15-859(B) Machine Learning
Theory

Lecture 02/21/02, Avrim Blum

Learning from noisy data; intro to SQ model
[We'll end by 3:50 today]



Recap: Weak and Strong learning

If we can get a weak bias over every distribution,
then can get a strong bias over every distribution.

Idea: keep modifying distribution to extract new
information.

Adaboost:

e Modify the distribution so that the previous
hypothesis is 50/50. Do this by multiplying
weight on correct points by g = =%

1l—error

e [ hen take weighted vote over the hypotheses.
Weight of h; is proportional to In(1/5;).

e Use upper and lower bounds on total weight
of example points to bound the error of the
combination. (We analyzed fixed 3 in class.)



Learning when there is no perfect
hypothesis

e Hoeffding/Chernoff bounds: minimizing train-
ing error will approximately minimize true er-
ror: just need O(1/€?) samples versus O(1/e).

e What about polynomial-time algorithms? Seems
harder.

— @Given data set S, finding conjunction with
fewest mistakes is NP-hard.

— Open problem: can you weak-learn (find
a poly-time-computable hypothesis with er-
ror < 1/2 —e) given only the assumption
that the data is 90% consistent with some
conjunction?

e One way to make progress: make assumptions
on the “noise” in the data. E.g., Random
Classification Noise model.



Learning from Random Classification
Noise (Ch 5)

e PAC model, but assume labels coming from
noisy channel.

e ‘“noisy” Oracle EX"(¢c,D). nis the noise rate.
Example x is drawn from D.
With probability 1 — n see label /(x) = c¢(z).

With probability n see label /(z) =1 — ¢(z).

e E.g., if h has non-noisy error p, what is the
noisy error rate?

Algorithm A PAC-learns C with random classifica-
tion noise if for any ¢ € C, any distribution D,
any n < 1/2, any ¢, > 0, given access to noisy
examples from EX"(¢,D), A finds a hypothesis h
that is e-close to ¢, with probability 1 —4§. Allowed
time

poly i,l,#,n,size(c) :
€6 1—2n



contd

Algorithm A PAC-learns C with random classifica-
tion noise if for any ¢ € C, any distribution D,
any n < 1/2, any ¢, > 0, given access to noisy
examples from EX"(¢,D), A finds a hypothesis h
that is e-close to ¢, with probability 1 —4§. Allowed
time

poly 11 1 size(c) | .
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Q. Is this a plausible goal? I mean, we are asking
the learner to get closer to ¢ than the data is.

A OK because noisy error rate is linear in true
error rate (squashed by 1 — 2n).



Example: Learning monotone
conjunctions

Let's assume n is known.

Any ideas?



Learning monotone conjunctions

Let p, = Pr clz) =1 Ax;, = 0].
P :c(—EX(c,D)[( ) 1 ]

Any hypothesis conjunction that includes all z;
such that p; = 0 and no z; such that p; > ¢/n
IS good.

e SO, just need to estimate this probability to
additive error £/2n. Can rewrite as

L Pr @) = 1l = 0] Pria; = 0

e Second part is unaffected by noise.
e Let g; be the first part. Use fact that:
Pr [{(z) = 1|z; =0] = ¢(1—-n)+ 1 —-g)n

< EX"(c,D)
= n+ ¢(1-2n).

So, can approximate ¢; from observations (as-
suming Pr[xz; = 0] is not too tiny).



Open problem

Can noise tolerance be boosted?

Say for concept class C' there exists alg A such
that for any ¢ € C, any distribution D, any n < 0.1,
A PAC-learns from EX" (¢, D).

Does this imply there must exist an algorithm B
that succeeds for all n < 1/2, with running time

1
poly(15.)?

Seems the answer may be no. There's a subclass
of parity that we can learn in polynomial time for

constant n, but the best known algorithm has run-
1 )\/Iogn

1-2n7n

ning time ( , SO can’t handlen =1-1/n,

say.

But maybe we can boost from n = 10% to any
constant n<1/2.

Hard part: given data source with 20% noise, how
to run alg A7



Generalizing our algorithm

Basic idea of conjunction-learning alg:

e See how we could learn in hon-noisy model by
just asking about probabilities of certain events
with some “slop”.

e [ry to estimate these probabilities from noisy
data by breaking into

— parts predictably affected by noise.
— parts unaffected by noise

Next topic:
e Formalize this in the notion of a ‘statistical
query algorithm™.

e Show how any SQ algorithm can be used to
learn with classification noise.

e Can actually characterize the kinds of things
that can or can’'t be done with SQ algorithms.



The Statistical Query Model

NoO noise.

Algorithm asks “what is the probability a la-
beled example will have property x7 Please tell
me up to additive error 7."”

Formally, x : X x {0,1} — {0,1}. Must be
poly-time computable. 7> 1/poly(---).

It Py = EC,D[X(ZB,C(ZE))] — Prc,D(X = 1) then
world responds with Py, € [Py — 7, Py + 7).

(can extend to x : X x {0,1} — [0, 1])

May repeat this poly(---) many times. Algo-
rithm may also ask to see unlabeled examples.

Algorithm must output a hypothesis with error
less than . (No § in this model.)



Example: conjunctions

e Ask for Prlc(z) =1 Az; = 0] with 7 = ¢/2n.

e Produce conjunction of all z; such that
Py, <¢e/2n.



SQ = PAC+CN

Given query x need to estimate from noisy data.
Idea:

e Break x into part predictably affected by noise
and part unaffected by noise.
e Estimate these parts separately.

e Can draw fresh examples for each query, or
estimate many queries on same sample if the
VCdim of possible queries of alg is small.

Running example: x =1 if ¢(z) =1 Az; = 0.



How to estimate Pr[y = 1]

o CLEAN ={z: x(x,0) = x(z,1)}.
o NOISY ={z: x(z,0) # x(z,1)}.

Prix =1] = Pr[x=1 A z € CLEAN] +
Prly=1 A z € NOISY].

e Step 1: First part is easy to estimate from
noisy data.

(easy to test if a given z is in CLEAN)



Proof, contd.

To estimate: Pr[x =1 A 2 € NOISY]

e First estimate Pr[z € NOISY].
e Then estimate Pry[x = 1| € NOISY].

e Then write Pr[x = 1|z € NOISY] in terms of
Pryl...].

e Just need to estimate Pry[x = 1|z € NOISY]
up to additive error O(7(1 — 2n)).

e If don't know n can guess and verify.



How powerful are SQ algs?

e Most algs in practice are (roughly) SQ algo-
rithms.

E.g., ID3, gradient descent.

e Most are already tolerant to CN.

Can we quantify/characterize the kinds of things
doable with SQ algorithms?

For next time...



