
CMU 15-896 
Matching 1:  
Online algorithms 
 
Teacher: 
Ariel Procaccia 



15896 Spring 2015: Lecture 11 

Display advertising 

• Display advertising is the 
largest matching problem in 
the world 

• Bipartite graph with 
advertisers and impressions 

• Advertisers specify which 
impressions are acceptable 
— this defines the edges 

• Impressions arrive online 
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The (simplest) model 
• There is a bipartite graph 𝐺 = 𝑈,𝑉,𝐸 , 
𝑈 = 𝑛 

• 𝑈 is known “offline”, the vertices of 𝑉 arrive 
online (with their incident edges) 

• Objective: maximize size of matching 
• ALG has competitive ratio 𝛼 ≤ 1 if for 

every graph 𝐺 and every input order 𝜋 of 𝑉, 
𝐴𝐴𝐴(𝐺,𝜋)
𝑂𝑂𝑂(𝐺)

≥ 𝛼 

 
3 



15896 Spring 2015: Lecture 11 

Algorithm GREEDY 

• Algorithm GREEDY: match to an arbitrary 
unmatched neighbor (if one exists) 
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Poll 1: Competitive ratio of GREEDY?  
1. 1/𝑛 
2. 1/ 𝑛 
3. 1/ log𝑛 
4. 1/2 
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Upper bound 

• Observation: The competitive ratio of any 
deterministic algorithm is at most 1/2 
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Take 2: Algorithm RANDOM 
• Obvious idea: randomness 
• Algorithm RANDOM: Match to 

an unmatched neighbor 
uniformly at random  

• Achieves ¾ on previous 
example 
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 Competitive ratio of RANDOM 
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Take 3: Algorithm RANKING 

• Algorithm RANKING: 
o Choose a random permutation 

𝜋:𝑈 → 𝑛  
o Match each vertex to its unmatched 

neighbor 𝑢 with the lowest 𝜋 𝑢  
• Looks like this is doing better than 

RANDOM on previous example! 
• Theorem [Karp et al. 1990]: The 

competitive ratio of RANKING is 
1 − 1

𝑒
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Proof of theorem 

• Assume for ease of exposition that 
OPT = 𝑛 

• Fix a perfect matching 𝑀∗:𝑈 ∪ 𝑉 → 𝑈 ∪ 𝑉 
• Fix 𝜋 and 𝑢 ∈ 𝑈 
• If 𝑢 is matched under 𝜋, (𝜋,𝑢) is a match 

event at position 𝜋(𝑢), otherwise miss event 
• ALG is the sum of probabilities of match 

events at all positions 
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Proof of theorem 

• 𝜋 induces a matching 𝑀𝜋 
• Consider a miss event (𝜋,𝑢∗) 

with 𝜋 𝑢∗ = 𝑡 
• 𝑣∗ = 𝑀∗(𝑢∗), 𝑢′ = 𝑀𝜋 𝑣∗  
• Define 𝜋𝑖 by moving 𝑢∗ to 

position 𝑖 = 1, … , n 
• Claim: for each 𝑖, 𝑀𝜋𝑖 𝑣∗ = 𝑢𝑖 

with 𝜋𝑖 𝑢𝑖 ≤ 𝑡 
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Proof of theorem 

• Proof of claim: by illustration 
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Proof of theorem 
• We have a 1-𝑛 mapping between miss events 

𝜋,𝑢∗  and match events (𝜋𝑖 ,𝑢𝑖) where 
𝑀𝜋𝑖 𝑢𝑖 = 𝑀∗ 𝑢∗  and 𝜋𝑖 𝑢𝑖 ≤ 𝜋(𝑢∗) 

