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MB ) PAC, greedy set cover, VC-dim



MB ) PAC (simpler version)

Theorem 1 If we can learn C with mistake-bound

M , then we can learn in the PAC model using a

training set of size O

�

M

�

log

�

M

�

��

.

Proof.

� Assume MB alg is \conservative".

� Look at sequence of hypotheses produced:

h

1

; h

2

; : : :.

� For each one, if consistent with following

1

�

log

M

�

examples, then stop.

� If h

i

has error > �, the chance we stopped was

at most �=M . So there's at most a � chance

we are fooled by any of the hypotheses.



Cherno�/Hoe�ding recap

Consider coin of bias p 
ipped m times. Let S be

the observed # heads. Let " 2 [0;1].

Hoe�ding bounds:

� Pr[

S

m

> p+ "] � e

�2m"

2

, and

� Pr[
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< p� "] � e

�2m"

2

:

Cherno� bounds:

� Pr[

S

m

> p(1 + ")] � e

�mp"

2

=3

, and

� Pr[
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�mp"
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=2

.

E.g., Pr[S < (expectation)=2] � e

�(expectation)=8

.

E.g., Pr[S > 2(expectation)] � e

�(expectation)=3

.



MB ) PAC (better bound)

Theorem 2 We can actually get a better bound

of O

�

1

�

[M + log(1=�)]

�

.

To do this, we will split data into a \training set"

S

1

of size max

�

4M

�

;

16

�

ln

1

�

�

and a \test set" S

2

of

size

32

�

ln

M

�

. We will run alg on S

1

and test all

hyps produced on S

2

.

Claim 1: w.h.p., at least one hyp produced on S

1

has error < �=2. Proof:

� If all are � �=2 then expected number of mis-

takes is � 2M .

� By Cherno�, Pr[�M ] � e

(�expect)=8

� 1� �.

Claim 2: W.h.p., best one on S

2

has error < �.

Proof. Su�ces to show that good one is likely

to look better than 3�=4 and all with true error

> � are likely to look worse than 3�=4. Just apply

Cherno� again....



Learning an OR function revisited

Alternative greedy-set-cover approach to learning

OR function:

� Pick literal that captures the most positive

examples, without capturing any negatives.

� Cross of examples covered and repeat.

If there exists an OR function of size r, then:

� If continue until totally consistent, this will

�nd one of size O(r logm), where m = size of

training set.

� If continue until training error � �=2 then �nd

one of size O(r log

1

�

).

Get sample-size bound O

�

1

�
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r log
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�

�

log(n) + ln

1
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.

This is slightly worse than Winnow.



VC-dimension and \e�ective"

hypothesis space size

If many hypotheses in H are very similar, then we

shouldn't have to pay so much for them.

E.g., we saw example of C = f[0; a] : 0 � a � 1g.

How can we make this formal?



E�ective number of Hypotheses

� De�ne: C[m] = maximum number of ways to

split m points using concepts in C. Book calls

this �

C

(m).

� Theorem: For any class C, distrib. D, if the

number of examples seen m satis�es:

m >

2

�

[

log

2

(2C[2m]) + log

2

(1=�)

]

then with prob. (1 � �), all bad (error > �)

hypotheses in C are inconsistent with data.

C[m] is sometimes hard to calculate exactly, but can get a

good bound using \VC-dimension". VC-dimension is roughly

the point at which C stops looking like it contains all func-

tions.



Shattering

Defn: A set of points S is shattered by a concept

class C if there are concepts in C that split S in

all of the 2

jSj

possible ways.

In other words, all possible ways of classifying points

in S are acheivable using concepts in C.

E.g., any 3 non-collinear points can be shattered

by linear threshold functions in 2-D.



VC-dimension

The VC-dimension of a concept class C is the size

of the largest set of points that can be shattered

by C.

So, if the VC-dimension is d, that means there ex-

ists a set of d points that can be shattered, but

there is no set of d+ 1 points that can be shat-

tered.

E.g., VC-dim(linear threshold fns in 2-D) = 3.

What is the VC dim of intervals on the real line?

How about C = fall boolean functions on n featuresg?



Upper and lower bound theorems

� Theorem 1: C[m] �

P

V Cdim(C)

i=0

�

m

i

�

= O(m

V Cdim(C)

).

\Sauer's lemma"

� Theorem 2: For any class C, distrib. D, if the number

of examples seen m satis�es:

m >

2

�

[log

2

(2C[2m]) + log

2

(1=�)]

then with prob. (1 � �), all bad (error > �) hypotheses

in C are inconsistent with data.

� Theorem 3: Can replace bound in Theorem 2 with:

8

"

[

V Cdim(C) log(1=") + log(1=�)

]

� Theorem 4: For any learning alg A, there exists a

distribution D, and distribution on target concepts in C

such that expected error of A is greater than � if A sees

less than

V Cdim(C)� 1

8"

examples.


