modification of Wi or the word that needs to
be added by the user in order for the sentence to be correct. Wc represents the
word that gives away the clue with respect to what triggered the correction,
namely the cause of the error.

For example, in the case of lack of agreement between a noun and the ad-
jective that modifies it, as in *el auto roja (the red car), Wc is auto, namely
the word that gives us the clue about what the gender agreement feature value
of Wi, roja, should be. Wc can also be a phrase or constituent like a plural
subject (eg. *[Juan y Maria] cai, where the plural is implied by the conjoined
NP).

Wc is not always present and it can be before or after Wi (i > c or i < c).
They can be contiguous or separated by one or more words.

Finding Triggering Features

After users correct a word Wi, the RR module can compare Wi and its correc-
tion, Wi’, at the feature level and try to find out which is the triggering feature,
namely what feature attribute (or set of attributes, in cases where a corrections
fixes two errors) has a different value in Wi and Wi’.

For RR purposes, we define the difference between an incorrect word and its
correction as the set of feature attributes for which they have different values.
We can extract the set of features and their values from the lexicon5. We call
this the feature delta function (δ) and it can be written as follows:

δ(Wi, Wi’)

The resulting δ set can be one feature attribute, a set of feature attributes,
which are all responsible for the correction, or the empty set.

5If the lexicon contains roots, some kind of morphological analyzer is needed to extract the
features for each word.

Octo
be

r 2
1,

20
04

Draf
t V

ers
ion 5 A FRAMEWORK FOR RULE ADAPTATION 25

Grammar
RR1: R0 → R0 + R1 [=R0’ + constr] Cov[R0] ≤ Cov[R1]
RR2: R0 → R1 [=R0 + constr] Cov[R0] > Cov[R1]
RR3: R0 → R1[=R0 + constr = -] Cov[R0] ≤ Cov[R1,R2]

→ R2[=R0’ + constr =c +]

Lexicon
RR4: Lex0 → Lex0 + Lex1[=Lex0 + constr]
RR5: Lex0 → Lex1[=Lex0 + constr]
RR6: Lex0 → Lex0 + Lex1[≈Lex0 + 6= TLword]
RR7: ∅ → Lex1 (adding lexical item)

Figure 5: Main types of Rule Refinement operations

If the δ set has one or more elements, that indicates that there is a missing
feature constraint for all the attributes in the set. Examples of this can be
found when comparing Spanish variations for red δ(rojo,roja)={gender} and
eat δ(comimos,comia)={person,number}. If the δ set is empty, that indicates
that the existing feature set is insufficient to explain the difference between the
error and the correction and therefore a new binary feature is postulated by
the RR module, feat 1, say. An example of two words that would not have
any attribute with a differing value is δ(mujer,guitarra)={∅}, since the lexical
entries in our grammars are not marked for animacy.

Once the RR module has determined the triggering features, and assuming
the user was able to identify a Wc, it proceeds to refine the relevant grammar
and lexical rules by adding the appropriate feature constraints between Wi and
Wc.

The next section outlines all the Rule Refinement cases taking into account
what information is available to the RR module at each time.

5.3 Rule Refinement Operations

In general, if the new refined rule (R’) needs to translate the same sentences
as before plus the corrected sentence, the original rule R is substituted by the
refined rule R’. However, if the refined rule should only apply to the corrected
sentence, then R bifurcates into R1, whose application needs to be restricted so
as not to apply to the corrected sentence but still apply to the original sentences,
and R2, the refined rule that applies to the corrected sentences.

Figure 5 shows the main types of Rule Refinement operations that we antic-
ipate being able to implement with the RR module. If user corrections require a
brand new rule not already in the original grammar, this falls outside the scope
of this thesis. Instead, the Rule Learner (Probst et al., 2002) would be invoked.

In RR1, the original rule (R0) bifurcates, and the RR module leaves the
original as is, but modifies the new copy of the rule, maybe by changing the
word order and by making it more specific, so that it applies on the new case but

Octo
be

r 2
1,

20
04

Draf
t V

ers
ion 5 A FRAMEWORK FOR RULE ADAPTATION 26

not necessarily on the old. An example of this can be found in object pronouns
in Spanish, which instead of following the verb like object NPs, often appear
in a pre-verbal position (I saw you → *Vi te → Te vi), and thus the VP rule
([V NPobj]) would need to be bifurcated and a specific one created that only
applied to sentences where the object is realized with a pronoun with the order
flipped ([NPobj pron V]). The reason the coverage of R0 might be less than
the coverage of R0 + R1 is that the modification undergone by R1 (R0’) might
allow different kinds of TL sentences to be correctly generated.

In RR2, the original rule is not tight enough, and needs to be made more
specific for all instances of such rule application. A good example of this is if
the NP rule was missing number and gender agreement constraints in Spanish;
the noun, adjective and determiner always need to agree. This requires adding
a constraint equation.

If a rule needs to be bifurcated, the RR module will generate the right
translation by adding the appropriate constraints to the specific rule, but it will
also attempt to decrease ambiguity by blocking the application of the general
rule, since its already known it should not apply in this case. Therefore, RR3,
in addition to modifying the more specific rule in a way very similar to the
one described in RR1, the general rule also gets refined with the addition of
a blocking constraint (R1), so that it applies to the earlier cases (where it
translated correctly) and not to the new case (where it erred).

To go back to the pre-verbal object pronouns in Spanish, if the RR module
has information consistent with the fact that they cannot appear in a post-
verbal position (probably only possible through further user interaction), then
it can block the application of the general rule (R1) to object pronoun, and thus
a constraint requiring the NP not to be of type PRON (constr = -) should be
added. The triggering constraint that gets added to the more specific rule (R2)
is made to constrain that the lexical entry is indeed tagged as + (=c), so that
if the lexical entry is underspecified, only the general rule will apply.

The first two lexical RR operations are the equivalent of the first two gram-
mar RR operations. An example of RR4 can be seen in Mary and Anna fell
→ *Maria y Ana cayeron → Maria y Ana se cayeron, where “se cayeron” needs
to be added to the lexicon with a constraint to distinguish it from “cayeron”,
which is a perfect translation for “fell” in a different context6.

One possible example of RR5 is adding a constraint (constr1 = +) to all
animated nouns, such as woman, boy, Mary, and in contrast with trees, book,
feather, which basically distinguishes nouns with animate referents from nouns
with inanimate referents. The reason we might want to do something like this,
is that in Spanish animacy is marked explicitly in the sentence in front of the
object NP (e.g. I saw Mary → Vi a Maria).

RR6 is to add a sense missing to the lexicon. Namely, the translation of
an SL word required for a sentence is not the one in the lexicon, but a dif-
ferent one. In this case, the RR module, duplicates Lex0 and changes the TL
side to match the translation proposed by the user. For example, if users were

6Cayeron billetes del cielo

Octo
be

r 2
1,

20
04

Draf
t V

ers
ion 5 A FRAMEWORK FOR RULE ADAPTATION 27

given Wally plays guitar → *Wally juega guitarra, they would correct the trans-
lation of “plays” and change “juega” into “toca”, which is the right sense for
play + instrument in Spanish. If the lexicon only had an entry for [plays]→[juega],
then RR6 would apply and generate a new entry ([plays]→[toca]) with the same
feature constraints, but with the TL word modified.

Finally, RR7 represents the operation required for out-of-vocabulary words,
i.e. there is no lexical entry for the SL word aligned to it, and thus the system
does not output a translation for it.

As an attempt to formalize most of the different Rule Refinements cases, I
organized them according to the type of action users can perform to correct
a sentence using the TCTool, and then according to what error information is
available to the RR module. For each RR operation, I indicate what type from
the error typology specified above (Section 4.2) they belong to.

The first two types from the MT error typology above (misspelling and
missing translation) are trivial and thus are not described here. Cases where
one correction involves more than two TCTool actions, such as the example
given for type 5.1.2 above, are harder to detect as being part of the same error
correction, and thus might not allow for automatic refinement.

The following typology sketches the different specific Rule Refinement cases
identified so far. When the user identifies a triggering word (indicated as “+
Wc” below), there usually is a fully automatic way to refine the appropriate
rules, even though further interaction with users might make the refinement
more robust. Most cases where user did not identify a triggering word (“- Wc”)
will require some amount of Active Learning to be solvable, and this is explicitly
indicated below with something like “find a MP”, where MP stands for minimal
pair.

For complete refinement simulations see next section.

1. Modify a word: Wi → W′

i
7

If modified word is in the dictionary:
1.a + Wc

1.a.1. δ(Wi,W
′

i) 6= {∅}
Error type: 7.2.1 (agreement)
RR: add constraints for all the features in the δ set
between Wi and Wc (assuming they have the same mother)

1.a.2. δ(Wi,W
′

i) = {∅}
Error type: 6 (incorrect word: sense, form, etc.)
RR: postulate new binary feature (featn) and add a
constraint between Wi and Wc

1.b − Wc
8

7Assume there is no change in POS unless otherwise indicated.
8Either because user did not identify it, or because the triggering context is not localized

in one word, but rather it’s the syntactic structure.

Octo
be

r 2
1,

20
04

Draf
t V

ers
ion 5 A FRAMEWORK FOR RULE ADAPTATION 28

1.b.1. δ(Wi,W
′

i) 6= {∅}
Error type: 7 (agreement)
RR: use δ set to find all potential Wc (look for other
words which have the same value as W′

i for the features
in the δ set), change the value of the δ set for one potential Wc

at a time to be the same as in Wi, and ask users to correct
new sentence (TL”). If they change W′

i back to Wi,
we’ve identified the Wc. Proceed as in 1.a.1 above.

1.b.2. δ(Wi,W
′

i) = {∅}
Error type: 6 (incorrect word: sense, form, etc.)
RR: Postulate a new binary feature and add with a +
to the lexical entry for W′

i and with − to the lexical
entry for Wi. Add the feature constraint with value +
for Yi to the appropriate rule.

If the Wi is not in the dictionary as the translation of SLWi, first add it
and then apply 1.b.2.

2. Add a word: ∅ → Wi’

If aligned to an unaligned SL word, check lexicon for [WSL] → [Wi’],
if not there, add to lexicon (Error type: 3.2).

Look for POS of Wi’ (POSi’)
2.a + Wc

2.a.1. rule with the right POS sequence exists (including POSi)
Error type: 3 (missing word)
RR: Postulate a new binary feature and add it to Wc and
Wi (with value +) and a feature constraint to the rules
to enforce the agreement between them (Yc and Yi).
That might be too specific, and we might need to adjust it
by coping the general rule and just adding the constraint
to the duplicate.

2.a.2. no rule including POSi’ in the right position
Error type: 3 (missing word)
RR: 2 options: make a general rule including POSi’ or add
“Wi’ ” directly to the rule (active learning). The Wc

will indicate which rule needs to be modified; Wi’|POSi’
will be added to the mother of Wc in the position indicated
by the user (ith). Proceed as in 2.a.1 for POS-level. For
word-level refinement, add feature constraint to Yc.

2.b − Wc
9

9Either because user did not identify it, or because the triggering context is not localized
in one word, but rather it’s the syntactic structure.

Octo
be

r 2
1,

20
04

Draf
t V

ers
ion 5 A FRAMEWORK FOR RULE ADAPTATION 29

2.b.1. Alignment added to Wi

Error type: 3 (missing word)
Add lexical entry with the SL word(s) aligned to Wi’
in addition to previous TL words that were part of the
lexical entry, if any
([SLW i] → [(TLW i − 1) Wi’ (TLW i + 1)]).

