
September 8th, 2015

15-251
Great Theoretical Ideas in Computer Science

Lecture 3:
Deterministic Finite Automata (DFA)

input
data

output
data

computing
device

What is computation?

What is an algorithm?

How can we mathematically define them?

This Week

Let’s assume two things about our world

No universal machines exist.

We only have machines to solve decision problems.

+ Primality Sorting

What is computation?

What is an algorithm?

How can we mathematically define them?

Today:

How do we represent information/data?

Introducing deterministic finite automata (DFA)

What is a computational problem?

input
data

output
data

computing
device

Examples of computational problems

Instance Solution

0, 0 0

0, 1 1

1, 1 2

2, 2 4

2, 3 5

10, 1 11

100, 99 199

.

.

.

.

.

.

input
data

output
data+

Examples of computational problems

input
data

output
dataPrimality

Instance Solution

0 No

1 No

2 Yes

3 Yes

4 No

.

.

.

.

.

.

251 Yes

.

.

.

.

.

.

Examples of computational problems

input
data

output
dataPalindrome

Instance Solution

a Yes

10101 Yes

selfless No

dammitimmad Yes

parahaziramarizaharap Yes

.

.

.

.

.

.

.

.

.

.

.

.

Examples of computational problems

input
data

output
dataSorting

[vanilla, mind, Ariel, yogurt, doesn’t]

Instance

Solution

[Ariel, doesn’t, mind, vanilla, yogurt]

Representing information

Familiar idea:

Information in a computer is represented with 0s and 1s.

Can encode/represent any kind of data
(numbers, text, pairs of numbers, graphs, images, etc…)
with a finite length binary string.

Representing information

⌃ = {0, 1}

alphabet symbols of the alphabet

⌃⇤ = the set of all finite length strings over ⌃

⌃⇤ = {✏, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, 101, 110, 111, . . .}

string of length 0 (empty string)

A subset is called a language.L ✓ ⌃⇤

Representing information

⌃ = {a, b}

⌃ = {a, b, c}

⌃ = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

⌃ = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f, g, h, i, j, k,
l,m, n, o, p, q, r, s, t, u, v, w, x, y, z}

Can use whichever is convenient.

What is a computational problem?

Instance Solution

✏ 1

0 1

1 1

00 1

01 0

10 0

11 1

000 1

001 0

.

.

.

.

.

.

Let . ⌃ = {0, 1}
The palindrome computational problem is:

Yes
Yes

Yes
Yes

Yes
Yes

No

No

No

What is a computational problem?

Let .

Instance Solution

0#0 0

0#1 0

1#0 0

1#1 1

10#2 20

11#3 33

12345679#9 111111111

.

.

.

.

.

.

⌃ = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9,#}

The multiplication computational problem is:

What is a computational problem?

f : ⌃⇤ ! ⌃⇤
Definition: A computational problem is a function
 .

Definition: A decision problem is a function
 .f : ⌃⇤ ! {0, 1}

No, Yes

False, True

Reject, Accept

What is a computational problem?

Important
There is a one-to-one correspondence between
decision problems and languages.

Instance Solution

✏ 1

0 1

1 1

00 1

01 0

10 0

11 1

000 1

001 0

.

.

.

.

.

.

L ✓ ⌃⇤

{✏, 0, 1, 00, 11, 000, . . .}L =

What is computation?

What is an algorithm?

How can we mathematically define them?

Today:

How do we represent information/data?

Introducing deterministic finite automata (DFA)

What is a computational problem?

input
data

output
data

computing
device

What is computation?

What is an algorithm?

How can we mathematically define them?

Today:

How do we represent information/data?

