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ETHICAL ROBOTS

» Experiments performed by Winfield et al. [2014]

 Environment includes a robot, a human, and a
hole which can be sensed by the robot but not
the human

 Robot can simulate the consequences of possible
actions

IF for all robot actions, the human is equally safe
THEN (* default safe actions *)
output safe actions
ELSE (* ethical action *)
output action(s) for least unsafe human outcome(s)
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ETHICAL ROBOTS

* A (for “Asimov”) robot, with tracking and
localization implemented via an overhead
tracking system

* H (for “human”) robot can move around the
arena, but only has simple proximity sensors and
cannot ‘see’ a virtual hole

* Logic is implemented via the sum of a potential
function that drives A to its goal, and a stronger
potential function that is employed when danger
1S Imminent
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ETHICAL ROBOTS

26 experiments 26 experiments
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|Winfield et al. 2014]
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The robot’s
dilemma: what
should I do if there
are two humans in
danger?
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ETHICAL ROBOTS

33 experiments 20 | 33 expelrirnents
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THE TROLLEY PROBLEM

@ O (.
/ . ° ¢
| | ] | |
The switch The fat man  The fat villain The loop  The man in the yard

Poll 1: Choose an action in each scenario
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THE SOCIAL DILEMMA OF AVS

People think an AV 60
should be programmed
to save 10 pedestrians
rather than protect one
passenger, but were
less certain AVs would
be programmed that

way
|[Bonnefon et al. 2016] 1
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THE SOCIAL DILEMMA OF AVS

o Will AV ifice? hould AV ifice?
Appr()val fOI' S&CflflCng B Wwi s sacrifice? B Shou s sacrifice

a single passenger
increases with the

number of pedestrians 0.751 :l
saved by the sacrifice
|Bonnefon et al. 2016|
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THE SOCIAL DILEMMA OF AVS

EVGH though people B Alone B with Coworker B with Family

agree sacrificing few 8.

passengers to save many

pedestrians is more
Mor'ality Bny B[Jy
of sacrifice Minimize Protective

@D
o

moral, they prefer a car
that would protect them
|Bonnefon et al. 2016|
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SMMA OF AVS

THE SOCIAL DIL;

In allocating a pool of
100 points, people are
consistent when the
decision doesn’t involve
sacrificing passengers,
but when it does, people
again abandon
utilitarianism for their

own cars
|Bonnefon et al. 2016|
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Implications of the
Winftield et al.
experiment for

autonomous
vehicles?
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DECISION MAKING FRAMEWORK

c Learning Aggregation

Data collection 0 Summarization e

|[Noothigattu et al. 2018|
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STEP 2: LEARNING

B x; B x, B x;3
The Thurstone Model
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STEP 3: SUMMARIZATION

» After Step 2, there are n = 1.3M
Thurstone models represented by the

parameters f1, ..., Py,

* Summarize them by taking their

— 1
average, B = 137, B;
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STEP 4: AGGREGATION

» After Step 3, there is one summary
Thurstone model

* Given a finite set of alternatives
{xX1, ..., X}, the TM model induces an
anonymous preference profile over these
alternatives

* Theorem |Noothigattu et al. 2018|: Any
monotonic and neutral voting rule would
select an alternative that maximizes f - x;
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EMPIRICAL RESULTS
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KIDNEY EXCHANGE ETHICS

* We describe an approach and experiments
due to Freedman et al. [2018]

e 289 people compared 8 possible patient
profiles by priority for receiving a kidney:

Attribute Alternative 0 Alternative 1

Age 30 years old (Young) 70 years old (Old)
Health — behavioral 1 alcoholic drink per month 5 alcoholic drinks per day
(Rare) (Frequent)
Health — general No other major health Skin cancer in remission (Cancer)

problems (Healthy)
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* Poll 2: YFC vs. ORH

FH vs. O]

RH

FH vs. O]

RO

Attribute Alternative 0 Alternative 1

Age 30 years old (Young) 70 years old (Old)
Health — behavioral 1 alcoholic drink per month 5 alcoholic drinks per day
(Rare) (Frequent)
Health — general No other major health Skin cancer in remission (Cancer)

problems (Healthy)
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Protie Lo DoinkingConcer Pt

YRC
YFH
ORH
YFC
ORC
OFH
OFC

30
30
70
30
70
70
70

Rare Healthy
Rare Cancer

Frequent Healthy

Rare Healthy
Frequent Cancer
Rare Cancer

Frequent Healthy

Frequent Cancer

|Freedman et al. 2018]
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KIDNEY EXCHANGE ETHICS

* In the Bradley-Terry model, each profile i
has a weight w;, and the probability that a

Wi

random person would prefer i to j is
Wi+Wj

* Either learn weights for profiles directly,
or as a linear function of the attributes

* The scores are used to break ties among
matchings of equal cardinality
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Why not

maximize
welghted sum

directly”
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YRH 1 1
YRC 0.23 0.13
YFH 0.1 0.29
ORH 0.07 0.03
YFC 0.03 0.08
ORC 0.02 0.01
OFH 0.01 0.02
OFC 0.002 0.003

|Freedman et al. 2018]
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KIDNEY EXCHANG:
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SUMMARY

* Definitions
o DBradley-Terry model
* Big ideas:
o oocial choice and machine learning
give methods for making

commonsense decisions on thorny
ethical dilemmas
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