2.b.2. No alignment (or Wi aligned to discontinuous SL words)
Error type: 3.3 (missing word)
RR: create a specific, lexicalized rule, or give to RL.
This will most likely not be an optimal solution.

3. Delete a word: Wi → ∅

3.a + alignment (→ Wc)
Error type: 4.1 (extra word)
If user aligns the SL word(s), which used to be aligned
to Wi, to another TL word, we consider it to be Wc.
Make adjustments to lexicon accordingly so that the newly
aligned SL word together with the SL words that were
previously aligned to Wc form a lexical entry.
([SL word(s)] → [∅i Wc]).

3.b − alignment (→ − Wc)
Error type: 4.2 (extra word)
RR: Look for similar examples in the corpus, where the rule that
generated Wi applied correctly, and try to figure out
the relevant difference with active learning (i.e. by creating
MPs and asking users to correct them), or send back to RL.

4. Change word order: Wi (...) Wc → Wc (...) Wi

4.a contiguous Wi Wc

4.a.1. = Wi

Error type: 5.1.1.1
RR: If the rule with the final order in the RHS doesn’t exist,
create one (duplicate + order flipped: POSc POSi).
Find a MP where the original rule (POSi POSc) applies
successfully and query the user to try to find the triggering
context. Add appropriate constraints. Alternatively,
send back to RL.

4.a.2. Wi → W′

i

4.a.2.1. POSi = POS′

i

Error type: 5.1.1.2 (single word order change)
RR: Flip POSi and POSc. Solve as in 1.b.2.

Octo
be

r 2
1,

20
04

Draf
t V

ers
ion 5 A FRAMEWORK FOR RULE ADAPTATION 30

4.a.2.2. POSi 6= POS′

i

Error type: 5.1.1.2 (single (local) word order change)
RR: If the δ function contains only pos,
we assume the different POS is responsible for the
change of order, so we add a new feature constraint
to the modified rule, where ((yi pos) =c POS′i)

4.b non-contiguous Wi (...) Wc

Error type: 5.2 (long distance word order)
RR: Send back to RL

4.c − Wc (contiguous)
Error type: 5.1 (local word order change)
If the rule with the final order doesn’t exist, create one
(duplicate + order flipped: POSj POSi). Find a MP where
the original rule (POSi POSj) applied successfully,
calculate the δ function (at the sentence level, Section 9.3.3)
to find the triggering context. Add appropriate constraints.
Alternatively, send back to RL.

All refinement operations can be done at the word level or at the POS level.
Without further information, we don’t know which level is most appropriate for
each case. However, we can set some reasonable defaults when in batch mode,
and use some Active Learning methods to determine what is the right level of
granularity for each case when in interactive mode.

5.4 Rule Refinement Simulations

This section illustrates the actual refinement operations by going through a few
different refinement examples for each correcting action that users can perform
with the online Translation Correction Tool.

Modifying a word
When users modify a word, the TCTool displays a window to elicit more in-
formation about what triggered the correction (Wc). Such information is then
used for refinement purposes.

a) Lexical refinement. [Error type 2] If a word is not in the translation
lexicon, the MT system leaves the SL word untranslated as is, and the user
will need to translate it and indicate that it did not translate. In this case, the
RR module will just need to augment the bilingual lexicon with the new lexical
entry.

[Error type 6.1 / RR op. 1.a.2] If a word has a different sense from
what the translation indicates, users will need to correct it and indicate what
is the word in the TL sentence that hints to this. If the correct sense is missing
in the lexicon, the RR module will add it. Otherwise, it will need to create a
value constraint that forces the right sense to co-occur with the triggering word

Octo
be

r 2
1,

20
04

Draf
t V

ers
ion 5 A FRAMEWORK FOR RULE ADAPTATION 31

to all the appropriate lexical entries, and an agreement constraint to the right
grammar rule. For example, consider they told me to fire a seller and
its translation me dijeron que disparara un vendedor. Bilingual users can
easily detect that even though disparar would be the correct translation of
fire in a different context (they told me to fire a gun), in this sentence,
it should be translated as despidiera.

Since there is no feature in the grammar that makes this distinction10, the
RR module will postulate a new binary feature, feat 3, and add it to the ap-
propriate VP rule (VP::VP : [V NP] -> [V NP] ... ((y1 feat 3) = (y2

feat 3))) as well as to the relevant lexical entries to allow for only the right
verb-direct object combinations:

fire-despedir(feat 3 = +) fire-disparar(feat 3 = -)

seller-vendedor(feat 3 = +) gun-pistola(feat 3 = -)

b) Syntactic refinement: [Error type 7.2 / RR op. 1.a.1] If a word
needs to agree with some other word in the sentence, but it does not, users will
detect this and correct the appropriate word. For example, if users are given
the chairs were very high - las sillas son muy alto, they will proba-
bly change alto to be altas so that it agrees with sillas, and will indicate
that it is sillas that gives them the clue about the error.

Let’s examine a fully fleshed-out refinement simulation for this example,
describing the steps taken by the RR module, assuming that users correctly
change alto into altas and indicate that altas has to agree with sillas.

Step 0: since the delta function of the incorrect word and the corrected
word is a set of attributes (δ(alto,altas) = {number,gender}), we take them
to all be triggering attributes.

Step 1: make sure altas appears as the translation of high in the lexicon
with the right POS, otherwise, create a duplicate lexical entry and change the
values for the attributes (y0 agr num) (y0 agr gen). In this case, both alto

and altas are in the lexicon:

ADJ::ADJ |: [high] -> [alto] ADJ::ADJ |: [high] -> [altas]

((X1::Y1) ((X1::Y1)

((x0 form) = high) ((x0 form) = high)

((y0 agr num) = sg) ((y0 agr num) = pl)

((y0 agr gen) = masc)) ((y0 agr gen) = fem))

Step 2: look at the tree output of the MT system and check whether sillas
and alto are subsumed by a common node:

tree: <((S,1 (NP,3 (DET,9:1 "LAS") (N,70:2 "SILLAS"))

(VP,1 (V,88:3 "SON"))))>

<(ADV,5:4 "MUY")> <(ADJ,8:5 "ALTO")>

a. if they do (suppose we had an S rule which spanned the whole sentence:
<(s (np (det las) (n sillas)) (vp (v son) (adjp (adv muy) (adj altas))))>),

10δ(disparara,despidiera) = {∅}.

Octo
be

r 2
1,

20
04

Draf
t V

ers
ion 5 A FRAMEWORK FOR RULE ADAPTATION 32

add an agreement constraint to the rule rooted at the parent node between the
modified word and the triggering word. In this case, ((y2 daughter 2 agr) =

(y1 agr)):

{S,2} {VP,4’}

S::S : [NP VP] -> [NP VP] VP::VP : [V ADJP] -> [V ADJP]

((X1::Y1) (X2::Y2) ((X1::Y1)

((x1 case) = nom) (X2::Y2)

((x0 subj) = x1) (x0 = x1)

(x0 = x2) ((y0 daughter_2 agr) = (y2 agr)))

(y1 == (y0 subj))

((y0 agr) = (y1 agr)) ; passing the head agr features up to mother

((y2 agr) = (y1 agr)) ; subj-verb agreement

((y2 daughter_2 agr) = (y1 agr))) ; subj-predadj agreement

Additionally, the RR module needs to make sure the VPwith [V ADJP] passes
the agr features of the second daughter (ADJP) up to the head as daughter 2

agr (as shown in rule {VP,4} above).
A linguist would have probably labeled daughter 2 as pred to indicate that

the predicative adjective needs to agree with the subject of the sentence. Assign-
ing more mnemonic labels can always be done a posteriori, if desired, but it is
impossible to do automatically, and it makes no difference (beyond readability)
in the resulting rules.

b. if they do not have the same mother (i.e. there is no rule that spans
over the modified word and the triggering word), the RR module feeds the
SL sentence - TL sentence pair back into the Rule Learning module as a new
training example.

If we are running the system in interactive mode, once the refinement is
completed, the MT system is run with the refined grammar and lexicon and the
new translation for the SL sentence is presented to the user again for confirma-
tion.

Adding a word
[Error type 3.3 / RR op. 2] Given the Spanish translation viste la mujer

from the English sentence you saw the woman, users will insert the word a in
front of la mujer yielding viste a la mujer, and thus we instantiate Wi to
W2=a, and its POS is preposition (PREP). The reason for this correction is
that in Spanish, direct objects with animate referent are marked with a (viste
a la mujer vs. viste la pluma).

If users mark mujer as being the word in the translation responsible for
the correction, then we have instantiated Wc to W4=mujer (RR op. 2.a).
In the manually written grammar, there is no rule with the sequences V PP,
V PREP NP or V “a” NP, and thus, we arrive at 2.a.2 in the RR typology
above.

If the user aligned the a to one or more words in the SL sentence, we would
have an indication that a lexical refinement is needed, however there is no word
in the SL that translates into a, thus most users will leave it unaligned. Hence,
we conclude that the refinement needs to be in the grammar.

Octo
be

r 2
1,

20
04

Draf
t V

ers
ion 5 A FRAMEWORK FOR RULE ADAPTATION 33

Now, the RR module has two choices: 1) it can either directly add an a in
the 2nd position of the right hand side of the rule that should contain both a

and mujer, in this case it is the VP rule [V NP] → [V NP], so as to obtain
[V NP]→ [V ‘‘a’’ NP], or 2) it can add a PREP in the same position and the
same rule to yield: [V NP]→ [V PREP NP].

In this case, only the first choice is correct, and adding a PREP results in an
overgeneralization (it would yield to arbitrary productions in the TL). The RR
module can not know this a priori, and thus at this point, it can follow different
strategies, depending on the mode of operation and the default settings.

If the system is running in batch mode, we set the default to always adding
the most specific constraint possible (or multiple feature constraints if |delta| >

1), namely if users added or modified a word, it does not infer that they would
have done the same with a different word just because it has the same POS. In
this case, this strategy would result in the right refinement and thus no further
user interaction would be needed.

If the system is running in interactive mode, to determine whether any prepo-
sition could be added in the translation or just a, the RR module will need to
find sentences that differ minimally with the TL sentence (called minimal pairs)
to give to users.

In any case, once we have created a new rule to accommodate for the cor-
rection, some constraints need to be added to the rules so as to restrict the
generation of an a only in the right context. Again, if we’re in batch mode, the
best strategy is to just add the most specific constraint, to make sure we’re not
introducing incorrect generalizations.