Introducing deterministic finite automata (DFA)

What is a computational problem?

input
data

output
data

computing
device

- restricted model of computation

- very limited memory

- reads input from left to right, and accepts or rejects.
(one pass through the input)

Introducing deterministic finite automata (DFA)

input
data

output
data

DFA

State diagram of a DFA

⌃ = {0, 1}

0 1 0,1 1

0

10

State diagram of a DFA

⌃ = {0, 1}

0 1 0,1 1

0

10

State diagram of a DFA

⌃ = {0, 1}

0 1 0,1 1

0

10

q0

q1

q2

q3

Simulation of a DFA

⌃ = {0, 1}

0 1 0,1 1

0

10

q0

q1

q2

q3

Input: 1010

1010

Simulation of a DFA

⌃ = {0, 1}

0 1 0,1 1

0

10

q0

q1

q2

q3

Input: 1010

1010

Simulation of a DFA

⌃ = {0, 1}

0 1 0,1 1

0

10

q0

q1

q2

q3

Input: 1010

010

Simulation of a DFA

⌃ = {0, 1}

0 1 0,1 1

0

10

q0

q1

q2

q3

Input: 1010

010

Simulation of a DFA

⌃ = {0, 1}

0 1 0,1 1

0

10

q0

q1

q2

q3

Input: 1010

10

Simulation of a DFA

⌃ = {0, 1}

0 1 0,1 1

0

10

q0

q1

q2

q3

Input: 1010

10

Simulation of a DFA

⌃ = {0, 1}

0 1 0,1 1

0

10

q0

q1

q2

q3

Input: 1010

0

Simulation of a DFA

⌃ = {0, 1}

0 1 0,1 1

0

10

q0

q1

q2

q3

Input: 1010

0

Simulation of a DFA

⌃ = {0, 1}

0 1 0,1 1

0

10

q0

q1

q2

q3

Input: 1010

Decision: Reject

Simulation of a DFA

⌃ = {0, 1}

0 1 0,1 1

0

10

q0

q1

q2

q3

Input: 01111

Simulation of a DFA

⌃ = {0, 1}

0 1 0,1 1

0

10

q0

q1

q2

q3

Input: 01111

Simulation of a DFA

⌃ = {0, 1}

0 1 0,1 1

0

10

q0

q1

q2

q3

Input: 01111

Simulation of a DFA

⌃ = {0, 1}

0 1 0,1 1

0

10

q0

q1

q2

q3

Input: 01111

Simulation of a DFA

⌃ = {0, 1}

0 1 0,1 1

0

10

q0

q1

q2

q3

Input: 01111

Simulation of a DFA

⌃ = {0, 1}

0 1 0,1 1

0

10

q0

q1

q2

q3

Input: 01111

Simulation of a DFA

⌃ = {0, 1}

0 1 0,1 1

0

10

q0

q1

q2

q3

Input: 01111

Simulation of a DFA

⌃ = {0, 1}

0 1 0,1 1

0

10

q0

q1

q2

q3

Input: 01111
Decision: Accept

Anatomy of a DFA

states

states

accepting
states

start
state

transition rule: labeled arrows

DFA as a programming language

0 1 1 1 1input =
def foo(input):
 i = 0;
 STATE 0:
 if (i == input.length): return False;
 letter = input[i];
 i++;
 switch(letter):
 case ‘0’: go to STATE 0;
 case ‘1’: go to STATE 1;

 STATE 1:
 if (i == input.length): return True;
 letter = input[i];
 i++;
 switch(letter):
 case ‘0’: go to STATE 2;
 case ‘1’: go to STATE 2;
 …

DFA as a programming language
def foo(input):
 i = 0;
 STATE 0:
 if (i == input.length): return False;
 letter = input[i];
 i++;
 switch(letter):
 case ‘0’: go to STATE 0;
 case ‘1’: go to STATE 1;

 STATE 1:
 if (i == input.length): return True;
 letter = input[i];
 i++;
 switch(letter):
 case ‘0’: go to STATE 2;
 case ‘1’: go to STATE 2;
 …

Have we reached end of input?

0 1 1 1 1input =

Is it an accepting state?

DFA as a programming language
def foo(input):
 i = 0;
 STATE 0:
 if (i == input.length): return False;
 letter = input[i];
 i++;
 switch(letter):
 case ‘0’: go to STATE 0;
 case ‘1’: go to STATE 1;

 STATE 1:
 if (i == input.length): return True;
 letter = input[i];
 i++;
 switch(letter):
 case ‘0’: go to STATE 2;
 case ‘1’: go to STATE 2;
 …

Read current letter.

