
October 8th, 2015

15-251
Great Theoretical Ideas in Computer Science

Lecture 11:
Graphs III: Maximum and Stable Matchings

Today’s Goal:

Save lives.

Today’s Goal:

Maximum matching problem
(in bipartite graphs)

Stable matching problem

Maximum matching problem
(in bipartite graphs)

Some motivating real-world examples

matching machines and jobs

...

Job 1

Job 2

Job n

...

Some motivating real-world examples

matching professors and courses

...

15-110

15-112

15-122

15-150

15-251
...

Some motivating real-world examples

matching students and internships

Some motivating real-world examples

matching kidney donors and patients

How do you solve a problem like this?

1. Formulate the problem

2. Ask: Is there a trivial algorithm?

3. Ask: Is there a better algorithm?

4. Find and analyze

Bipartite Graphs

X Y

X Y V

is bipartite if: G = (V,E)

- there exists a bipartition and of

- each edge connects a vertex in to a vertex inX Y

not allowed

Given a graph , we could ask, is it bipartite?G = (V,E)

Bipartite Graphs

Given a graph , we could ask, is it bipartite?G = (V,E)

1

2 3

1 2

3 4

1 2

3 4

5

Bipartite Graphs

X Y

Sometimes we write the bipartition explicitly:

G = (X,Y,E)

Bipartite Graphs

Great for modeling relations between two classes of
objects.

Examples:

 = machines, = jobs

An edge means is capable of doing .

X Y

{x, y}
x y

 = professors, = courses

An edge means can teach .

X Y

{x, y}
x y

 = students, = internship jobs

An edge means and are interested in each other.

X Y

{x, y}
x y

…

Matchings in bipartite graphs

Often, we are interested in finding a matching in a
bipartite graph

X Y

A matching :
A subset of the edges that do not share an endpoint.

Matchings in bipartite graphs

Often, we are interested in finding a matching in a
bipartite graph

X Y

A matching :
A subset of the edges that do not share an endpoint.

matching

Matchings in bipartite graphs

Often, we are interested in finding a matching in a
bipartite graph

X Y

A matching :
A subset of the edges that do not share an endpoint.

matching

Matchings in bipartite graphs

Often, we are interested in finding a matching in a
bipartite graph

X Y

A matching :
A subset of the edges that do not share an endpoint.

not a
matching

Matchings in bipartite graphs

Often, we are interested in finding a matching in a
bipartite graph

X Y

maximum
matching

Maximum matching: a matching with largest number
of edges (among all possible matchings).

Matchings in bipartite graphs

Often, we are interested in finding a matching in a
bipartite graph

X Y

maximal
matching

Cannot add
more edges.

“Local optimum”

Maximal matching: a matching which cannot contain
any more edges.

Matchings in bipartite graphs

Often, we are interested in finding a matching in a
bipartite graph

X Y

Perfect matching: a matching that covers all vertices.

perfect
matching

a necessary
condition for

perfect matching:
|X| = |Y |

Important Note

We can define matchings for non-bipartite graphs as well.

Important Note

We can define matchings for non-bipartite graphs as well.

Maximum matching problem

The restriction where G is bipartite is already interesting!

The problem we want to solve is:

Input: A graph .G = (V,E)

Output: A maximum matching in . G

Maximum matching problem

Bipartite maximum matching problem

The problem we want to solve is:

Input: A bipartite graph .

Output: A maximum matching in . G

Bipartite maximum matching problem

G = (X,Y,E)

How do you solve a problem like this?

1. Formulate the problem

2. Ask: Is there a trivial algorithm?

3. Ask: Is there a better algorithm?

4. Find and analyze

Bipartite maximum matching problem

Is there a (trivial) algorithm to solve this problem?

Try all possible subsets of the edges.
Check if it is a matching.
Keep track of the maximum one found.

Running time: ⌦(2m)

Input: A bipartite graph .

Output: A maximum matching in . G

Bipartite maximum matching problem

G = (X,Y,E)

How do you solve a problem like this?

1. Formulate the problem

2. Ask: Is there a trivial algorithm?

3. Ask: Is there a better algorithm?

4. Find and analyze

Bipartite maximum matching problem

What if we picked edges greedily?

Bipartite maximum matching problem

What if we picked edges greedily?