As stipulated in RR op. 2.a.1, The RR module postulates a new binary
feature, feat 1, to automatically extend the feature language. Then, feat 1 =

+ is added to the lexical entry for mujer, and to the appropriate rules. Given
the output of the MT system and the user correction specified below, the RR
module will bifurcate the appropriate grammar rule (VP,3) by making a copy
of it, renaming it with the next VP-rule index available (VP,5), and adding “a”
in the appropriate position on the right hand side of the context-free backbone,
as you can see below:

N::N |: [woman] -> [mujer]

((X1::Y1)

((x0 form) = woman)

((x0 agr pers) = 3)

((x0 agr num) = sg)

((y0 agr gen) = fem)

((y0 feat_1) = +))

{VP,3} ;; general rule {VP,5} ;; (I) saw the woman -> viste a la mujer

VP::VP : [VP NP] -> [VP NP] VP::VP : [VP NP] -> [VP ‘‘a’’ NP]

((X1::Y1) (X2::Y2) ((X1::Y1) (X2::Y3)

((x2 case) = acc) ((x2 case) = acc)

((x0 obj) = x2) ((x0 obj) = x2)

((x0 agr) = (x1 agr)) ((x0 agr) = (x1 agr))

(y2 == (y0 obj)) ((y3 feat_1) =c +)

((y0 tense) = (x0 tense)) (y3 == (y0 obj))

((y0 agr) = (y1 agr))) ((y0 tense) = (x0 tense))

Octo
be

r 2
1,

20
04

Draf
t V

ers
ion 5 A FRAMEWORK FOR RULE ADAPTATION 34

((y0 agr) = (y1 agr)))

The =c11 part of the equation ensures that lexical entries underspecified wrt.
feat 1 do not unify with it, and thus it prevents rule {VP,5} to apply for nouns
with no value for the feat 1 constraint. Since adding a word or a constituent
to a rule changes the alignment specifications required, the RR module has to
make sure that all instances of y2 are now changed to be y3. But there is still
something missing, for the constraint in rule VP,5 to have any effect, the RR
module still has to make sure that the value of feat 1 percolates up from the
lexical entry mujer to its mother, the NP rule:

{NP,3}

NP::NP : [DET N] -> [DET N]

((X1::Y1) (X2::Y2)

((x0 def) = (x1 def))

((x0 det) = x1)

(x0 = x2)

(y1 == (y0 det))

((y0 feat_1) = (y2 feat_1))

((y1 agr) = (y2 agr)))

If we are running the interactive mode, we need to find out whether a is added
because the noun of the object NP is mujer or because it belongs to a larger
class of nouns that require this behavior (nouns whose referent is animated).

And so first the RR module needs to look for instances of ”X saw(in any form
of the verb to see) Y”, where Y is different from la mujer, in the Elicitation
corpus and put it in the right form to create a minimal pair (“I saw Y - vi a
Y”, where Y = la mesa, el árbol, los muchachos,...). In this case, the
Elicitation corpus already contains I saw the feather, which is translated by
the MT system as vi la pluma, and users evaluate as being correct.

Given the corrected TL sentence, vi a la mujer (T1’), and its minimal
pair T2, vi la pluma, the RR module can calculate the delta function to ex-
tract the differing features between them12. In this case, the δ set is empty:
δ(mujer,pluma) = {∅}, since all the feature attributes for the two words are
the same. In other words, there is no existing feature in our feature language
that can be used to discriminate between these two words, and hence between
T1 and T2.

At this point, the RR module would postulate a new feature, feat 1, just
like in batch mode. However, in this case, the new feature is used to discriminate
between NP[mujer] ((y0 feat 1) = +)) and NP[pluma] ((y0 feat 1) =

-)), and the rest of the refinement operations are as described above.
Note that, if users do not identify a Wc in the translation, and a relevant

minimal pair did not already exist in the Elicitation corpus or as already cor-
rected data, the only way to perform the appropriate refinements would be if

11Constraint equations use ’=c’ to enforce that the right and left hand-side values are not
empty. Both values must exist and be equal for a constraint equation to unify.

12The delta function can be straightforwardly calculated between minimal pair words, or
even minimal pair sentences, if they have the same length and structure, see Section 9.3.3 for
details.

Octo
be

r 2
1,

20
04

Draf
t V

ers
ion 5 A FRAMEWORK FOR RULE ADAPTATION 35

we could run the system in interactive mode, and query users with a few more
sentences to determine Wc and the triggering context. This is a form of Active
Learning where the system strives for minimal number of interactions to obtain
the desired information.

Deleting a word
Most corrections can lead to refinements at two levels: the lexical and the syn-
tactic level. And very often refinements need to be performed at both levels.

a) Lexical refinement. [Error type 4.1 / RR op. 3] Given the SL sen-
tence I would like to show you my home and its translation Me gustarı́a

que mostrar tu mi hogar, users will detect that the translation of to is not
required in the Spanish translation and in fact it makes the sentence incorrect.
In the TCTool, all the SL words that are translated into gustarı́a should also
be aligned to it, indicating that they are part of the same lexical rule. Hence,
if users align to to gustarı́a (RR op. 3.a), the RR module just needs to sub-
stitute [would like] → [gustarı́a] by [would like to] → [gustarı́a] in
the lexicon to account for the user correction.

b) Syntactic refinement. [Error type 4.2 / RR op. 3.b] Suppose the
Rule Learning module acquired an NP rule from the translation pair Books are

interesting - Los libros son interesantes, which adds a definite article
in front of a noun in Spanish ([N] → [DET N]). Thus, when translating the new
sentence I want books, the MT system will output Yo quiero los libros.
In this case, users will hopefully realize that the correct translation of books in
this sentence is not los libros, but rather libros, and will delete los with
the TCTool. Since, unlike the previous example (Books are interesting -

Los libros son interesantes), in this case, the Spanish object NP has a
determiner or not depending on whether the English has one. In the object
position, the presence of a determiner has a different meaning (+the/los →
specific books; -the/los → books in general).

The appropriate NP rule ([N] → [N]) has probably already been learned
before, so what the RR module needs to do in this case is restrict the application
of [N] → [DET N] to apply only in subject positions. One way to do this
is by adding a new feature, feat 2, with + as value for the NPs that are in
subject position, by adding ((y0 feat 2) = +) to the mother node of the NP
rule (NP::NP [N] → [DET N]) and to the S rule that contains an NP in the
subject position. Now, for the refinement to be effective for the example under
consideration, we also need to add a blocking constraint to the VP rule, so that
the NP above never applies in the object position:

{VP,3} ;; general rule

VP::VP : [VP NP] -> [VP NP]

((X1::Y1) (X2::Y2)

((x2 case) = acc)

((x0 obj) = x2)

((x0 agr) = (x1 agr))

(y2 == (y0 obj))

((y2 feat_2) = -)

((y0 tense) = (x0 tense))

Octo
be

r 2
1,

20
04

Draf
t V

ers
ion 6 COMPARING GRAMMARS FOR THE PURPOSE OF RR 36

((y0 agr) = (y1 agr)))

The only problem is, how does the RR module know that this is the right
thing to do? Namely, how can the system know from the deletion of the de-
terminer that it is because it’s part of the object of the sentence, and not the
subject.

Realistically, this type of corrections can only be resolved with further non-
trivial user interaction. In batch mode, there would be little chance for a system
to figure out automatically what the triggering context is and where the con-
straint needs to be added.

Changing word order
[Error type 5.1.1.2 / RR op. 4.a.2.1] If we are given the English sentence
Juan is a great friend, and the translation grammar has the following gen-
eral rule for noun phrases NP: [ADJ N] → [N ADJ] (see Figure 4 in Section 5.1
above for the whole rule), the translation output from the MT system will be
Juan es un amigo grande, since that is what the general rule for nouns and
adjectives in Spanish dictates. However, this sentence instantiates an exception
to the general rule. Thus, given that the user will most likely correct the sen-
tence into Juan es un gran amigo, we need to refine the grammar so that it
also accounts for prenominal adjectives, in addition to the most common type
of noun-adjective constructions.

If we have a general translation rule that accounts for the most common N

ADJ order in Spanish (Juan es un chico simpático - Juan is a friendly

guy) and are given a corrected TL sentence with a prenominal adjective (ex:
Juan es un gran amigo, i.e. an exception to the general rule NP,9 in Figure 4),
the RR module will swap the POS in the y-side of the duplicate rule (updating
the alignments appropriately) and will add a new feature, feat 4 with value +

to gran and with value - to grande. Now, the feature constraint ((feat 4) =c

+) also needs to be added to Yi, namely the prenominal ADJ. The resulting
refined rule will look like this:

{NP,10} ; copy of NP,9. Juan is a great friend -> Juan es un gran amigo

NP::NP : [ADJ N] -> [ADJ N]

((x1::y1) (x2::y2) ; constituent alignments

((x0 mod) = x1) ; ADJ is the modifier

(x0 = x2) ; N is the head

((y1 feat_4) =c +) ; only ADJs marked as (feat_4=+) can go before N

(y1 == (y0 mod))

(y2 = y0)

((y1 agr) = (y2 agr))) ; ADJ agrees with N

As before, for completion, and so that gran does not fire with the general
rule, ((feat 4) = -) also needs to be added to NP,9.

6 Comparing grammars for the purpose of RR

Ultimately, we would like to be able to develop a set of universal refinement
operations that are user and language independent and that apply to any gram-

Octo
be

r 2
1,

20
04

Draf
t V

ers
ion 6 COMPARING GRAMMARS FOR THE PURPOSE OF RR 37

mar. However, this is unrealistic.
I ran an experiment to determine the main differences between refinements

required to improve a manually written MT grammar and those needed to fix
an automatically learned grammar, assuming they both follow the formalism
described in Section 5.1 above. A summary of this experiment is reported in
Font-Llitjós et al. (2004).

The manually written grammar used for this experiment was the same one
for the English-Spanish user studies mentioned in section 4.3 (12 rules: 2 S
rules, 7 NP rules and 3 VP rules). Two example rules are give below.

{S,0} {VP,3}

S::S : [NP VP] -> [VP] VP::VP : [VP NP] -> [VP NP]

; x0 y0 x1 x2 y1 ((X1::Y1) (X2::Y2)

((X2::Y1) ; set constituent alignments ((x2 case) = acc)

((x1 agr pers) = (*OR* 1 2)) ((x0 obj) = x2)

((x1 agr num) = sg) ((x0 agr) = (x1 agr))

((x1 case) = nom) (y2 == (y0 obj))

(x0 = x2) ((y0 tense) = (x0 tense))

((y1 agr) = (x1 agr))) ((y0 agr) = (y1 agr)))

The automatically learned grammars were built with the Avenue Rule
Learning (RL) module (Probst et al., 2002) on the same data set used to write
the manual grammar for the English-Spanish user study. This training set con-
tains the first 200 sentences from the Avenue Elicitation corpus.

For this experiment, both MT systems used a lexicon with 442 entries, devel-
oped semi-automatically seeking to also cover the test corpus (next 200 sentences
in the Elicitation corpus), so that we can measure the effectiveness of the rules
and abstract away from lexical gaps in the translation system.

The RL module can produce a basic grammar fully automatically from word-
aligned translation pairs, namely the ones from the Elicitation corpus examples.

The grammar learned by the RL is enhanced by traversing each English parse
tree from the top down. For each internal node, i.e. nodes that do not pertain to
only one specific word, the enhancement algorithm extracts the subtree rooted
at this node. Then, using the word alignments provided by the bilingual user,
it forms a new training example for the English and Spanish chunks covered by
the subtree.

For this experiment, the English training data was parsed using the Charniak
parser (Charniak, 2000) and two different grammars were built, both with the
basic and enhanced settings. The first grammar was built with the current
version of the RL module, which does not learn feature constraints, and the
second one included a few feature constraints (gender, number, person and
tense) extracted from morphological analyzers for both English and Spanish .

The enhanced version of the first grammar (with no constraints), learned
from 214 English-Spanish sentence pairs, contains 92 translation rules: 54 S
rules, 16 NP rules, 19 VP rules, 1 PP rule and 2 ADVP rules. The following
four rules are examples of the first grammar.

{S,8} {NP,9}

S::S [NP VP] -> [VP NP] NP::NP [DET ADJ N] -> [DET N ADJ

Octo
be

r 2
1,

20
04

Draf
t V

ers
ion 6 COMPARING GRAMMARS FOR THE PURPOSE OF RR 38

((X1::Y2) (X2::Y1)) ((X1::Y1) (X2::Y3) (X3::Y2))

{VP,16} {VP,18}

VP::VP [AUX V NP] -> [AUX V NP] VP::VP [AUX "PICKING" "UP" NP] ->

((X1::Y1) (X2::Y2) (X3::Y3)) [AUX "RECOGIENDO" NP]

((X1::Y1) (X4::Y3))

The enhanced version of the second grammar, the one with with constraints,
contains 316 translation rules (194 S, 43 NP, 78 VP and 1 PP), 223 more than
the learned grammar with no constraints. Examples from the second grammar
learned are shown below.