0 1 1 1 1input =

DFA as a programming language
def foo(input):
 i = 0;
 STATE 0:
 if (i == input.length): return False;
 letter = input[i];
 i++;
 switch(letter):
 case ‘0’: go to STATE 0;
 case ‘1’: go to STATE 1;

 STATE 1:
 if (i == input.length): return True;
 letter = input[i];
 i++;
 switch(letter):
 case ‘0’: go to STATE 2;
 case ‘1’: go to STATE 2;
 …

Depending on the letter
change the state.

0 1 1 1 1input =

DFA as a programming language

0 1 1 1 1input =
def foo(input):
 i = 0;
 STATE 0:
 if (i == input.length): return False;
 letter = input[i];
 i++;
 switch(letter):
 case ‘0’: go to STATE 0;
 case ‘1’: go to STATE 1;

 STATE 1:
 if (i == input.length): return True;
 letter = input[i];
 i++;
 switch(letter):
 case ‘0’: go to STATE 2;
 case ‘1’: go to STATE 2;
 …

Definition: Language decided by a DFA

Let be a DFA.

We let denote the set of strings that accepts.

M

L(M) M

So, L(M) = {x 2 ⌃⇤ : M(x) accepts.}

If , we say that decides .L = L(M) M L
computes
recognizes
accepts

✓ ⌃⇤

DFA Examples

L(M) = all binary strings with an even number of 1’s

= {x 2 {0, 1}⇤ : x has an even number of 1’s}

q0 q1

1

1

0 0
M

DFA Examples

q0 q1

M

L(M) = all binary strings with even length

0, 1

0, 1

= {x 2 {0, 1}⇤ : |x| is even}

DFA Examples

q0 q1

1

0
M

L(M) =

1

0

{x 2 {0, 1}⇤ : x ends with a 0} [{✏}

DFA Examples

q0 q1

M

L(M) =

q2 q3

⌃ = {a, b, c}
a, b, c

a

c

a, b

b, c a, b, c

{a, b, cb, cc}

DFA Examples

Draw a DFA that decides

L = {x 2 {0, 1}⇤ : x starts and ends with same bit.}

Hint: How do you decide all strings that end with a 0 ?

How do you decide all strings that end with a 1 ?

Poll

The set of all words ending in 00
None of the above
Beats me

The set of all words ending in 000
The set of all words that contain 00 as a substring
The set of all words that contain 000 as a substring
The set of all words that contain 000 as a substring
The set of all words that contain at least two 0’s
The set of all words that contain at least three 0’s

DFA construction practice

L = {110, 101}

L = {0, 1}⇤\{110, 101}

L = {x 2 {0, 1}⇤ : x starts and ends with same bit.}

L = {x 2 {0, 1}⇤ : |x| is divisible by 2 or 3.}

L = {✏, 110, 110110, 110110110, . . .}

L = {x 2 {0, 1}⇤ : x contains the substring 110.}

L = {x 2 {0, 1}⇤ : 10 and 01 occur equally often in x.}

Formal definition: DFA

A deterministic finite automaton (DFA) is a 5-tupleM

M = (Q,⌃, �, q0, F)

where
- is a finite set (which we call the set of states);Q

- is a finite set (which we call the alphabet);⌃

- is a function of the form � � : Q⇥ ⌃ ! Q
(which we call the transition function);

- is an element of q0 2 Q Q
(which we call the start state);

- is a subset of F ✓ Q Q
(which we call the set of accepting states).

