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456 JOURNAL OF ANTHROPOLOGICAL RESEARCH

FIGURE 1
Social Network Model of Relationships in the Karate Club
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34 vertices (karatekas), 78 edges (friendships)
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ZACHARY KARATE CLUB CLUB

networkkarate.tumblr.com
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FACEBOOK
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FACEBOOK

Graph is big and changing

/& 1billion people
B 240 billion photos
&% atrillion connections

#vertices n = 107, #edges m = 1012
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KIDNEY
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KIDNEY EXCHANGE
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WORLD WIDE WEB

2.2 Link Structure of the Web

Whi i . rent graph of the crawlable Web has roughlfy 150 million nodes (pages)
and 1.7 billion edges (links). [Every page has some number of forward lin 4
(in€dgcs)(sce Figure 1). we can never know whether we have found all the backlinks of a particular

page but if we have downloaded it, we know all of its forward links at that time.
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Figure 1: A and B are Backlinks of C

Web pages vary greatly in terms of the number of backlinks they have. For example, the
Netscape home page has 62,804 backlinks in our current database compared to most pages which
have just a few backlinks. Generally, highly linked pages are more “important” than pages with
few links. Simple citation counting has been used to speculate on the future winners of the Nobel

Prize [San95]. PaceRank provides a more sophisticated method for doine citation countine.

Vertices = pages, edges = hyperlinks
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If your problem has a
graph, great. If not,
try to make it have a
graph!
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TYPES OF GRAPHS

“parallel edges”

Simple
Undirected Directed General
Graphs Graphs Graphs
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RETRONYM

Acoustic Electric
Guitar Guitar
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BASIC DEFINITIONS

* A graph G is a pair:
o V is the set of vertices/nodes; |V| =n
o E is the set of edges; |E| = m

* Fach edge is a pair {u, v},
where u # v

* Example:
- V=A{ab,c d}
- E ={{a,b},{a,c}{b,c}{c,d}}
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EDGE CASES

* A grap with no edges is called an empty
graph

* Example:
.V ={1234)
o) E — @

Graph with no
vertices?
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THE NULL GRAPH

IS THE NULL-GRAPH A POINTLESS CONCEPT?

Frank Harary
University of Michigan
and Oxford University

Ronald C. Read
University of Waterloo

ABSTRACT

The graph with no points and no lines is discussed critically. Arguments
for and against its official admittance as a graph are presented. This is
accompanied by an extensive survey of the literature. Paradoxical properties

of the null-graph are noted. No conclusion is reached.
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THE NULL GRAPH

Figure 1. The Null Graph
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MR. VERTEX’S NEIGHBORHOOD

e If{u,v} €E, uisa
neighbor of v

* The neighborhood

N(u) of u is
{veV [{uv}eE}

* The degree deg(u) N(b) = {a, c}
of u is |N(w)| deg(b) =2
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* Theorem: ),y deg(u) = 2m

e Proof:

o Each vertex places a
token on each of its edges

o The number of tokens
is Qyev deg(u)
- HBach edge has exactly two

tokens placed on it Q
o The number of tokens
s 2m 24+2+34+1=2-4
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FACEBOOK, REVISITED

Graph is big and changing

/'4 1 billion people
Bl 2s00billion phot
& 1 trillion connections

#vertices n = 107, #edges m = 1012
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REGULAR GRAPHS

* A graph is d-regular if all nodes
have degree d

* The empty graph is O-regular

* 1l-regular graph is called a
perfect matching

+ Poll 1: How many 2-regular | g><g
~ graphs with V = {a, b, ¢, d} are |

there? g 1-regular graph
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3-REGULAR GRAPHS

There are lots and lots of possibilities
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CONNECTEDNESS

* Graph G is connected if for all u,v €V
there is a path between u and v

% g—g
This 11-vertex graph is not connected
It has 3 connected components
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CONNECTEDNESS

What is the
minimum number of
edges needed to

— make a connected \ Q Q -

27-vertex graph?
< /
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Done m=1 m=2
m = necessary necessary
and sufficient and sufficient
n=4
m=23
necessary

and sufficient
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n — 1 edges are always sufficient

to connect an n-vertex graph

“star graph”

O 2
O
“path graph”

OO O OO0 000

“something

else”
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 Theorem: n — 1 edges are also
necessary to connect an
n-vertex graph

-

 Proof:

o If G has k connected

components, and G’ is formed

from G by adding an edge, then

G' has at least k — 1

components Q
o Add edges one by one; to obtain

a single connected component,

need at least n — 1 steps ®
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ACYCLIC GRAPHS

° Poll 2: Assume that G is
~ connected. Then: ’

m=n—1= @G is acyclic

G is acyclic=>m=n—1

G is acyclicem=n—1

Incomparable

.  15-251 Fall 2015: Lecture 10 Carnegie Mellon University 26



TREES

A tree is a connected acyclic graph

“Tree graph”

15-251 Fall 2015: Lecture 10 Carnegie Mellon University 27




GRAPH THEORY HAIKU
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HAMILTONIAN CYCLE *

A Hamiltonian cycle in G is a
cycle that visits every v € V
exactly once (see Lect. 7)

e Theorem |Ore, 1960|: Let G be
a graph on n = 3 vertices such
that deg(u) + deg(v) = n for
any u, v € V that are not
neighbors, then G contains a
Hamiltonian Cycle
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PROOF *

* Color the edges of G blue,
add red edges to form a
complete graph, and
choose a Hamiltonian
Cycle C

e If C is not completely
blue, will find C" with
more blue edges
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PROOF *

Let {a, b} be a red edge in C

Let S be the successors of
N(a) on C
deg(b) = n — deg(a)

= |V| = [N(a)

= |[V] -S|

> |V \ (Suib})|
So b is a neighbor of c € §

We can find a bluer cycle m

| % Not for the exam
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SUMMARY

* Definitions:
o Regular graph
- Connected graph
o Neighborhood, degree

o Hamiltonian cycle

* Theorems:
o If G is connected, or

|[E] =n —1 & acyclic " '
o uey deg(u) =2m ' | ‘\‘

o Ore’s Theorem
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