{S,90} {VP,46}

S::S [NP VP] -> [NP VP] VP::VP [V NP] -> [V NP]

((X1::Y1)(X2::Y2) ((X1::Y1)(X2::Y2)

((X1 def) = +) ((X2 def) = -)

((X2 def) = -) ((X2 agr num) = sg)

((X2 agr num) = (X1 agr num)) ((Y1 agr pers) = 2)

((X2 tense) = past) ((Y2 agr gen) = masc)

((Y2 agr gen) = (Y1 agr gen)) ((Y2 agr num) = (Y1 agr num)))

((Y2 agr num) = (Y1 agr num)))

Since there is no fair way to compare the rules from the first grammar with
manually written rules and their effect on translation quality, I take the second
grammar, the one with feature constraints, to be the final learned grammar and
use it for further comparison.

The reason there are many more rules in the learned grammars is that the
current implementation of the RL module does not throw away rules that are
too specific and that are subsumed by rules which have achieved a higher level
of generalization during the learning process. Note that the RL module is still
under development.

When running our transfer system on a test set of 32 sentences, it was ob-
served that the manually written grammar results in less ambiguity (on average
1.6 different translations per sentence) than the automatically learned grammar
(18.6 different translations per sentence). At the same time, the final version
of the learned grammar results in less ambiguity than the initial learned gram-
mar with no constraints. This is to be expected, since relevant constraints will
restrict the application of general rules to the appropriate cases.

Ambiguity is less of a serious problem than it may appear, since the goal
of the transfer engine is to produce the most likely output first, i.e. with the
highest rank. In experiments reported elsewhere (Lavie et al., 2003), we have
used a statistical decoder with a TL language model to disambiguate between
different translation hypotheses. We are currently investigating methods to
prioritize rules and partial analyses within the transfer engine, so that we can
rank translation hypotheses also when no TL language model is available.

While this work is under investigation, I emulated this module with a simple
reordering of the grammar. I reordered three rules (2 NP and 1 S rule) that had
a high level of generalization (namely containing agreement constraints instead
of the more specific value constraints) to be at the beginning of the grammar.

Octo
be

r 2
1,

20
04

Draf
t V

ers
ion 6 COMPARING GRAMMARS FOR THE PURPOSE OF RR 39

This in effect gives higher priority to the translations produced with these rules,
since it outputs them first, which has a direct impact in the comparison results
reported below.

6.1 Comparing Grammar Output

For the purpose of rule refinement, we only looked at the first five translations
output by the learned grammar, since this is what users of the TCTool are asked
to correct. Ultimately, given a correction, the RR module will first check through
the whole list of the alternative translations, and if the corrected translation was
already generated by our MT system, it will just trace back to the right rules
and add the appropriate constraints. Once in place, this mechanism will work
as a kind of Reinforcement Learning.

Most of the translation errors produced by the manual grammar can be
classified into lack of subj-pred agreement, wrong word order of object pronouns
(clitic), wrong preposition and wrong form (case) and out-of-vocabulary word.
On top of the errors produced by the manual grammar, the current version of
the learned grammar also had errors of the following types: missing agreement
constraints, missing preposition and overgeneralization.

An example of differences between the errors produced by the two types of
grammar can be seen in the translation of John and Mary fell. The manual
grammar translates it as *Juan y Maria cayeron, whereas the learned gram-
mar translated it as **Juan y Maria cai. The learned grammar does have an
NP rule that covers [Juan y Maria], however it lacks the number constraint
that indicates that the number of an NP with this constituent sequence ([NP
CONJ NP]) has to be plural. The translation produced by the manual grammar,
*Juan y Maria cayeron, is also ungrammatical, but the translation error in
this case is a bit more subtle and thus much harder to detect. The correct
translation is Juan y Maria se cayeron.

Another example to illustrate this is the translations of John held me with

his arm. The MT system with the manual grammar outputs *Juan sujetó me

con su brazo, whereas the one with the learned grammar outputs **A Juan

sujetó me con su brazo.
Sometimes the output from the learned grammar is actually better than

the manual grammar output. An example of this can be seen in the trans-
lations of Mother, can you help us?. The manual grammar translated this
as **Madre, puedo ayudar nos? and the learned grammar translates is as
*Madre, puedes tu ayudar nos?. The number of corrections required to fix
both translations is the same, but the one produced by the learned grammar is
clearly better, from a fluency prespective.

6.2 Error Analysis

The 32 sentences used in the English-Spanish user study described in Section 4.3
were translated using both grammars described above. We looked at the five
first translations only, and found that both grammars translated the same four

Octo
be

r 2
1,

20
04

Draf
t V

ers
ion 6 COMPARING GRAMMARS FOR THE PURPOSE OF RR 40

SL sentences correctly. Even though the final number of SL sentences correctly
translated by the two grammars is the same, overall, the quality of the transla-
tions produced by the learned grammar was worse.

number of sentences (over 32)

same translation 17 (of which 3 correct)
manual grammar better 10
learned grammar better 2
different error type 3 (of which 1 correct)

Table 2: Error analysis result of manual inspection of the output from the
learned grammar and the manually written grammar. See next section for
examples.

We looked at the best translation for each source language sentence in the
user study for one grammar and compared it with the best translation for the
other grammar. The results of manual inspection can be seen in Table 2.

We also created a hypothesis file with the output for each one of the gram-
mars and calculated the standard automatic evaluation metrics, taking user
corrections as reference. The results shown in Table 3 are consistent with those
obtained from manual inspection, in that even though the manual grammar per-
forms better when compared to user corrections, the learned grammar does not
do terribly worse. See Section 7 for a brief description of what these automatic
MT evaluation metrics measure.

NIST BLEU METEOR

manual grammar 4.3 0.16 0.6
learned grammar 3.7 0.14 0.55

Table 3: Automatic MT evaluation results for both types of grammars.

6.3 Rule Refinements Required for Each Type of Gram-

mar

Since 15 out of 32 sentences contained different translation errors for each gram-
mar, the refinement operations required by the translations rules of the two
grammars might not be the same for a given SL sentence. Following are a few
examples of the cases listed in Table 2.

Same translation
In many cases, the sentences were translated in the same way by the two gram-
mars, and thus they need the same rule refinement operations to be corrected.
Sentences that only differ in the optional subject pronoun are included in this
category, since both alternatives are correct in Spanish. These are two examples
from the test set that illustrate this:

Octo
be

r 2
1,

20
04

Draf
t V

ers
ion 7 AUTOMATIC MT EVALUATION 41

SL: I saw you yesterday - TL: *(Yo) vi tu ayer → CTL: Te vi ayer [RR op. 4.a.2.1]

SL: It was a small ball - TL: eso era un balón pequeño

CTL stands for correct target language sentence, i.e. correct translation.
Different Translation

For 10 sentences in the test set, even though both translations are wrong, the
manual grammar output requires fewer corrections. TLl is the TL sentence
output by the automatically learned grammar and TLm is the one output by
the manually written grammar:

SL: I’m proud of you → CTL: Yo estoy orgullo de ti
TLl: **Yo estoy orgulloso tu [RR op. 2.1 (+de) + 1.a.1 (tu → ti)]

TLm: *Yo estoy orgulloso de tu [RR op. 1.a.1 (tu → ti)]

besides changing the tu into ti in both cases, the learned grammar needs an
extra refinement, the addition of de in front of the second person pronoun. In
fact, it is the presence of the preposition that enforces the oblique case.

In addition to the example given section 6.1, the learned grammar output
requires less amount of refinement for the following SL sentence:

SL: I like you → CTL: Me gustas tu
TLl: *Yo me gustas tu [RR op. 3 (yo → ∅)]
TLm: **Me gusta tu [RR op. 1.a.1 (gusta → gustas)]

In a few cases, both grammars output equally bad translations, but with
different kinds of errors:

SL: He looked at me → CTL: él me miró
TLl: *él miraron me [RR op. 4.a.1 (me miraron) + 1.a.1 (miraron → miró)]

TLm: * él miró en me [RR op. 3.a (en → ∅) + 4.a.1 (me miró)]

This experiment reveals a couple of main interesting differences between the re-
finements required by hand-crafted grammars and automatically learned gram-
mars. Several rule refinements required to correct sentences translated by the
hand-crafted grammar involve bifurcating a rule to encode an exception, whereas
a larger portion of the refinements necessary to refine the learned grammar in-
volve adding or deleting agreement constraints.

In general, the biggest differences between the hand-crafted and the learned
grammar is that the learned grammar has a higher level of lexicalization and,
currently, it can make good use of the Rule Refinement module to make adjust-
ments to the feature and agreement constraints to achieve the appropriate level
of generalization.

7 Automatic MT Evaluation

To determine the upper-bound on the improvement that can be expected from
any RR module under ideal circumstances, and abstracting away from the TC-
Tool, I set up an oracle experiment where raw MT output was compared with
manually corrected MT output (to simulate the best output possible produced
by an ideally refined grammar), via automatic MT evaluation metrics,.

As explained by Zhang et al. (2004), the central idea of automatic evalua-
tion is to use a weighted average of variable length phrase matches against the
reference translations. This view gives rise to a family of metrics using various

Octo
be

r 2
1,

20
04

Draf
t V

ers
ion 8 DISCUSSION 42

weighting schemes. Based on these principles, the IBM MT research group pro-
posed the BLEU metric. BLEU averages the precision for unigram, bigram and
up to 4-grams and applies a length penalty if the generated sentence is shorter
than the best matching (in length) reference translation (Papineni et al., 2001).
A variant of BLEU has been adopted by NIST for its MT effort. The NIST met-
ric is derived from the BLEU evaluation criterion but differs in one fundamental
aspect: instead of n-gram precision the information gain from each n-gram is
taken into account. The idea behind this is to give more credit if a system gets
an n-gram match that is difficult, but to give less credit for an n-gram match
which is easy (NIST, 2002).

Recent research has shown that a balanced harmonic mean (F1 measure)
of unigram precision and recall outperforms the widely used BLEU and NIST
metrics for Machine Translation evaluation in terms of correlation with human
judgments of translation quality. METEOR (Metric for Evaluation of Trans-
lation with Explicit word Ordering), (Lavie et al., 2004) performs a maximal-
cardinality match between translations and references, and uses the match to
compute a coherence-based penalty. This computation is done by assessing the
extent to which the matched words between translation and reference constitute
well ordered coherent “chunks”. METEOR assigns most of the weight to recall,
instead of precision and uses stemming.

An initial feasibility test shows that these automatic MT evaluation metrics
can detect improvements on the raw MT output in a statistically significant
way, even for a very small test set of 32 sentence, using just two sets of reference
translations.

NIST BLEU METEOR

raw MT output 4.3 0.16 0.6
manually corrected 5.6 0.5 0.8

Table 4: Oracle experiment results with automatic evaluation metrics.

NIST is the least discriminative of the metrics, since for bigrams that appear
only once (very small set), the system does not get any credit, but even the NIST
scores are statistically significant in this case.