Formal definition: DFA

A deterministic finite automaton (DFA) is a 5-tupleM

M = (Q,⌃, �, q0, F)

Q = {q0, q1, q2, q3}
⌃ = {0, 1}
� : Q⇥ ⌃ ! Q

F = {q1, q2}
q0 is the start state

q0
q1
q2
q3

0 1�
q0

q0

q1
q2 q2

q2
q2

q3

Formal definition: DFA accepting a string

Let be a string over an alphabet . w = w1w2 · · ·wn ⌃

Let be a DFA.M = (Q,⌃, �, q0, F)

We say that accepts the string
if there exists a sequence of states
such that

M w
r0, r1, . . . , rn 2 Q

- ; r0 = q0

- for each ;�(ri�1, wi) = ri i 2 {1, 2, . . . , n}
- .rn 2 F

Otherwise we say rejects the string .M w

Definition: Regular languages

Definition: A language is called regular if
 for some DFA .L = L(M) M

L

Regular languages

...

Regular languages

All languages

?

P(⌃⇤)

Regular languages

Questions:

1. Are all languages regular?
(Are all decision problems computable by a DFA?)

2. Are there other ways to tell if a language is regular?

A non-regular language

Theorem:
The language is not regular.L = {0n1n : n 2 N}

Note on notation:

a 2 ⌃ an aa · · · aFor , denotes the string .}

n times

u, v 2 ⌃⇤For , denotes concatenated with . uv u v

a0 = ✏

L = {✏, 01, 0011, 000111, 00001111, . . .}So .

A non-regular language

Theorem:
The language is not regular.L = {0n1n : n 2 N}

Intuition:

Seems like the DFA would need to remember
how many 0’s it sees.

But it has a constant number of states.
And no other way of remembering things.

Careful though:
L = {x 2 {0, 1}⇤ : 10 and 01 occur equally often in x.} is regular!