Bipartite maximum matching problem

What if we picked edges greedily?

Bipartite maximum matching problem

What if we picked edges greedily?

maximal matching

but not maximum

Is there a way to get out of this local optimum?

Augmenting paths

Let M be some matching.

1

2

3

4

5

6

7

8

Augmenting path:

4-8-2-5-1-7

An augmenting path with respect to M is a path in G
such that:

- the edges in the path alternate between
 being in M and not being in M

- the first and last vertices are not matched by M

Augmenting paths

1

2

3

4

5

6

7

8

Augmenting path:

4-8-2-5-1-7

4 8 2 5 1 7

4 8 2 5 1 7

augmenting path can obtain a bigger matching.=)

Augmenting paths and maximum matchings

augmenting path can obtain a bigger matching.=)

no augmenting path maximum matching.
In fact, it turns out:

=)

Theorem:
A matching M is maximum if and only if
there is no augmenting path with respect to M.

Augmenting paths and maximum matchings

Proof:
If there is an augmenting path with respect to M,
we saw that M is not maximum.

Want to show:
If M is not maximum, then there is an augmenting path.

Let M* be a maximum matching. |M*| > |M|.

1

2

3

4

5

6

7

8

Let S be the set of edges
contained in M* or M
but not both.

S = (M* M) - (M M*)[\

Augmenting paths and maximum matchings

Proof:
1

2

3

4

5

6

7

8 S = (M* M) - (M M*)[\

What does S look like?

So S is a collection of cycles and paths. (exercise)

The edges alternate red and blue.

Each vertex has degree at most 2. (why?)

(will find an augmenting path in S)

Let S be the set of edges
contained in M* or M
but not both.

Augmenting paths and maximum matchings

Proof:
1

2

3

4

5

6

7

8

Let S be the set of edges
contained in M* or M
but not both.

 # red > # blue in S
 # red = # blue in cycles

This is an augmenting path with respect to M.
 So a path with # red > # blue.9

So S is a collection of cycles and paths. (exercise)

The edges alternate red and blue.

S = (M* M) - (M M*)[\

Algorithm to find maximum matching

OK, but how do you find an augmenting path?

Theorem:
A matching M is maximum if and only if
there is no augmenting path with respect to M.

Exercise (homework?)

Algorithm:

- Start with a single edge as your matching M.

- Find an augmenting path with respect to M.

- Update M according to the augmenting path.

- Repeat until there is no augmenting path w.r.t. M:

Algorithm to find maximum matching

Algorithm:

- Start with a single edge as your matching M.

- Find an augmenting path with respect to M.

- Update M according to the augmenting path.

- Repeat until there is no augmenting path w.r.t. M:

Theorem:
A matching M is maximum if and only if
there is no augmenting path with respect to M.

O(m · n) time algorithm in bipartite graphs.

Today’s Goal:

Maximum matching problem
(in bipartite graphs)

Stable matching problem

Stable matching problem

Finding internship

Finding internship

1.
2.
3.
4.

1. Alice
2. Bob
3. Charlie
4. David

1. Bob
2. David
3. Alice
4. Charlie

.

.

.

Other examples:
medical residents - hospitals
students - colleges

Finding internship

What can go wrong?

Alice

Bob

Charlie

David

Macrosoft

Moogle

Umbrella

KLG

Suppose Alice gets “matched” with Macrosoft.
 Charlie gets “matched” with Umbrella.

But, say, Alice prefers Umbrella over Macrosoft
and Umbrella prefers Alice over Charlie.

Finding internship: Formalizing the problem

An instance of the problem can be represented as a
complete bipartite graph

Goal: Find a stable matching.

+ preference list of each node.

(e,f,h,g)

(e,g,h,f)

(e,h,f,g)

(e,f,g,h)

(a,b,c,d)

(a,b,c,d)

(a,b,c,d)

(a,b,c,d)

X Y

Students Companies

a

b

c

d

e

f

g

h

|X| = |Y | = n

Finding internship: Formalizing the problem

What is a stable matching?

X Y

a

b

e

f

(e,f)

(e,f)

(a,b)

(a,b)

1. It has to be a perfect matching.

2. Cannot contain an unstable pair:

A pair (x, y) not matched
 but they prefer each other over their current partners.