8 Discussion

An English-Spanish user study with the online Translation Correction Tool
shows that users can detect errors with high accuracy (90%), but have a harder
time classifying error given a linguistically-motivated MT error classification
(72%). Asking users to locate the error and indicate if there is any word in
the sentence that acts as a clue is a much simpler task and, at the same time,
is much more useful for automatic rule refinement purposes. The main chal-
lenge of this part of the research proposed is to discover the appropriate MT

Octo
be

r 2
1,

20
04

Draf
t V

ers
ion 9 PROPOSED RESEARCH 43

error classification (corresponding to a set of non-technical questions) that will
maximize error type classification accuracy by non-expert users.

Given the difficulty inherent in manually building a translation grammar,
especially for resource-poor languages, these results are promising and indicate
that building an automatic rule refinement module that takes as input such user
feedback is a path worth pursuing.

Some types of errors defined in the general MT error typology (Section 4.2)
cannot be distinguished automatically, and thus for the RR module to be effec-
tive and as automatic as possible, Rule Refinement operations should be defined
not only based on the true nature or cause of the errors, but also on the relevant
error information available to the RR module.

Given user corrections through the Translation Correction Tool, the Rule Re-
finement module can apply a set of well-defined RR operations to the grammar
and lexicon to improve both hand-crafted and automatically learned translation
grammars.

The addition of feature constraints to the automatically learned grammar
brings it closer to manually written grammars. However, with the current im-
plementation of the Rule Learner, the Rule Refinement module will still give
the most leverage when combined with an automatically learned grammar.

In general, manually-written grammar rules will need to be refined to encode
exceptions, whereas automatically-learned grammars will need to be refined so
that they achieve the right level of generalization.

9 Proposed Research

Given the preliminary work described above, the research I propose encompasses
6 main objectives:

• Developing an effective method to elicit error information from non-expert
bilingual users

• Validating the general MT error typology as well as the classification used
by the Translation Correction Tool, by obtaining higher classification ac-
curacy rates.

• Developing an automatic approach to refine translation rules from existing
grammars and lexicons (both hand-crafted and automatically learned),
based on elicited error information and the MT error typology. First
English-to-Spanish and then Mapudungun/Quechua-to-Spanish.

• Developing interactive learning methods to find relevant minimal pairs in
order to determine the appropriate rule refinement operation, the level of
granularity for the new feature constraints, and in some cases the trigger-
ing context.

• Exploring Active Learning methods to optimize user time and present
users with most informative minimal pairs first.

Octo
be

r 2
1,

20
04

Draf
t V

ers
ion 9 PROPOSED RESEARCH 44

• Evaluating the performance of the resulting refined rules and lexical entries
using mostly automatic evaluation metrics such as BLEU and METEOR,
as well as parsimony and coverage.

• Assessing the language and user independence of the rule refinement op-
erations

9.1 Training and test data

The current data sets available for English to Spanish are the typological Elici-
tation Corpus, which has 791 sentences and a vocabulary size of 332, and a third
of the structural Elicitation Corpus, which has 104 phrases and a vocabulary
size of 241. In total, there are 895 sentences and phrases already available and
the size of the vocabulary combining these two corpora is 505.

From this data, I will create a development suite of about 400 sentences for
which the transfer engine outputs a complete parse (S), categorizing them by
error type, so that I can then split it into two sets in an error-balanced way: the
true development set (dev set) and a first test set (test1), which I’m not going
to look at while developing the RR system. This way I can validate the effect
of the RR operations not only on the same dev test used but also on a test set
that is comparable and that should allow for the same RR operations to apply.

I might also need to create a few comparable sentences not already in the
Elicitation corpora, to better test the effectiveness of the refinements, since the
goal of the EC is to minimize repetition of structures and linguistic phenomena,
rather than providing training data for MT rule refinement.

For the development stages, I will pick the sentences that are part of the
user studies, since that allows me to concentrate on sentences for which no good
translation is output by the MT system, and thus we can make better use of
users time.

The sentences for the next user studies will be chosen from the dev set, and
will be picked according to the MT errors that they exhibit, so that the RR
operations can be fully tested. To select sentences for user studies for language
pairs I am not familiar with, I will use an automatic mechanism, possibly using
some sort of randomization, possibly augmented with suggestions from native
speakers.

Since the test set from the development suite will not really be a blind test,
I will also create a wild test set (test2) with about 100 naturally occurring
sentences, the only requirement being that they can be fully parsable by the
first stage of the MT system, but might not be correctly translated.

The final English to Spanish vocabulary size will be of about 10,000 inflected
words, which will include the 505 words from the multiple elicitation corpora,
and which I will complement with high frequent Spanish words from naturally
occurring newspaper corpora.

For my work, I will abstract away from morphology as much as possible, and
thus both the vocabulary and the translation lexicon will contain fully inflected
forms. For the language pairs where there already is a morphology component

Octo
be

r 2
1,

20
04

Draf
t V

ers
ion 9 PROPOSED RESEARCH 45

Data summary

manual grammar (50-100 rules)
automatically learned grammar (300 rules)
lexicon (10,000 entries) extracted from a large full from lexicon

development suite (400) [categorized by error]
- dev set (200) – used for development and user studies
- test1 (200) – reserved for validation

- test2 (100) – blind set, for final evaluation

in place, I will do some experiments to assess how much further user interaction
can be spared if morphological information is available. However, I will not
assume that a morphology component is always available.

I will do most of the RR module development in English to Spanish, and
will also conduct final experiments with a resource-poor language into Spanish.
Likely choices for the resource-poor language are Mapudungun and Quechua,
since an MT system is expected to be built for them into Spanish within the
AVENUE project. Either of these two languages will allow me to determine
whether the RR module is relatively language independent, for they are both
agglutinative languages, hence significantly different from Spanish and English.

While creating the development suite, I will be expanding the manual gram-
mar to cover all the basic linguistic phenomena so that all sentences are fully
parsable. I expect the manual grammar prior to refinement to have between 50
and 100 rules (the initial grammar had 12 rules).

I will initially focus on refining the manual grammar, and once the Rule
Learner is fully implemented (with feature constraints), I will run additional
experiments with the automatically learned grammar.

On top of using the manual grammar for the final evaluation described in
Section 9.3.4, I will also use subsets of the manual grammar for debugging and
to illustrate all the types of MT errors that the RR module can correct and as
a comprehensiveness test. The results of this other kind of evaluation will also
be reported as a proof-of-concept.

9.2 Elicitation Method for MT Error User Feedback

In the course of preliminary investigations described in the previous sections, I
observed that there are a couple of aspects of the current TCTool implementa-
tion that can be improved to allow non-expert users to detect and classify MT
errors more accurately and reliably. I plan to investigate and implement the

Octo
be

r 2
1,

20
04

Draf
t V

ers
ion 9 PROPOSED RESEARCH 46

features needed to achieve higher precision with respect to MT error detection
and classification.

9.2.1 TCTool V.0n

MT Error Information

The final version of the TCTool will allow users to give us more information
about MT errors without having to know any linguistics terminology. In partic-
ular, the TCTool will allow users to indicate if there is any word in the target
sentence that acts as a clue for that correction.

This method targets errors affecting target language (y-side) constraints,
such as subject and predicate agreement, and gender agreement between nouns
and their complements (determiners and adjectives) within an NP.

It is not uncommon that agreement constraints change from language to
language. Examples of this are the constraint agreement on gender (in addition
to number and person) between the subject and the verb in Hebrew, which only
transfers to Spanish for the past participle forms, and which does not transfer
for any situation to English.

Hence, instead of a linguistically-motivated MT error classification, like the
one used for the first version of the TCTool, the new approach will request the
user to identify clue words, e.g.: “Wrong agreement, this word has to agree with
[drop-down-menu with all other words in the TL sentence].”, “The word Wi is
in the wrong from, but it is related to Wi’.” or “The word Wi is simply and
incorrect translation for SL W (aligned to Wi) and it has no relation to it.”.

For example, for the SL sentence I believe in you and the translation
creo en tu, instead of asking users if they changed tu into ti because it had
the wrong form or sense, the new version of the TCTool will display the following
“the word you can be translated as tu, but not in this sentence. The key word
that indicated this is: [drop-down-menu with creo and en]”.

Non-expert users can easily indicate that the reason you translates into ti

in this sentence is the presence of the Spanish preposition en. This is not only
a much simpler task for non-expert users but, at the same time, is much more
useful for automatic rule refinement purposes. It may also prove that users can
perform this task more consistently (with higher precision), though this remains
to be measured.

Given the user correction you -> tu and the clue word (en), the RR module
can now automatically generate a feature constraint between the appropriate
constituents in the right-hand side of the grammar rule, the Y-side.

Non-expert users would have a much harder time classifying it as wrong
sense vs wrong form, and even if they finally did choose between these two error
types, classification accuracy would be lower. Thus, we expect the next version
of the TCTool will allow users to achieve higher error classification accuracy or
at least higher precision.

Dynamic Tutorial

Octo
be

r 2
1,

20
04

Draf
t V

ers
ion 9 PROPOSED RESEARCH 47

Even though the TCTool is designed to be intuitive and very easy to use, some
users did not realize what the alignments were and that they could change them
to reflect translation correspondences. The usability questionnaire at the end of
the first user study indicated that most users did not read the 24-page written
tutorial. Thus there is a need to highlight the most important functionality.

To help users avoid either over-correcting or under-correcting, for the next
user studies we plan to have in place a dynamic tutorial, which users will be
able to play from the same page they are doing the corrections.

After users are done, and before they proceed to evaluate the next sentence,
a summary window will appear to confirm that the corrections registered by the
TCTool were indeed the intended ones.

User Profiles
We are interested in an interactive and a batch elicitation mode.

Speakers of the same language have slightly different grammars (Lehman,
1989) and lexical preferences. The interactive mode involves having a different
grammar for each user and making the refinements at run time, so that the
system can present the user with the newly generated output, after there have
been some changes in the grammar and lexicon, to confirm that automatic
refinements done in response to their feedback have had the desired effect.

The batch mode will allow the system to only perform the refinements that
are reliable, backed by 90% of users, say, to the final user-independent grammar,
hopefully just one per language or dialect.

In order to allow users to keep refining the same potentially idiosyncratic
grammar over time, we will implement login capabilities that allow the storage
of user profiles. This way, users will only need to answer classification questions
and go over the tutorial the first time they use the TCTool, and the RR module
will be able to perform a set of consistent refinements to the same grammar.

The new version of the TCTool will also include a confidence bar to allow
users determine how confident they are in classifying a specific MT error. This
information, coupled with user profile information can also be used to develop
a formula to weigh users’ feedback.

9.2.2 Evaluation of TCTool

The final version of the TCTool will be evaluated on how well it performs at
error detection and classification.

Since the way to elicit information about MT errors will be different than
in our preliminary study, we will report comparable accuracy scores which will
indicate whether the new approach is more suitable for the task.

In order to allow for fair comparison, at least one more set of English-Spanish
user studies need to be run (preferably both by old and new users of the TC-
Tool), to be able to factor out any advantages of the final implementation due
to familiarity with the task and the GUI design.

Once there is a working MT system for a resource-poor language (Mapudun-
gun, say) and Spanish, we will also conduct user studies for the full range of

Octo
be

r 2
1,

20
04

Draf
t V

ers
ion 9 PROPOSED RESEARCH 48

corrections, based on the actual error distribution from the learned resource-
poor language into Spanish. This might lead to revisions of the GUI design
(e.g. to handle multi-morphemic “words”).

For each new set of user studies that we run, a gold standard will be de-
veloped specifying what errors each TL sentence has as well as any extra error
information that can be elicited via our improved TCTool GUI. For user studies
involving a resource-poor language, external help will probably be required to
develop such a gold standard.