A non-regular language

q0

q1
q2

q3
q4 q5

Input: 0000000011111111

imagine some
arbitrary transitions

Warm-up:
Suppose a DFA with 6 states decides .L = {0n1n : n 2 N}

A non-regular language

Warm-up:
Suppose a DFA with 6 states decides .L = {0n1n : n 2 N}

q0

q1
q2

q3
q4 q5

Input: 0000000011111111

imagine some
arbitrary transitions

A non-regular language

Warm-up:
Suppose a DFA with 6 states decides .L = {0n1n : n 2 N}

q0

q1
q2

q3
q4 q5

Input: 0000000011111111

imagine some
arbitrary transitions

A non-regular language

Warm-up:
Suppose a DFA with 6 states decides .L = {0n1n : n 2 N}

q0

q1
q2

q3
q4 q5

Input: 0000000011111111

imagine some
arbitrary transitions

A non-regular language

Warm-up:
Suppose a DFA with 6 states decides .L = {0n1n : n 2 N}

q0

q1
q2

q3
q4 q5

Input: 0000000011111111

imagine some
arbitrary transitions

A non-regular language

Warm-up:
Suppose a DFA with 6 states decides .L = {0n1n : n 2 N}

q0

q1
q2

q3
q4 q5

Input: 0000000011111111

imagine some
arbitrary transitions

A non-regular language

Warm-up:
Suppose a DFA with 6 states decides .L = {0n1n : n 2 N}

q0

q1
q2

q3
q4 q5

Input: 0000000011111111

imagine some
arbitrary transitions

A non-regular language

Warm-up:
Suppose a DFA with 6 states decides .L = {0n1n : n 2 N}

q0

q1
q2

q3
q4 q5

Input: 0000000011111111

imagine some
arbitrary transitions

A non-regular language

Warm-up:
Suppose a DFA with 6 states decides .L = {0n1n : n 2 N}

q0

q1
q2

q3
q4 q5

Input: 0000000011111111

imagine some
arbitrary transitions

A non-regular language

Warm-up:
Suppose a DFA with 6 states decides .L = {0n1n : n 2 N}

q0

q1
q2

q3
q4 q5

Input: 0000000011111111

imagine some
arbitrary transitions

A non-regular language

Warm-up:
Suppose a DFA with 6 states decides .L = {0n1n : n 2 N}

q0

q1
q2

q3
q4 q5

Input: 0000000011111111

imagine some
arbitrary transitions

A non-regular language

Warm-up:
Suppose a DFA with 6 states decides .L = {0n1n : n 2 N}

q0

q1
q2

q3
q4 q5

Input: 0000000011111111

imagine some
arbitrary transitions

A non-regular language

Warm-up:
Suppose a DFA with 6 states decides .L = {0n1n : n 2 N}

q0

q1
q2

q3
q4 q5

Input: 0000000011111111

imagine some
arbitrary transitions

A non-regular language

Warm-up:
Suppose a DFA with 6 states decides .L = {0n1n : n 2 N}

q0

q1
q2

q3
q4 q5

Input: 0000000011111111

imagine some
arbitrary transitions

A non-regular language

Warm-up:
Suppose a DFA with 6 states decides .L = {0n1n : n 2 N}

q0

q1
q2

q3
q4 q5

imagine some
arbitrary transitions

0011 and 00000011
end up in the
same state.

=)

But

0011
00000011

!
!
accept

reject

After 00 and 000000
we ended up in the
same state .q3

00
000000

Input: 0000000011111111

A non-regular language

Warm-up:
Suppose a DFA with 6 states decides .L = {0n1n : n 2 N}

q0

q1
q2

q3
q4 q5

imagine some
arbitrary transitions

Input: 0000000011111111

0
00
000
0000
00000
000000

Pigeonhole Principle
Where will 0000000 go?

A non-regular language

Theorem:
The language is not regular.L = {0n1n : n 2 N}

Proof: Suppose is regular.L
So there is a DFA that decides .LM

Let denote the state is in after reading .rn M 0n
Let denote the number of states of . k M

By PHP, there exists , , such thati, j 2 {0, 1, . . . , k} i 6= j
ri = rj . So and end up in the same state.0i 0j

For any string , and end up in the same state.w 0iw 0jw
But for , should end up in an accepting state, w = 1i 0iw

and should end up in a rejecting state.0jw
This is the desired contradiction.

Proving a language is not regular

Usually the proof goes like:

1. Assume (to reach a contradiction) that the language
 is regular. So a DFA decides it.

2. Argue by PHP that there are two strings and
 that lead to the same state in the DFA.

x y

3. Find a string such that but .z
xz 2 L yz 62 L

Regular languages

...

Regular languages

All languages

?

P(⌃⇤)

Regular languages

...

Regular languages

All languages
P(⌃⇤)

{0n1n : n 2 N}

...

Regular languages

Questions:

1. Are all languages regular?
(Are all decision problems computable by a DFA?)

2. Are there other ways to tell if a language is regular?

Regular languages are closed under union

Theorem:
Let be some finite alphabet.⌃
If and are regular, then so is .L1 ✓ ⌃⇤ L2 ✓ ⌃⇤ L1 [L2

Proof:
and be the decider for .

Let be the decider for M = (Q,⌃, �, q0, F)

M 0 = (Q0,⌃, �0, q00, F
0)

L1

L2

We construct a DFA M 00 = (Q00,⌃, �00, q000 , F
00)

that decides , as follows: L1 [L2

..

.

For ,L1, L2 ✓ ⌃⇤

L1 [L2 = {x 2 ⌃

⇤
: x 2 L1 or x 2 L2}

Regular languages are closed under union

Example

L1 =

L2 =

strings with even
number of 1’s

strings with length
divisible by 3.

