15-859(B) Machine Learning
Theory

Lecture 02/12/02, Avrim Blum

Uniform convergence: the proofs



Recap

Let err(h) = true error of h, err(h) = empirical
error of h. m = sample size.

e From first principles: if err(h) > ¢, then

Prlerr(h) =0] < (1 —&)™.

e Set rhs to §/|C| and solve for m. After
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examples, whp all h € C' of true error > ¢ have

empirical error > 0.

e From Hoeffding:

Pr{lerr(h) —err(h)| > ¢] < 26_2m€2.

e Set rhs to ¢§/|C| and solve for m. After
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examples, whp all h € C have |err(h)—err(h)| <
€.



Drawbacks

e Use of the union bound makes this loose when
many hypothesis in C are very similar.

e This is especially bad for continuous hypoth-
esis spaces.



What we’ll prove today

Let C[S] be the set of splittings of dataset S using
concepts in C, and let C[m] = max g, |C[S]|.

e Theorem 2: For any class C, distrib. D, if

m > = [log>(2C [2m]) + l09>(1/5)]

then with prob. (1-9), all h € C with err(h) > ¢
have err(h) > 0.

e Theorem 2’': For any class C, distrib. D, if
2
m > = [In(2C [2m]) 4 In(1/4)]
g
then with prob. (1 —46), all h € C have

lerr(h) —err| < e.

e T heorem 3: Can replace bound in Theorem
2 with: O(2 [VCdim(C)log(1/e) + log(1/8)]).

For the proofs, let's go to the board....