For automatic evaluation of the Rule Refinement module, we assume that
user corrections are the gold standard; these become the reference translations,
and thus we abstract away from the problem of users not being true linguistic
oracles.

There are effective ways to reduce user idiosyncracies when we have cor-
rections from enough users for the same set of sentences; for example, by only
taking as reliable any correction supported by 90% of the users.

9.3 Automatic Rule Refinement Module

The philosophy behind the RR module is to extend the grammar to account
for exceptions not originally encoded in the translation rules, to make overly
general rules more specific so as to reduce arbitrary grammar ambiguity, and to
correct rule errors (e.g. constituent or word order).

In the case of automatically learned grammars, the Rule Refinement module
also has the role of adding missing constraints to the context-free rules that
need them.

The grammar is expected to grow as a result of the Rule Refinement process,
especially when running on batch mode, due to the creation of some overly
specific rules, specially when applying RR1 and RR3 (Section 5.3). However,
once more data is available, the Rule Refinement module should be able to make
safe generalizations and merge equivalent specific rules into one general rule.

The generalization power of the Rule Refinement approach is greatest if the
refinements involve existing feature constraints (e.g. agreement constraints),
since all the relevant lexical entries will already be appropriately tagged for
the correct rule to apply. If the RR module needs to postulate a new binary
feature attribute (to distinguish between two different senses of a word, say),
however, only local improvements will be observed, which can become a bit more
general, as new similar data is evaluated by users. The problem is that newly
hypothesized features would not populate lexical entries, and in the absence of
a generalization mechanism, this process would require one-by-one addition.

This thesis can be seen as the first step for semantic correction, though,
in the sense that it annotates the specific examples corrected by users in the
appropriate way, which can be later used by a system with Wordnet the make
the appropriate generalizations.

Octo
be

r 2
1,

20
04

Draf
t V

ers
ion 9 PROPOSED RESEARCH 49

9.3.1 Batch mode

In previous work on estimating user accuracy when detecting and classifying
MT errors (Font-Llitjós & Carbonell, 2004), we found that an automatic Rule
Refinement approach can be made sufficiently robust, even though it relies upon
non-expert user feedback. Therefore, I propose to implement the set of Rule
Refinement operations identified in Section 5.3 and automatically apply those
for which we have all the necessary error information available.

The RR operations defined above will work when considering user corrections
in isolation. However, when users perform more than two corrective actions
allowed by the TCTool (add, delete, modify a word or change word order)
to correct a single MT error, it becomes very hard to automatically detect
whether such actions are part of one single correction and should be considered
together by the RR module, or are in service of correcting multiple errors. For
example when a user deletes a word and then adds a different word in a different
position, it could be that the user modified a word and that the modification
caused it to have to move in a different position (an example of this can be
seen in Section 4.2, error type: 5.1.2.2), or it could be that s/he performed two
independent corrections. The appropriate way to show that there is a correlation
with the TCTool is to drag and drop the word to the right position and then
modify the dragged word, but there is no guarantee that users will always do it
that way.

Whenever operating in batch mode, we will take a “Tetris” approach to Rule
Refinement and first fix the simpler errors, then run the RR module over the
test set and see if some more errors can be fixed on a second pass.

Given specific user feedback, the RR module will first use the parse tree
produced by the transfer engine13 to trace back to the rules and lexical entries
that applied and, if it has all the information required, it will determine the type
of refinement required to fix the rules. If it needs to add a feature constraint
between two positions, a rule covering those positions must already exist in the
grammar. If such a rule does not exist in the grammar, the RR module cannot
perform any refinements and just feeds the user-corrected SL-TL pair back to
the Rule Learner as a new training example.

When the system is running in batch mode, the default settings are to add
the constraints at the most specific level possible, namely the word. Often times,
the ideal refinement would have been at the POS level, possibly with further
constraints required by the triggering context. However, further refinements
and generalizations on the specific constraints can only be made automatically
at a later stage, when the system has more labeled examples, or when it can
interact with the user in Active Learning mode.

The diagram in Figure 6 shows the set of Rule Refinement operations as
given in Section 5.3. The colored nodes give an idea of which RR operations

13The transfer engine may produce multiple translations, possibly generated by different
parse trees, as a function of the ambiguity inherent in the grammar and the lexicon; however,
users pick which sentence to correct and thus the corresponding parse tree is retrieved for RR
purposes.

Octo
be

r 2
1,

20
04

Draf
t V

ers
ion 9 PROPOSED RESEARCH 50

RR Operations
(=TCTool)

Modify a word
Wi → W ′

i

+ Wc

δ 6= {∅}

δ = {∅}

- Wc

δ 6= {∅}

δ = {∅}

Add a word
∅ → W ′

i

+ Wc

+rule

−rule

− Wc

+alignment
Wi

−alignment

Delete a word

+alignment
(+ Wc)

−alignment
(− Wc)

Change
word order

Wi Wc

=Wi

Wi → Wi’

POSi=POSi’

POSi 6=POSi’

Wi (. . .) Wc RL

− Wc

Figure 6: Diagram showing RR operations typology

Octo
be

r 2
1,

20
04

Draf
t V

ers
ion 9 PROPOSED RESEARCH 51

can be implemented with the batch mode and which operations require further
user interaction to be able to apply. The types that appear in regular font are
the ones which I believe can be refined fully automatically with the RR module
in batch mode and no further user interaction is required. The types in small

caps require further user interaction, but sometimes reasonable default settings
can be defined when operating in batch mode.

The types that appear underlined might require significant amount of further
user interaction and cannot be solved unless operating in interactive mode. The
types in bold are missing crucial error information, which cannot be elicited
with a reasonable amount of user interaction, and thus cannot be automatically
refined under any circumstances. For such cases, the SL-TL pair is sent back to
the Rule Learner as a new training example.

After having extended the manual grammar so that it fully parses all 32
sentences in the first user study, I did a detailed analysis to find out what per-
centage of the errors can be dealt with fully automatically with just correction
information (and in batch mode), and found that about 68%14 could probably
be refined fully automatically without extra error information or further user
interaction.

For all the types of RR, there is a tradeoff between safety (most conserva-
tive, specific refinements) and generality (most general refinement, possibly too
general). As a first step, I’ll focus on those errors which can be corrected fully
automatically with just correction information from the user, so that I can test
the RR module with the simplest mode of operation first, namely batch mode.
For this, I anticipate formalizing some reasonable assumptions into default set-
tings, such as bifurcate the original (general) rule and make any changes to the
duplicate (specific) rule.

Without being able to validate RR module refining hypotheses, we need
to take a conservative approach and assume the original rule that needs to be
refined, may apply to other sentences, and thus leave it unchanged (schemas
RR1 and RR3 in Figure 5).

Ultimately, I will explore the tradeoff bewteen “safest” vs. “most general”
refinement and compare both modes of operation in terms of their relationship
with this tradeoff. In particular, how much does further user interaction add
(in safety) to the most general batch settings, and whether there is an optimal
balance.

The next section describes interactive learning methods and indicates which
might be appropriate for the current task and which can be performed (types
in small caps and underlined) when running the system in interactive mode.
The thesis, however, will mainly focus on the types for which all the error
information is available from the initial user corrections, with the exception of
user interactions that can be limited to a couple turns, so as not to exhaust the
user. An example of such interactions are the ones to determine the appropriate
level of granularity of a newly found constraint (e.g. word vs POS).

14Some of these errors required correct alignment information, or that a relevant minimal
pair be given.

Octo
be

r 2
1,

20
04

Draf
t V

ers
ion 9 PROPOSED RESEARCH 52

Hence, I propose to fully implement RR operations that appear in regular
font and small caps in the tree above and to explore the the ones that appear
underlined, but the types that appear in bold fall outside the scope of this
thesis.

Beyond the core of the RR module functionality, and once the resource-poor
language to Spanish system is in place, MT error analysis will determine whether
the Rule Refining operations defined in the first version of the RR module are
general across more than one language, or more likely, require basic linguistic
knowledge based on typology for the resource-poor language. Time permitting,
we propose to incorporate typology information to reduce the potentially tedious
interaction with the native informant and to guide the search over the potential
rule-corrections space.

Finally, I plan to continue expanding the MT error typology described in sec-
tion 4.2 and at the same time determining which error types require what kinds
of rule refinement operations, and whether all or only part of such operations
can be dealt by the RR module.

9.3.2 Interactive mode

After the batch mode implementation is completed, I will proceed to implement
an interactive mode of operation, which will allow the RR module to prompt
users with new sentences to evaluate (and correct, if necessary) at run time,
so as to obtain any additional information required to determine what is the
appropriate refinement operation to be applied.

The idea is that while processing all the available information, the RR mod-
ule might detect that it is missing some crucial information about the error or
the type of rule refinement operation required to fix the error, and that this
crucial information could be retrieved by having other minimal pair sentences
evaluated and corrected.

Since the ultimate goal is to minimize further user interaction, so as not to
place a heavier burden on users, I will also explore Active Learning methods to
try to optimize user time by presenting them with most informative sentences
first, namely relevant minimal pairs, and will only initiate further user interac-
tion if the RR module cannot reliably hypothesize a course of action.

Active Learning

Active Learning has been described as a method to minimize the number of
examples a human annotator must label (Cohn et al., 1994) usually by process-
ing examples in order of usefulness. Lewis and Catlett (1994) used uncertainty
as a measure of usefulness. Recently, Callison-Burch (2003) has proposed Active
Learning to reduce the cost of creating a corpus of labeled training examples
for Statistical MT.

For our task, Active Learning allows us to make further user interaction more
efficient, and ask users to evaluate (and correct if necessary) just the example
sentences that will be most informative in finding out what triggered the cor-

Octo
be

r 2
1,

20
04

Draf
t V

ers
ion 9 PROPOSED RESEARCH 53

rection, what is the RR operation suitable to fix a specific error or whether the
general rules needs to either bifurcate or be made more specific. In this context,
the most informative sentences to reveal the right level of generalization, such
as adding constraints at the POS level or at the word level, are the ones that
we call minimal pairs.

Minimal pair differences occur at the feature level, which can be calculated
with the delta function as described in Section 9.3.3 below.

More formally, if EC is the Elicitation corpus, ECc the part which is correctly
translated, then for the translation pair under consideration (x = (s, t)), select
xc = (sc, ts)ε ECc so that they are minimal pairs, namely so that the feature
vectors (−→x , −→xc) differ minimally, ideally in just one feature.

In the future, the typological Elicitation corpus will contain feature vectors
for all the sentences. So, if there already exists a minimal pair in the Elicitation
corpus, the RR module will be able to use the feature vectors that will tag each
sentence pair to select the relevant minimal pair, namely the one that can shed
some light on what triggered the user correction.

If, for a given sentence that is missing some crucial information, the devel-
opment set does not already contain a relevant minimal pair, refining it auto-
matically falls outside the scope of this thesis.

The following four cases illustrate the range of possible strategies that can be
followed, depending on whether a minimal pair (MP) is required and available.
They correspond to the four different colors in the diagram showing the RR
typology (Figure 5).

1. No need for a MP evaluation [RR types in regular font]: for
I want the red car, if users modify *Quiero el auto roja into Quiero el

auto rojo, the user has already given all the information that is needed for
the RR module to be able to apply the appropriate set of refinements. See the
subsection about modifying a word in Section 5.4 for how this is done.

2. Relevant MP required [RR types in small caps]: sometimes the
correction itself does not contain all the error information required to perform
the appropriate refinement automatically. In such cases, the RR module will
need to search for a relevant minimal pair in the dev set, and then search the
feature space to find the triggering features (next Section).