0, 1 0, 1

0, 1

p0 p1 p2

M2

qeven

q
odd

1 1

0

0

M1

Regular languages are closed under union

0, 1 0, 1

0, 1

p0 p1 p2

qeven

q
odd

1 1

0

0

Input: 101001

M1

M2

Regular languages are closed under union

0, 1 0, 1

0, 1

p0 p1 p2

qeven

q
odd

1 1

0

0

Input: 101001

M1

M2

Regular languages are closed under union

0, 1 0, 1

0, 1

p0 p1 p2

qeven

q
odd

1 1

0

0

Input: 101001

M1

M2

Regular languages are closed under union

0, 1 0, 1

0, 1

p0 p1 p2

qeven

q
odd

1 1

0

0

Input: 101001

M1

M2

Regular languages are closed under union

0, 1 0, 1

0, 1

p0 p1 p2

qeven

q
odd

1 1

0

0

Input: 101001

M1

M2

Regular languages are closed under union

0, 1 0, 1

0, 1

p0 p1 p2

qeven

q
odd

1 1

0

0

Input: 101001

M1

M2

Regular languages are closed under union

0, 1 0, 1

0, 1

p0 p1 p2

qeven

q
odd

1 1

0

0

Input: 101001

M1

M2

Regular languages are closed under union

0, 1 0, 1

0, 1

p0 p1 p2

qeven

q
odd

1 1

0

0

Input: 101001

M1

M2

Regular languages are closed under union

0, 1 0, 1

0, 1

p0 p1 p2

qeven

q
odd

1 1

0

0

Input: 101001

M1

M2

Accept

Regular languages are closed under union

0, 1 0, 1

0, 1

p0 p1 p2

qeven

q
odd

1 1

0

0

M1

M2

Main idea:
Construct a DFA that keeps track of
both at once.

Regular languages are closed under union

Main idea:
Construct a DFA that keeps track of
both at once.

p0 p2qeven

q
odd

qeven qevenp1

q
odd

q
odd

p0 p2p1

Regular languages are closed under union

0

?

Main idea:
Construct a DFA that keeps track of
both at once.

p0 p2qeven

q
odd

qeven qevenp1

q
odd

q
odd

p0 p2p1

Regular languages are closed under union

p0 p2qeven

q
odd

qeven qevenp1

q
odd

q
odd

p0 p2p1

0

Main idea:
Construct a DFA that keeps track of
both at once.

Regular languages are closed under union

p0 p2qeven

q
odd

qeven qevenp1

q
odd

q
odd

p0 p2p1

0

?

1

Main idea:
Construct a DFA that keeps track of
both at once.

Regular languages are closed under union

p0 p2qeven

q
odd

qeven qevenp1

q
odd

q
odd

p0 p2p1

0

1

Main idea:
Construct a DFA that keeps track of
both at once.

Regular languages are closed under union

p0 p2qeven

q
odd

qeven qevenp1

q
odd

q
odd

p0 p2p1

0

1

0 ?

Main idea:
Construct a DFA that keeps track of
both at once.

Regular languages are closed under union

p0 p2qeven

q
odd

qeven qevenp1

q
odd

q
odd

p0 p2p1

0

1

0

Main idea:
Construct a DFA that keeps track of
both at once.

Regular languages are closed under union

p0 p2qeven

q
odd

qeven qevenp1

q
odd

q
odd

p0 p2p1

0

1

0

?1

Main idea:
Construct a DFA that keeps track of
both at once.

Regular languages are closed under union

p0 p2qeven

q
odd

qeven qevenp1

q
odd

q
odd

p0 p2p1

0

1

0

1

Main idea:
Construct a DFA that keeps track of
both at once.

Regular languages are closed under union

p0 p2qeven

q
odd

qeven qevenp1

q
odd

q
odd

p0 p2p1

0

1

0

1

0

0

Main idea:
Construct a DFA that keeps track of
both at once.

