15-859(B) Machine Learning
Theory

Lecture 02/05/02, Avrim Blum

MB = PAC, greedy set cover, VC-dim



MB = PAC (simpler version)

Theorem 1 If we can learn C' with mistake-bound
M, then we can learn in the PAC model using a
M

training set of size O (%Iog (7)).

Proof.

e Assume MB alg is “conservative’ .

e Look at sequence of hypotheses produced:
hi,ho,....

M

e For each one, if consistent with following %Iog 5

examples, then stop.

e If h; has error > ¢, the chance we stopped was
at most /M. So there's at most a § chance
we are fooled by any of the hypotheses.



Chernoff/Hoeffding recap

Consider coin of bias p flipped m times. Let S be
the observed # heads. Let ¢ € [0, 1].

Hoeffding bounds:

o PI’[% >pte] < e_2m52, and

o Pr[% <p—¢g] < e—2me?,

Chernoff bounds:
S —mpe?/3
o Prl>p(1+4+¢)]<e™™P , and
o Pri2 < p(l—e)] e mpe?/2
E.g., Pr[S < (expectation)/2] < e~ (expectation) /8,

E.g., Pr[S > 2(expectation)] < e~ (expectation)/3



MB = PAC (better bound)

Theorem 2 We can actually get a better bound
of O (¢{M + 10g(1/4)]).

To do this, we will split data into a ‘“training set”

S1 of size max <4M L%n l) and a “test set” S, of

S e’ e g
Size 37'”7' We will run alg on S; and test all

hyps produced on 5S».

Claim 1: w.h.p., at least one hyp produced on 5S4
has error < e/2. Proof:

e If all are > ¢/2 then expected number of mis-
takes is > 2M.

e By Chernoff, Pr[< M] < el—expect)/8 < 1 _ §

Claim 2: W.h.p., best one on S5 has error < e.

Proof. Suffices to show that good one is likely
to look better than 3¢/4 and all with true error
> ¢ are likely to look worse than 3e/4. Just apply
Chernoff again....



Learning an OR function revisited

Alternative greedy-set-cover approach to learning
OR function:

e Pick literal that captures the most positive
examples, without capturing any negatives.

e Cross of examples covered and repeat.
If there exists an OR function of size r, then:
e If continue until totally consistent, this will

find one of size O(rlogm), where m = size of
training set.

e If continue until training error < ¢/2 then find
one of size O(rlog %).

Get sample-size bound O (% [(r log %) log(n) + In %])

This is slightly worse than Winnow.



VC-dimension and “effective”
hypothesis space size

If many hypotheses in H are very similar, then we
shouldn’t have to pay so much for them.

E.g., we saw example of C = {[0,a] : 0 <a < 1}.

How can we make this formal?



Effective humber of Hypotheses

e Define: C[m] = maximum number of ways to
split m points using concepts in C. Book calls
this Wc(m).

e Theorem: For any class C, distrib. D, if the
number of examples seen m satisfies:

m > Z[log(2C[2m]) + log(1/6)]

then with prob. (1 — §), all bad (error > ¢)
hypotheses in C' are inconsistent with data.

C[m] is sometimes hard to calculate exactly, but can get a
good bound using “VC-dimension”. VC-dimension is roughly
the point at which C stops looking like it contains all func-
tions.



Shattering

Defn: A set of points S is shattered by a concept
class C if there are concepts in C' that split S in
all of the 2°l possible ways.

In other words, all possible ways of classifying points
in S are acheivable using concepts in C.

E.g., any 3 non-collinear points can be shattered
by linear threshold functions in 2-D.



VC-dimension

The VC-dimension of a concept class C'is the size
of the largest set of points that can be shattered

by C'.

So, if the VC-dimension is d, that means there ex-
ists a set of d points that can be shattered, but
there is no set of d + 1 points that can be shat-
tered.

E.g., VC-dim(linear threshold fns in 2-D) = 3.

What is the VC dim of intervals on the real line?

How about C = {all boolean functions on n features}?



Upper and lower bound theorems

Theorem 1: C[m] < Zyz%dim(c) (") = O(mVCdmC))y,
“Sauer’s lemma”

Theorem 2: For any class C, distrib. D, if the number
of examples seen m satisfies:

m > 2[logx(2C[2m]) + loga(1/6)]

then with prob. (1 —§), all bad (error > ¢) hypotheses
in C' are inconsistent with data.

Theorem 3: Can replace bound in Theorem 2 with:

S [vedim(C) log(1/2) + log(1/3)]

Theorem 4: For any learning alg A, there exists a
distribution D, and distribution on target concepts in C
such that expected error of A is greater than € if A sees
less than

VCdim(C) — 1

8e

examples.