This would be the example of I see them (*veo los -> los veo), for
which the RR module needs to find a minimal pair, such as I see cars - veo

autos, and restrict the specific VP rule, with the order flipped ([NP(obj) VP]

instead of [VP NP(obj)]), so that it only applies to sentences with a pronoun
as their object.

For these cases, Active Learning methods can be used to explore the space
of possible triggering contexts, so as to present users with the least number of
minimal pair candidates for evaluation (see below). Even so, we expect this
process to be an iterative one, which is likely to place a heavier burden on users.

In some of these cases, though, if running on batch mode, adopting the
default settings, of assuming the most specific level is appropriate, will work as
well.

3. MP not in the dev set [underlined RR types]: if there is no minimal

Octo
be

r 2
1,

20
04

Draf
t V

ers
ion 9 PROPOSED RESEARCH 54

pair for the SL-TL pair in the dev set (say, in the previous example, there were no
sentence like I see cars - veo autos in the dev set), the RR module would
need to create a feature vector from the lexical entries and grammar rules that
translated the originally produced TL sentence, and instantiate different parts
of the sentence differently (preferably word by word), according to this feature
definition. Because there is plenty of work to do for cases where such minimal
pairs already exist, I will not tackle the problem of minimal pair generation in
my thesis.

4. Relevant pair required (6= MP) [RR types in bold]: in some
cases, what triggers a specific correction is the syntactic context, which cannot
be expressed in terms of minimal pairs, strictly speaking, since the relevant TL
sentence to allow automatic discovery of the triggering context might have as
little as one word in common with the original translation.

This is the case of the overgeneralization example given in Section 4.2 for er-
ror type 4.2, John read the book -> *A Juan leyo el libro -> Juan leyo

el libro, which corresponds to deleting a word without an alignment in the
RR diagram above (Figure 6). In order to be able to discover that in Span-
ish a is only added to NPs in object positions (Le doy el libro [a Juan]

- I give [Juan] the book), but not to subject positions ([Juan] lee el

libro - [Juan] reads the book), the RR module would need to find an
example where Juan appears in the object position and which contains as
many words in common with the original TL sentence as possible. Sentences
like Ellos invitaron [a Juan] (They invited Juan) and Anna aplaudio

[a Juan] (Anna applauded Juan) might be fine candidates for a linguist to
figure out that what is causing the a to be able to appear in front of an NP is it’s
grammatical role. However, such sentences have too few words in common with
the original TL sentence, A Juan leyo el libro, for an automatic system to
be able to hypothesize the right cause of the MT error, namely not taking into
account the grammatical role.

On the other hand, since in this case the RR module is shooting in the dark,
with respect to what is the cause of the MT error and what might be potential
relevant pairs, it might take quite a few sentences until the system presents a
relevant sentence pair to the user.

For this reason, I anticipate not being able to successfully solve such cases,
for there is no way to delimit the amount of user interactions necessary to find
the appropriate triggering context.

Therefore, this thesis will focus on the first case and explore the second case,
but will not attempt to solve the last two case.

9.3.3 Searching the Feature Space

The Elicitation corpus used in the Avenue MT system to automatically learn
a translation grammar is designed to discover the relevant features underlying a
language. However it is not infallible, and it will often be the case that we will
not know all the relevant features for a language just from the elicited data.

When the error information available to the RR module is not enough to

Octo
be

r 2
1,

20
04

Draf
t V

ers
ion 9 PROPOSED RESEARCH 55

determine which feature, or set of features, is responsible for a particular cor-
rection, the first goal of the RR module becomes to search the feature space
(of about 200 features) to determine which set of features triggered a particu-
lar correction. To do this, the RR module will need to rely on the interactive
learning methods sketched above to try to discover the underlying principles
and constraints of the TL language grammar, which were not elicited at the
first stage of the development process, or which were not learned by the Rule
Learning module.

Once the RR module has the corrected TL sentence, T1’, and a minimal
pair extracted from the Elicitation corpus or generated automatically, T2, it
compares them to see how they differ.

For RR purposes, we define the difference between two TL minimal pair
sentences as the intersection of the set of feature attributes for which they have
different values, not taking into account the user correction we are seeking to
account for.

This is a natural extension of the feature delta function introduced in Sec-
tion 5.2, and in the general case, it can be written as follows:

δ(T1, T2) =

n⋂

i=1

δ(wT1i,wT2i)

for all the relevant words that are different in T1 and T2 (wT1i 6= wT2i)
15

and where n is the length of the sentence. Note that this definition of the delta
function only works for TL sentences of the same length16. As stated in the pre-
vious section, corrections whose triggering context requires minimal or relevant
pairs of a different length, namely with a bit more structural modification, fall
outside the scope of this thesis, and need to be fed back to the Rule Learner as
a new training example.

The resulting delta set is used as a guidance for exploring the feature space of
potentially relevant attributes, until the RR module finds the ones that triggered
the correction, and can add the appropriate constraints to the relevant rules.

We propose the following algorithm to explore the relevant feature space to
find the attribute(s) that trigger user corrections:

1. Given the user corrected TL sentence T1’, look for a minimal pair, T2, in the

dev set that users evaluate as being correct.

2. Define the delta function for all relevant words that differ between T1 and

T2,

a. if the delta set is non-empty, take the first attribute in the delta set

(a1) and modify minimally T2 to obtain T2* so that the feature value for

a1 is the same as in T1.

b. if the delta set is empty, postulate a new binary feature attribute feat_i

and add it to the list of triggering features. i++. STOP.

3. Ask users to evaluate the modified version of T2, T2*, and if it requires the

15The delta function is reduced to comparing just the words that are different between the
two TL sentences but are aligned to the same SL word, or are in the same position, and we
do not need to calculate the delta functions for differing words that are not relevant, such as
δ(la,casa)

16If we add or delete Wi in T2 , then we don’t have a counterpart in T1 to compare it with.

Octo
be

r 2
1,

20
04

Draf
t V

ers
ion 9 PROPOSED RESEARCH 56

same correction as T1, add a1 to the list of trigger features.

4. T2 = T2*. Go back to 2.

Note that each iteration through step 2.a. will result in deleting an attribute
of the δ set until it is empty (2.b), since its value is changed in T2 to be the same
as in T1, and thus the next time the δ function is defined, the first attribute
will not have differing values any more, and will not be part of the δ set.

The ultimate goal is to automate this process as much as possible. To
generate valid minimal pair examples (step 1), further user interaction will be
needed, probably through more than one iteration, to make sure T2 is a minimal
pair which illustrates the linguistic phenomenon that accounts for the MT error.

Since we are comparing minimal pairs (step 2), the delta function is reduced
to comparing just the words that are different between the two TL sentences
but are aligned to the same SL word, or are in the same position, and we do not
need to calculate the delta functions for differing words that are not relevant,
such as δ(la,casa). In some cases, the fact that two words do not have the
same POS is actually the cause of the error and thus we need to be able to
account for that as well (e.g. vi autos vs. los vi). A pre-processing step is
added to the lexicon where, for each entry, the POS is added as a y-side feature
value constraint (e.g. ((y0 pos) = pron).

An example to illustrate minimal pair comparison and feature space explo-
ration using the algorithm outlined above follows. If the TL sentence Juan vio

los muchachos (for the SL sentence John saw the boys) is given to users with
the TCTool, users will say that in order for the translation (T1) to be correct,
an a is missing in front of los muchachos; and thus the RR module will get the
following corrected TL sentence Juan vio a los muchachos (T1’).

(1) Now, we need to look for a minimal pair that users will evaluate as being
correct. In this case, the Elicitation corpus (briefly described in section 4.3)
already contains a good candidate for T2, namely Juan vio la casa, and we
are spared extra Active Learning.

(2) Next, the RR module needs to discover what triggered the user correc-
tion. Thus, as a first step, it calculates the delta function of the two sentences
evaluated by users. Juan vio los muchachos (T1) and Juan vio la casa

(T2) have the following delta function:

δ((Juan vio los muchachos),(Juan vio la casa)) =

=
⋂

(δ(los,la), δ(muchachos,casa)) = {gender, number}

Note that since the value of both these deltas is {gender, number}, their
intersection is also {gender, number}.

(2.a) Next, the RR module needs to change the differing words in T2 to
eliminate feature attributes from the delta set, one by one, so that it becomes
clear which feature attribute is responsible for the different behavior. This is
done by making their value the same for the two TL sentences. And thus,
the RR module picks the first feature attribute from the delta set, in this case

Octo
be

r 2
1,

20
04

Draf
t V

ers
ion 9 PROPOSED RESEARCH 57

gender, and changes T2 minimally to ensure that the value for that attribute
is the same for all words that are different between the two TL sentences: Juan
vio los muchachos (T1) and Juan vio el árbol (T2*).

Often several modifications (MPs) are possible, and finding the right one,
might take a couple of interactions with the user, until the RR module finds a
sentence with the same structure and the most identical words but which still
needs not be corrected.

(3) At this point, we present T2* to the users to check whether they make
the same correction than in T1. In this case users evaluate T2* as being correct,
and no correction is made. Thus, the algorithm does nothing and goes to the
next step (4), which takes us back to 2.

(2.a) Now the delta set is reduced to having just one attribute, since the
new sentence pair has the same gender: δ((los muchachos),(el árbol)) =

{number} At this point, the RR module needs to further modify T2* to make
its object have the same number as the direct object in T1: Juan vio los

muchachos (T1) and Juan vio los árboles (T2*), which again, is evaluated
by users as being correct (steps 3 & 4).

(2.b) This time the delta function results in an empty delta set:
δ(muchachos,árboles) = {}.

If one of these features had accounted for the presence or absence of “a” in
the translation, we would bifurcate the rule based on this feature. Alas, since it
did not, the RR module determines that the existing feature set is insufficient
to explain the difference (of when to use “a”) and therefore postulates a new
feature, let’s call it feat n, and stops.

As shown in Section 5.4 for “Adding a word”, once the RR module has
determined the triggering features, it proceeds to refine the relevant grammar
and lexical rules by adding the appropriate feature constraints. In this case,
the RR module bifurcates the rule, one with value + and the other with value
- for this new feature. The lexicon will later need to code for the new feature
as well (btw. feat 1 corresponds to animacy, though the system does not learn
external meanings of features).

9.3.4 Evaluation of RR module

MT errors can come from different sources (grammar, lexicon, decoder, etc.),
however, I will only tackle the ones concerning the grammar and the lexicon.
The goal of the RR evaluation is to focus on sentences for which the MT system
does not output a correct translation (anywhere in the final list of translations)
so that after RR, a correct translation does appear somewhere in the final list,
without growing the size of the final list exponentially. Thus, the underlying goal
is to increase translation quality without adding more ambiguity than strictly
necessary.

The improvement will be measured with the number of correct translations
that make it to the final list of translations (for which the grammar found a
complete parse), but will not try to improve decoder choices. If the correct
translation is already one of the alternative translations output by the MT

Octo
be

r 2
1,

20
04

Draf
t V

ers
ion 9 PROPOSED RESEARCH 58

system, the RR module will do nothing. It is not the RR module’s goal to try
to change constraints or the order of the rules in the grammar to boost up the
translation in the final candidate list.

A second measure will be the size of the final translation candidate list.
If the application of any given RR operation significantly increases the final
list (and/or other final lists for previously seen examples), then there probably
needs to be some further refinement to constraint its application to allow for
the ambiguity that is strictly necessary to generate the set of correct sentences
only.

In sum, the RR module will be evaluated in terms of translation accuracy,
coverage and parsimony.