0

1

1

0

Regular languages are closed under union

p0 p2qeven

q
odd

qeven qevenp1

q
odd

q
odd

p0 p2p1

0

1

0

1

0

0

0

1

1

0

Input: 101001

Regular languages are closed under union

p0 p2qeven

q
odd

qeven qevenp1

q
odd

q
odd

p0 p2p1

0

1

0

1

0

0

Input: 101001

0

1

1

0

Regular languages are closed under union

p0 p2qeven

q
odd

qeven qevenp1

q
odd

q
odd

p0 p2p1

0

1

0

1

0

0

Input: 101001

0

1

1

0

Regular languages are closed under union

p0 p2qeven

q
odd

qeven qevenp1

q
odd

q
odd

p0 p2p1

0

1

0

1

0

0

0

1

1

0

Input: 101001

Regular languages are closed under union

p0 p2qeven

q
odd

qeven qevenp1

q
odd

q
odd

p0 p2p1

0

1

0

1

0

0

Input: 101001

0

1

1

0

Regular languages are closed under union

p0 p2qeven

q
odd

qeven qevenp1

q
odd

q
odd

p0 p2p1

0

1

0

1

0

0

0

1

1

0

Input: 101001

Regular languages are closed under union

p0 p2qeven

q
odd

qeven qevenp1

q
odd

q
odd

p0 p2p1

0

1

0

1

0

0

Input: 101001

0

1

1

0

Regular languages are closed under union

p0 p2qeven

q
odd

qeven qevenp1

q
odd

q
odd

p0 p2p1

0

1

0

1

0

0

0

1

1

0

Input: 101001

Regular languages are closed under union

p0 p2qeven

q
odd

qeven qevenp1

q
odd

q
odd

p0 p2p1

0

1

0

1

0

0

Input: 101001

0

1

1

0

Regular languages are closed under union

p0 p2qeven

q
odd

qeven qevenp1

q
odd

q
odd

p0 p2p1

0

1

0

1

0

0

0

1

1

0

Input: 101001

Regular languages are closed under union

p0 p2qeven

q
odd

qeven qevenp1

q
odd

q
odd

p0 p2p1

0

1

0

1

0

0

Input: 101001

0

1

1

0

Regular languages are closed under union

p0 p2qeven

q
odd

qeven qevenp1

q
odd

q
odd

p0 p2p1

0

1

0

1

0

0

0

1

1

0

Input: 101001

Regular languages are closed under union

p0 p2qeven

q
odd

qeven qevenp1

q
odd

q
odd

p0 p2p1

0

1

0

1

0

0

Input: 101001

0

1

1

0

Regular languages are closed under union

p0 p2qeven

q
odd

qeven qevenp1

q
odd

q
odd

p0 p2p1

0

1

0

1

0

0

Input: 101001

0

1

1

0

Decision: Accept

and be the decider for .

Regular languages are closed under union

Theorem:
Let be some finite alphabet.⌃
If and are regular, then so is .L1 ✓ ⌃⇤ L2 ✓ ⌃⇤ L1 [L2

Proof: Let be the decider for M = (Q,⌃, �, q0, F)

M 0 = (Q0,⌃, �0, q00, F
0)

L1

L2

We construct a DFA M 00 = (Q00,⌃, �00, q000 , F
00)

that decides , as follows: L1 [L2

- Q00 = Q⇥Q0 = {(q, q0) : q 2 Q, q0 2 Q0}
- �00((q, q0), a) = (�(q, a), �0(q0, a))

- q000 = (q0, q
0
0)

- F 00
= {(q, q0) : q 2 F or q0 2 F 0}

and be the decider for .

Regular languages are closed under union

Proof: Let be the decider for M = (Q,⌃, �, q0, F)

M 0 = (Q0,⌃, �0, q00, F
0)

L1

L2

We construct a DFA M 00 = (Q00,⌃, �00, q000 , F
00)

that decides , as follows: L1 [L2

- Q00 = Q⇥Q0 = {(q, q0) : q 2 Q, q0 2 Q0}
- �00((q, q0), a) = (�(q, a), �0(q0, a))

- q000 = (q0, q
0
0)

- F 00
= {(q, q0) : q 2 F or q0 2 F 0}

It remains to show that . L(M 00) = L1 [L2

L(M 00) ✓ L1 [L2 : . . .

L1 [L2 ✓ L(M 00) : . . .

More “closure” properties

 regular regular. L1, L2 =) L1 [L2

Closed under union:

 regular regular. =) L⇤

L

⇤ = {x1x2 · · ·xk : k � 0, 8i xi 2 L}

L

Closed under star:

 regular regular. L1, L2 =) L1 · L2

Closed under concatenation:

L1 · L2 = {xy : x 2 L1, y 2 L2}

More “closure” properties

Fact:
Starting with and for each ; {a} a 2 ⌃
can construct any regular language using
union, concatenation, star.

a(a [b)⇤a [b(a [b)⇤b [a [b

(regular expression)

Next Time