Finding internship: Formalizing the problem

X Y

What is a stable matching?

a

b

e

f

(e,f)

(e,f)

(a,b)

(a,b)

1. It has to be a perfect matching.

2. Cannot contain an unstable pair:

(a, e) is an unstable pair.

A pair (x, y) not matched
 but they prefer each other over their current partners.

Finding internship: Formalizing the problem

X Y

Goal: Find a stable matching.

a

b

c

d

e

f

g

h

(e,f,h,g)

(e,g,h,f)

(e,h,f,g)

(e,f,g,h)

(a,b,c,d)

(a,b,c,d)

(a,b,c,d)

(a,b,c,d)

(Is it guaranteed to always exist?)

|X| = |Y | = n

An instance of the problem can be represented as a
complete bipartite graph + preference list of each node.

Stable matching: Is there a trivial algorithm?
X Y

a

b

c

d

e

f

g

h

(e,f,h,g)

(e,g,h,f)

(e,h,f,g)

(e,f,g,h)

(a,b,c,d)

(a,b,c,d)

(a,b,c,d)

(a,b,c,d)

Try all possible perfect matchings,
and check if it is stable.

Trivial algorithm:

perfect matchings in terms :n = |X|

perfect matchings in terms :n = |X|

Stable matching: Is there a trivial algorithm?
X Y

a

b

c

d

e

f

g

h

(e,f,h,g)

(e,g,h,f)

(e,h,f,g)

(e,f,g,h)

(a,b,c,d)

(a,b,c,d)

(a,b,c,d)

(a,b,c,d)

Try all possible perfect matchings,
and check if it is stable.

n!

Trivial algorithm:

Stable matching: Can we do better?

Nobel Prize in Economics
2012

The Gale-Shapley Proposal Algorithm (1962)

The Gale-Shapley proposal algorithm

1 2 3

1 2 3

1 2 3 1 2 3

1 2 3

1 2 3

The Gale-Shapley proposal algorithm

1 2 3

1 2 3

1 2 3 1 2 3

1 2 3

1 2 3

The Gale-Shapley proposal algorithm

1 2 3

1 2 3

1 2 3 1 2 3

1 2 3

1 2 3

The Gale-Shapley proposal algorithm

1 2 3

1 2 3

1 2 3 1 2 3

1 2 3

1 2 3

The Gale-Shapley proposal algorithm

1 2 3

1 2 3

1 2 3 1 2 3

1 2 3

1 2 3

The Gale-Shapley proposal algorithm

1 2 3

1 2 3

1 2 3 1 2 3

1 2 3

1 2 3

The Gale-Shapley proposal algorithm

1 2 3

1 2 3

1 2 3 1 2 3

1 2 3

1 2 3

The Gale-Shapley proposal algorithm

1 2 3

1 2 3

1 2 3 1 2 3

1 2 3

1 2 3

hello
handsome

The Gale-Shapley proposal algorithm

1 2 3

1 2 3

1 2 3 1 2 3

1 2 3

1 2 3

The Gale-Shapley proposal algorithm

1 2 3

1 2 3

1 2 3 1 2 3

1 2 3

1 2 3

The Gale-Shapley proposal algorithm

1 2 3

1 2 3

1 2 3 1 2 3

1 2 3

1 2 3

The Gale-Shapley proposal algorithm

1 2 3

1 2 3

1 2 3 1 2 3

1 2 3

1 2 3

The Gale-Shapley proposal algorithm

1 2 3

1 2 3

1 2 3 1 2 3

1 2 3

1 2 3

The Gale-Shapley proposal algorithm

1 2 3

1 2 3

1 2 3 1 2 3

1 2 3

1 2 3

The Gale-Shapley proposal algorithm

1 2 3

1 2 3

1 2 3 1 2 3

1 2 3

1 2 3

The Gale-Shapley proposal algorithm

1 2 3

1 2 3

1 2 3 1 2 3

1 2 3

1 2 3

The Gale-Shapley proposal algorithm

1 2 3

1 2 3

1 2 3 1 2 3

1 2 3

1 2 3

Nice.
Now I don’t have to

marry Brad.