Regarding the first two evaluation measures, the oracle experiment described
in Section 7 shows that existing automatic MT evaluation metrics are sensitive
enough to discriminate between raw MT output and corrected MT output, even
for a small test set (32 sentences) and two reference translations.

Thus, I propose using such automatic evaluation metrics to determine im-
provements in translation accuracy and coverage. Since the goal is to directly
optimize the RR module to achieve higher translation quality, I need to detect
improvement (or degradation) automatically. In order to do that, I need to
automatically generate a hypothesis file for each system and a set of reference
translations.

For the raw MT output, the best translation hypothesis is already picked by
users, since their task is to pick the translation that is correct or that requires
the least amount of corrections. For the refined MT output, we can use the
sentence-level METEOR scores to pick best translation candidate from the list.

On the other hand, we can take user corrections to be the translation refer-
ences, since they are precisely what we are trying to approximate with the RR
module. For each user, each sentence evaluated as correct and all the corrected
sentences will immediately be part of one set of reference translations.

Once we have the two hypothesis files, one per system, we can run all auto-
matic evaluation metrics (BLEU, METEOR and NIST) using as many reference
translation sets (user corrections) as we have available. For a brief description
of how these metrics work, see Section 7.

Automatic evaluation metrics take care of both accuracy (precision) and
coverage (recall), but say nothing about parsimony. In order to measure par-
simony, we need to monitor the size of the translation candidate list, the goal
being to either decrease or at least not increase the final candidate list by more
than strictly necessary.

Sometimes, there might be an agreement constraint lacking, and thus all the
different alternatives in the lexicon will be generated and make it to the final
candidate list. For example, if we were translating “the red car” and the NP rule
did not have any gender agreement constraints, the final candidate list would
contain the correct translation plus all other possible lexical combinations (el
auto rojo, *el auto roja, **la auto roja, *la auto rojo). In this case,
the goal of the RR module is not to increase translation quality, but rather to
reduce ambiguity and the size of the list of translation candidates by tightening

Octo
be

r 2
1,

20
04

Draf
t V

ers
ion 10 RESEARCH PLAN 59

the grammar.
In other cases, a general rule will need to bifurcate and the duplicate be

made more specific. Refining the specific rule will result into higher translation
accuracy but will also effectively double the size of the final candidate list,
since now both the general rule and the specific rule will apply (schema RR1 in
Figure 5). Thus, in this case, the RR module also needs to make sure to add a
blocking constraint to the general rule, so that it does not apply to cases where
we already know it should not apply (schema RR3). This way we are increasing
accuracy but not just at the expense of increasing ambiguity.

Finally, even though all final experiments will be run with real users, I will
also initially run experiments with a super user who does all the appropriate
corrections in the way expected by the TCTool and the RR module, so that
I can have an upper-bound for how well the system can perform under ideal
circumstances.

10 Research plan

I intend to complete the work proposed above according to the following time-
line:

• November 2004: Presentation of this proposal

• November 2004: Finish creating development suit and expand eng2spa
manual grammar and lexicon

• November - December 2004: English-Spanish user studies for TCTool v.02

• December 2004: Finalize TCTool design and implementation and user
studies data analysis

• January - March 2005: Implement 1st prototype of RR module for English-
Spanish (batch mode)

• April 2005: Evaluate RR module wrt. user corrections from eng2spa user
studies

• May - June 2005: Investigate Interactive and Active Learning methods to
find relevant minimal pairs

• July - August 2005: Develop interactive RR module prototype

• September 2005: Elaborate Mapudungun/Quechua17-Spanish data sets
and correction gold standard (might need to subcontract)

• October - November 2005: If no MT system exists for a resource-poor
language to Spanish, write a small manual grammar and create a lexicon.

17Or other resource-poor language for which we have an MT system working

Octo
be

r 2
1,

20
04

Draf
t V

ers
ion 11 RESULTING CONTRIBUTIONS 60

• November 2005: Design and set-up user study for Mapudungun/Quechua-
Spanish

• December 2005: Run Mapudungun/Quechua-Spanish user study for a
smaller number of users

• January 2006: User study data analysis

• February - March 2006: Adapt RR module to new language pair

• February - April 2006: Wrap up and thesis writing

• May 2006: Thesis defense

11 Resulting contributions

As a result of the work I have proposed, I expect to make the following contri-
bution to research in Machine Translation, post-editing and natural language
processing:

• An efficient online GUI to display translations and alignments and solicit
pinpoint fixes from non-expert bilingual users.

• An MT error typology and mapping between user corrections and rule
repair operators.

• An expandable set of rule-refinement operators, triggered by user correc-
tions.

• A repair hypotheses management system, able to keep different candidate
rule repairs for later confirmation or rejection.

• An analysis of the effects of automatic rule refinements on different types
of grammars.

• A mechanism to automatically evaluate automatic RR wrt. user correc-
tions.

References

Allen, J. (2003). Post-editing. ed. Harold Somers. Benjamins Translation Li-
brary, 35.

Allen, J., & Hogan, C. (2000). Toward the Development of a Postediting Module
for Raw Machine Translation Output: A Controlled Language Prespective.
Third International Controlled Language Applications CLAW, 62–71.

Brill, E. (2003). Automatic Grammar Induction and Parsing Free Text: A
Transformation-Based Approach. ACL, 259–265.

Octo
be

r 2
1,

20
04

Draf
t V

ers
ion REFERENCES 61

Callison-Burch, C. (2003). Active Learning for Statistical Machine Transla-
tion. PhD Thesis Proposal, Institute for Communicating and Collaborative
Systems, Shcool of Informatics, University of Edinburgh.

Callison-Burch, C., Bannard, C., & Schroeder, J. (2004). Improving statistical
translation through editing. European Association for Machine Translation
(EAMT) Workshop.

Charniak, E. (2000). A Maximum-Entropy-Inspired Parser. North American
chapter of the Association for Computational Linguistics (NAACL).

Cohn, D., Atlas, L., & Ladner, R. (1994). Improving generalization with active
learning. Machine Learning, 15(2), 201–221.

Corston-Oliver, S., & Gamon, M. (2003). Combining decision trees and
transformation-based learning to correct transferred linguistic representa-
tions. Proceedings of MT Summit 2003.

Flanagan, M. (1994). Error Classification for MT Evaluation. Proceedings of
AMTA 94, 65–72.

Font-Llitjós, A., & Carbonell, J. (2004). The Translation Correction Tool:
English-Spanish user studies. Proceedings of the 4th International Conference
on Language Resources and Evaluation (LREC).

Font-Llitjós, A., Probst, K., & Carbonell, J. (2004). Error Analysis of Two
Types of Grammar for the Purpose of Automatic Rule Refinement. Proceed-
ings of the Association of Machine Translation of the Americas (AMTA).

Gavaldà, M. (2000). Growing Semantic Grammars. Doctoral dissertation,
Carnegie Mellon University.

Hutchins, J. W., & Somers, H. L. (1992). An Introduction to Machine Transla-
tion. Academic Press, London.

Imamura, K., Sumita, E., & Matsumoto, Y. (2003). Feedback cleaning of Ma-
chine Translation Rules Using Automatic Evaluation. ACL-03: 41st Annual
Meeting of the Association for Computational Lingusitics, 447–454.

Lavie, A., Sagae, K., & Jayaraman, S. (2004). The Significance of Recall in
Automatic Metrics for MT Evaluation. Proceedings of the Association of
Machine Translation of the Americas (AMTA).

Lavie, A., Vogel, S., Peterson, E., Probst, K., Font-Llitjós, A., Reynolds, R.,
Carbonell, J., & Cohen, R. (2003). Experiments with a Hindi-to-English
Transfer-based MT System under a Miserly Data Scenario. ACM Transac-
tions on Asian Language Information Processing (TALIP), 2.

Lehman, J. (1989). Adaptive Parsing: Self-Extending Natural Language Inter-
faces. Doctoral dissertation, Carnegie Mellon University.

Octo
be

r 2
1,

20
04

Draf
t V

ers
ion REFERENCES 62

Lewis, D., & Catlett, J. (1994). Heterogeneous uncertainty sampling for super-
vised learning. In Proceedings of the Eleventh International Conference on
Machine Learning (ICML-94), 148–156.

Lin, Y.-C., Chiang, T.-H., & Su, K.-Y. (1994). Automatic Model Refinement -
with an application to tagging. COLING-94, 15th International Conference
on Computational Linguistics, 148–152.

Menezes, A., & Richardson, S. D. (2001). A best-first alignment algorithm for
automatic extraction of transfer mappings from bilingual corpora. Workshop
on Example-Based Machine Translation, in MT Summit VIII, 35–42.

Monson, C., Lavie, A., Carbonell, J., & Levin, L. (2004). Unsupervised In-
duction of Natural Language Morphology Inflection Classes. Proceedings of
the Workshop of the ACL Special Interest Group in Computational Phonology
(SIGPHON).

Naruedomkul, K. (2001). Generate and repair machine translation. Doctoral
dissertation, University of Regina, Canada. PhD Thesis.

Niessen, S., Och, F. J., Leusch, G., & Ney, H. (2000). An Evaluation Tool for
Machine Translation: Fast Evaluation for MT Research. LREC, 39–45.

NIST (2002). Automatic Evaluation of Machine Translation Qual-
ity Using N-gram Co-Occurrence Statistics. NIST REPORT
http://www.nist.gov/speech/tests/mt/doc/ngramstudy.

Papineni, K., Roukos, S., Ward, T., & Zhu, W.-J. (2001). BLEU: A Method
for Automatic Evaluation of Machine Translation. IBM Research Report
RC22176 (W0109-022).

Peterson, E. (2002). Adapting a Transfer Engine for Rapid Machine Translation
Development. Master’s thesis.

Probst, K., Brown, R., Carbonell, J., Lavie, A., Levin, L., & Peterson, E.
(2001). Design and Implementation of Controlled Elicitation for Machine
Translation of Low-density Languages. Proceedings of the MT2010 workshop
at MT Summit 2001.

Probst, K., Levin, L., Peterson, E., Lavie, A., & Carbonell, J. (2002). MT
for Resource-Poor Languages Using Elicitation-Based Learning of Syntactic
Transfer Rules. Machine Translation Journal, vol. 17, No. 4. Special Issue
on Embedded MT Systems. Part 3: Elicitation MT, 245–270.

Su, K.-Y., Chang, J.-S., & Hsu, Y.-L. U. (1995). A corpus-based statistics-
oriented two-way design for parameterized MT systems: Rationale, Architec-
ture and Training issues. TMI-95, 6th Theoretical and Methodological Issues
in Machine Translation, 334–353.

Octo
be

r 2
1,

20
04

Draf
t V

ers
ion REFERENCES 63

Veale, T., & Way, A. (1997). Gaijin: A Bootstrapping Approach to Example-
Based Machine Translation. Recent Advances in Natural Language Interna-
tional Conference, 239–244.

White, J., O’Connell, T., & O’Mara, F. (1994). The ARPA MT Evaluation
Methodologies: Evaluation, Lessons, and Future Approaches. Proceedings of
AMTA 94, 193–205.

Yamada, S., Nakaiwa, H., Ogura, K., & Ikehara, S. (1995). A Method of Auto-
matically Adapting a MT System to Different Domains. TMI-95: Sixth In-
ternational Conference on Theoretical and Methodological Issues in Machine
Translation, 303–310.

Zhang, Y., Vogel, S., & Waibel, A. (2004). Interpreting Bleu/NIST scores:
How much improvement do we need to have a better system? Proceedings
of the 4th International Conference on Language Resources and Evaluation
(LREC).

