
15-859(B) Machine Learning

Theory

Lecture 02/21/02, Avrim Blum

Learning from noisy data; intro to SQ model

[We'll end by 3:50 today]



Recap: Weak and Strong learning

If we can get a weak bias over every distribution,

then can get a strong bias over every distribution.

Idea: keep modifying distribution to extract new

information.

Adaboost:

� Modify the distribution so that the previous

hypothesis is 50/50. Do this by multiplying

weight on correct points by � =

error

1�error

.

� Then take weighted vote over the hypotheses.

Weight of h

t

is proportional to ln(1=�

t

).

� Use upper and lower bounds on total weight

of example points to bound the error of the

combination. (We analyzed �xed � in class.)



Learning when there is no perfect

hypothesis

� Hoe�ding/Cherno� bounds: minimizing train-

ing error will approximately minimize true er-

ror: just need O(1="

2

) samples versus O(1=").

� What about polynomial-time algorithms? Seems

harder.

{ Given data set S, �nding conjunction with

fewest mistakes is NP-hard.

{ Open problem: can you weak-learn (�nd

a poly-time-computable hypothesis with er-

ror < 1=2 � ") given only the assumption

that the data is 90% consistent with some

conjunction?

� One way to make progress: make assumptions

on the \noise" in the data. E.g., Random

Classi�cation Noise model.



Learning from Random Classi�cation

Noise (Ch 5)

� PAC model, but assume labels coming from

noisy channel.

� \noisy" Oracle EX

�

(c;D). � is the noise rate.

Example x is drawn from D.

With probability 1� � see label `(x) = c(x).

With probability � see label `(x) = 1� c(x).

� E.g., if h has non-noisy error p, what is the

noisy error rate?

Algorithm A PAC-learns C with random classi�ca-

tion noise if for any c 2 C, any distribution D,

any � < 1=2, any "; � > 0, given access to noisy

examples from EX

�

(c;D), A �nds a hypothesis h

that is "-close to c, with probability 1� �. Allowed

time

poly

 

1

"

;

1

�

;

1

1� 2�

; n; size(c)

!

:



contd

Algorithm A PAC-learns C with random classi�ca-

tion noise if for any c 2 C, any distribution D,

any � < 1=2, any "; � > 0, given access to noisy

examples from EX

�

(c;D), A �nds a hypothesis h

that is "-close to c, with probability 1� �. Allowed

time

poly

 

1

"

;

1

�

;

1

1� 2�

; n; size(c)

!

:

Q: Is this a plausible goal? I mean, we are asking

the learner to get closer to c than the data is.

A: OK because noisy error rate is linear in true

error rate (squashed by 1� 2�).



Example: Learning monotone

conjunctions

Let's assume � is known.

Any ideas?



Learning monotone conjunctions

Let p

i

= Pr

x EX(c;D)

[c(x) = 1 ^ x

i

= 0]:

Any hypothesis conjunction that includes all x

i

such that p

i

= 0 and no x

i

such that p

i

> "=n

is good.

� So, just need to estimate this probability to

additive error "=2n. Can rewrite as

Pr

x EX(c;D)

[c(x) = 1jx

i

= 0] � Pr[x

i

= 0]

� Second part is una�ected by noise.

� Let q

i

be the �rst part. Use fact that:

Pr

x EX

�

(c;D)

[`(x) = 1jx

i

= 0] = q

i

(1� �) + (1� q

i

)�

= �+ q

i

(1� 2�):

So, can approximate q

i

from observations (as-

suming Pr[x

i

= 0] is not too tiny).



Open problem

Can noise tolerance be boosted?

Say for concept class C there exists alg A such

that for any c 2 C, any distribution D, any � < 0:1,

A PAC-learns from EX

�

(c;D).

Does this imply there must exist an algorithm B

that succeeds for all � < 1=2, with running time

poly(

1

1�2�

)?

Seems the answer may be no. There's a subclass

of parity that we can learn in polynomial time for

constant �, but the best known algorithm has run-

ning time

�

1

1�2�

�

p

logn

, so can't handle � = 1�1=n,

say.

But maybe we can boost from � = 10% to any

constant � < 1=2.

Hard part: given data source with 20% noise, how

to run alg A?



Generalizing our algorithm

Basic idea of conjunction-learning alg:

� See how we could learn in non-noisy model by

just asking about probabilities of certain events

with some \slop".

� Try to estimate these probabilities from noisy

data by breaking into

{ parts predictably a�ected by noise.

{ parts una�ected by noise

Next topic:

� Formalize this in the notion of a \statistical

query algorithm".

� Show how any SQ algorithm can be used to

learn with classi�cation noise.

� Can actually characterize the kinds of things

that can or can't be done with SQ algorithms.



The Statistical Query Model

� No noise.

� Algorithm asks \what is the probability a la-

beled example will have property �? Please tell

me up to additive error � ."

� Formally, � : X � f0;1g ! f0;1g. Must be

poly-time computable. � � 1=poly(� � �).

If P

�

= E

c;D

[�(x; c(x))] = Pr

c;D

(� = 1) then

world responds with

^

P

�

2 [P

�

� �; P

�

+ � ].

(can extend to � : X � f0;1g ! [0;1])

� May repeat this poly(� � �) many times. Algo-

rithm may also ask to see unlabeled examples.

� Algorithm must output a hypothesis with error

less than ". (No � in this model.)



Example: conjunctions

� Ask for Pr[c(x) = 1 ^ x

i

= 0] with � = "=2n.

� Produce conjunction of all x

i

such that

^

P

�

� "=2n.



SQ ) PAC+CN

Given query � need to estimate from noisy data.

Idea:

� Break � into part predictably a�ected by noise

and part una�ected by noise.

� Estimate these parts separately.

� Can draw fresh examples for each query, or

estimate many queries on same sample if the

V Cdim of possible queries of alg is small.

Running example: � = 1 if c(x) = 1 ^ x

i

= 0.



How to estimate Pr[� = 1]

� CLEAN = fx : �(x;0) = �(x;1)g.

� NOISY = fx : �(x;0) 6= �(x;1)g.

Pr[� = 1] = Pr[� = 1 ^ x 2 CLEAN] +

Pr[� = 1 ^ x 2 NOISY]:

� Step 1: First part is easy to estimate from

noisy data.

(easy to test if a given x is in CLEAN)



Proof, contd.

To estimate: Pr[� = 1 ^ x 2 NOISY]

� First estimate Pr[x 2 NOISY].

� Then estimate Pr

�

[� = 1jx 2 NOISY].

� Then write Pr[� = 1jx 2 NOISY] in terms of

Pr

�

[:::].

� Just need to estimate Pr

�

[� = 1jx 2 NOISY]

up to additive error O(�(1� 2�)).

� If don't know � can guess and verify.



How powerful are SQ algs?

� Most algs in practice are (roughly) SQ algo-

rithms.

E.g., ID3, gradient descent.

� Most are already tolerant to CN.

Can we quantify/characterize the kinds of things

doable with SQ algorithms?

For next time...