The Gale-Shapley proposal algorithm

1 2 3

1 2 3

1 2 3 1 2 3

1 2 3

1 2 3

The Gale-Shapley proposal algorithm

1 2 3

1 2 3

1 2 3 1 2 3

1 2 3

1 2 3

The Gale-Shapley proposal algorithm

1 2 3

1 2 3

1 2 3 1 2 3

1 2 3

1 2 3

The Gale-Shapley proposal algorithm

1 2 3

1 2 3

1 2 3 1 2 3

1 2 3

1 2 3

The Gale-Shapley proposal algorithm

1 2 3

1 2 3

1 2 3 1 2 3

1 2 3

1 2 3

#FeelTheBern
Trump

The Gale-Shapley proposal algorithm

1 2 3

1 2 3

1 2 3 1 2 3

1 2 3

1 2 3

The Gale-Shapley proposal algorithm

1 2 3

1 2 3

1 2 3 1 2 3

1 2 3

1 2 3

The Gale-Shapley proposal algorithm

1 2 3

1 2 3

1 2 3 1 2 3

1 2 3

1 2 3

The Gale-Shapley proposal algorithm

1 2 3

1 2 3

1 2 3 1 2 3

1 2 3

1 2 3

whatever

The Gale-Shapley proposal algorithm

1 2 3

1 2 3

1 2 3 1 2 3

1 2 3

1 2 3

The Gale-Shapley proposal algorithm

Cool, but does it work correctly?

- Does it always terminate?

- Does it always find a stable matching?

While there is a man m who is not matched:

- Let w be the highest ranked woman in m’s list
 to whom m has not proposed yet.

- If w is unmatched, or w prefers m over her current match:

- Match m and w.
 (The previous match of w is now unmatched.)

(Does a stable matching always exist?)

The Gale-Shapley proposal algorithm always terminates
with a stable matching after at most iterations.

Gale-Shapley algorithm analysis

1. Number of iterations is at most . n2

3 things to show:

2. The algorithm terminates with a perfect matching.

3. The matching has no unstable pairs.

A constructive proof that a stable matching always exists.

n2

Theorem:

Gale-Shapley algorithm analysis

No man proposes to a woman more than once.

So each man makes at most proposals.n

iterations = # proposals

There are men in total.n

proposals . n2=)
iterations . n2=)

1. Number of iterations is at most . n2

Gale-Shapley algorithm analysis

A man is not matched

All men must be matched.=)
All women must be matched=)

Contradiction

2. The algorithm terminates with a perfect matching.

If we don’t have a perfect matching:

Second implication:
There are an equal number of men and women.

Gale-Shapley algorithm analysis

A man is not matched

All men must be matched.=)
All women must be matched=)

Contradiction

2. The algorithm terminates with a perfect matching.

If we don’t have a perfect matching:

First implication:

A man got rejected by every woman:
case1: she was already matched, or
case2: she got a better offer

Observe: once a woman is matched, she stays matched.

Either way, she was matched at some point.

Gale-Shapley algorithm analysis

Unstable pair:
 (m, w) not matched
 but they prefer each other.

3. The matching has no unstable pairs.

m

m’

w’

w
Observations:
 > A man can only go down in his preference list.
 > A woman can only go up in her preference list.

Case 1: m never proposed to w

Case 2: m proposed to w

w’ must be higher in the preference list of m than w

w rejected m w prefers her current partner=)

Consider any unmatched (m,w).

Further questions

Does the order of how we pick men matter?
Would it lead to different matchings?

The Gale-Shapley proposal algorithm always terminates
with a stable matching after at most iterations. n2

Theorem:

Does this algorithm favor men or women or neither?
Is the algorithm “fair”?

Further questions

Theorem:
The Gale-Shapley proposal algorithm
always matches m with its best valid partner.

Theorem:
The Gale-Shapley proposal algorithm
always matches w with its worst valid partner.

Real-world applications

Alvin Roth

Variants of the Gale-Shapley algorithm
is used for:

- matching doctors and hospitals

- matching students to high schools (e.g. in New York)

- matching kidney donors to patients

> revolutionized the way kidney transplants were
 handled in the US

> in 2003, 3436 patients on the waitlist died.

“Throughout the United States nearly 2,000 patients have
received kidneys under the system developed on Roth and
Shapley’s models that would otherwise not have received

them.”

- Ruthanne Hanto,  
Program Manager, Kidney Paired Donation Program,

Organ Procurement and Transplantation Network (OPTN)

Today’s Goal:

Save lives.