• Claim: Each miss event at position 𝑡 is mapped 
to 𝑛 unique match events 

• Proof of claim: 
o Fix miss events (𝜋,𝑢) and (𝜋′,𝑢′) such that 

𝜋 𝑢 = 𝜋′(𝑢′) = 𝑡, and both are mapped to (𝜋� ,𝑢�) 
o 𝑀𝜋� 𝑢� = 𝑀∗ 𝑢 = 𝑀∗ 𝑢′ ⇒ 𝑢 = 𝑢𝑢 
o The map only moves 𝑢 from position 𝑡 in 𝜋 and 𝜋′, 

giving 𝜋� in both cases ⇒ 𝜋 = 𝜋′  ∎ 
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Proof of theorem 
• We get the following set of equations for every 
𝑡 = 1, … ,𝑛: 

𝑛 ⋅ Pr Miss at 𝑡 ≤�Pr[Match at 𝑠]
𝑠≤𝑡

 

• Setting 𝑥𝑡 = Pr[Match at 𝑡], this is 

1 − 𝑥𝑡 ≤
1
𝑛
�𝑥𝑠
𝑠≤𝑡

 

• By minimizing the objective function ∑ 𝑥𝑡𝑡  over 
this polytope, we get ∑ 𝑥𝑡 ≥ 1 − 1

𝑒
𝑛  ∎𝑡  
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Upper bound 
• Theorem [Karp et al. 1990]: No randomized alg 

has competitive ratio better than 1 − 1
𝑒

+ 𝑜(1) 
• The proof below is due to Wajc [2015] 
• Fractional algorithm: deterministically assign 

fractional weights to edges such that s.t. 
∀𝑢 ∈ 𝑈 ∪ 𝑉, 𝑓 𝑢 = ∑ 𝑤𝑢𝑢 ≤ 1𝑢,𝑣 ∈𝐸  

• Lemma [Wajc 2015]: For any randomized alg 
there is a fractional alg with at least the same 
competitive ratio  
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Proof of theorem 

• First online vertex 𝑣1 is 
connected to all 𝑈 

• Let 𝑢1 ∈ argmin𝑢∈𝑈 𝑓(𝑢), in 
particular 𝑓 𝑢1 ≤ 1/𝑛 

• 𝑢1 will not be connected to any 
future online vertex 
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Proof of theorem 

• 𝑡-th online vertex 𝑣𝑡 is 
connected to all 𝑈\{𝑢1, … ,𝑢𝑡−1} 

• 𝑢𝑡 ∈ argmin𝑢∈𝑈∖ 𝑢1,…,𝑢𝑡−1 𝑓 𝑢  
• 𝑢𝑡 will not be connected to  

any future online vertex 
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Proof of theorem 
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Poll 2: What is OPT?  
1. 𝑛/2 

2. 𝑛 1 − 1
𝑒

 

3. 3𝑛/4 
4. 𝑛 
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Proof of theorem 
• After step 𝑡, offline vertices that continue to be 

matched are matched to an average of at least 
𝑓 𝑢 = ∑  1

𝑛−𝑘+1
𝑡
𝑘=1  

• Following the arrival of the 𝑡-th online vertex 
with 𝑡 = 𝑛 1 − 1

𝑒
+ 1, it holds that offline 

vertices that will neighbor future online vertices 
are matched to an average of 

𝑓 𝑢 = �
1

𝑛 − 𝑘 + 1
= �

1
𝑘
≥

𝑛

𝑘=𝑛𝑒

𝑛 1−1𝑒 +1

𝑘=1

ln𝑛 − ln
𝑛
𝑒

= 1 
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Proof of theorem 

• So at step 𝑡, 1
𝑛−𝑡

∑ 𝑓 𝑢𝑘 ≥ 1𝑛
𝑘=𝑡+1 , but 

because 𝑓 𝑢 ≤ 1 for all 𝑢 ∈ 𝑈, this means 
that 𝑓 𝑢𝑘 = 1 for all 𝑘 = 𝑡 + 1, … ,𝑛 

• That is, the algorithm cannot match the 
vertices 𝑣𝑡+1, … , 𝑣𝑛  

• ALG ≤ 𝑛 1 − 1
𝑒

+ 1  ∎ 
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