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15-859(B) Machine Learning 
Theory 

Avrim Blum 
01/30/12 

Lecture 4: The Perceptron Algorithm (+ 
continuing on Winnow) 

Recap from last time 

• Winnow algorithm for learning a disjunction 
of r out of n variables. eg f(x)= x3 v x9 v x12 

• h(x): predict pos iff w1x1 + … + wnxn ¸ n. 

• Initialize wi = 1 for all i. 
– Mistake on pos: wi Ã 2wi for all xi=1. 

– Mistake on neg: wi Ã 0 for all xi=1. 

• Thm: Winnow makes at most O(r log n) 
mistakes. 

Recap from last time 

• Winnow algorithm for learning a k-of-r 
function: e.g.,  x3 + x9 + x10 + x12 ¸ 2. 

• h(x): predict pos iff w1x1 + … + wnxn ¸ n. 

• Initialize wi = 1 for all i. 
– Mistake on pos: wi Ã wi(1+²) for all xi=1. 

– Mistake on neg: wi Ã wi/(1+²) for all xi=1. 

– Use ² = 1/2k. 

• Thm: Winnow makes at most O(rk log n) 
mistakes. 

Recap from last time 

• Winnow algorithm for learning a k-of-r function: 
e.g.,  x3 + x9 + x10 + x12 ¸ 2. 

• h(x): predict pos iff w1x1 + … + wnxn ¸ n. 

• Initialize wi = 1 for all i. 
– Mistake on pos: wi Ã wi(1+²) for all xi=1. 

– Mistake on neg: wi Ã wi/(1+²) for all xi=1. 

– Use ² = 1/2k. 

Analysis: 
• Each m.op. adds at least k relevant chips, and each 

m.o.n removes at most k-1 relevant chips.  At most 
r(1/²)log n relevant chips total. 

Recap from last time 
• h(x): predict pos iff w1x1 + … + wnxn ¸ n. 

• Initialize wi = 1 for all i. 
– Mistake on pos: wi Ã wi(1+²) for all xi=1. 

– Mistake on neg: wi Ã wi/(1+²) for all xi=1. 

– Use ² = 1/2k. 

Analysis: 
• Each m.op. adds at least k relevant chips, and each 

m.o.n removes at most k-1 relevant chips.  At most 
r(1/²)log n relevant chips total. 

• Each m.o.n. removes almost as much total weight as 
each m.o.p. adds.  Can make (1+1/(2k)) m.o.n. for 
every m.o.p.  ) Mistake bound O((r/²)log n). 

How about learning general LTFs? 

E.g.,  4x3 - 2x9 + 5x10 + x12 ¸ 3. 

Will look at two algorithms today, each with 
different types of guarantees: 

• Winnow (same as before) 

• Perceptron 
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Winnow for general LTFs 

E.g.,  4x3 - 2x9 + 5x10 + x12 ¸ 3. 

• First, add variable yi = 1 – xi so can assume 
all weights positive. 

E.g.,  4x3 + 2y9 + 5x10 + x12 ¸ 5. 

• Also conceptually scale so that all weights 
wi* of target are integers (not needed but 
easier to think about) 

Winnow for general LTFs 

• Idea: suppose we made W copies of each 
variable, where W = w1* + … + wn

*. 

E.g.,  4x3 + 2y9 + 5x10 + x12 ¸ 5. 

• Then this is just a “w0* out of W” function!  

• So, Winnow makes O(W2 log(Wn)) mistakes. 

• And here is a cool thing: this is equivalent 
to just initializing each wi to W and using 
threshold of nW.  But that is same as 
original Winnow! 

Winnow for general LTFs 

More generally, can show the following (will 
do the analysis on hwk2):  

Suppose 9 w* s.t.: 

• w* ¢ x ¸ c on positive x, 

• w* ¢ x · c - ° on negative x. 

Then mistake bound is 

• O((L1(w*)/°)2 log n) 

Multiply by L1(X) if 
examples not in {0,1} 

Perceptron algorithm 

An even older and simpler algorithm, with a 
bound of a different form.  

Suppose 9 w* s.t.: 

• w* ¢ x ¸ ° on positive x, 

• w* ¢ x · -° on negative x. 

Then mistake bound is 

• O((L2(w*)L2(x)/°)2) 

L2 margin of examples 

Perceptron algorithm 

Thm: Suppose data is consistent with some 
LTF w* ¢ x > 0, where ||w*||=1 and 

° = minx |w* ¢ x|/||x|| 

Then # mistakes · 1/°2. + 
+ 

+ 

+ 
+ 

+ 

- 

- 
- 

- 

- 

 
 

w* 

Algorithm: 
Initialize w=0.  Use w ¢ x > 0. 

• Mistake on pos: w Ã w+x. 

• Mistake on neg: w Ã w-x. 

(Pre-scale examples to be in unit ball) 

Perceptron algorithm 

Example: 

- 
(0,1) – 
(1,1) + 
(1,0) + + 

+ 

Algorithm: 
Initialize w=0.  Use w ¢ x > 0. 

• Mistake on pos: w Ã w+x. 

• Mistake on neg: w Ã w-x. 
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Analysis 
Thm: Suppose data is consistent with some LTF    
w* ¢ x > 0, where ||w*||=1 and 

° = minx |w* ¢ x|    (after scaling so all ||x||=1) 

Then # mistakes · 1/°2. 

Proof: consider |w ¢ w*| and ||w|| 

• Each mistake increases |w ¢ w*| by at least °. 
(w + x) ¢ w* = w ¢ w* + x ¢ w* ¸ w ¢ w* + °. 

• Each mistake increases w¢w by at most 1. 
(w + x) ¢ (w + x) = w¢w + 2(w¢x) + x¢x · w¢w + 1. 

• So, in M mistakes, °M · |w¢w*| · ||w|| · M1/2. 

• So, M · 1/°2. 

What if no perfect separator? 
In this case, a mistake could cause |w ¢ w*| to drop. 

The °-hinge-loss of w* = x max[0, 1 – l(x)(x¢w*)/°] 

(by how much, in units of °, would you have to move 
the points to all be correct by °)  

Proof: consider |w ¢ w*| and ||w|| 

• Each mistake increases |w ¢ w*| by at least °. 
(w + x) ¢ w* = w ¢ w* + x ¢ w* ¸ w ¢ w* + °. 

• Each mistake increases w¢w by at most 1. 
(w + x) ¢ (w + x) = w¢w + 2(w¢x) + x¢x · w¢w + 1. 

• So, in M mistakes, °M · |w¢w*| · ||w|| · M1/2. 

• So, M · 1/°2. 

What if no perfect separator? 
In this case, a mistake could cause |w ¢ w*| to drop. 

The °-hinge-loss of w* = x max[0, 1 – l(x)(x¢w*)/°] 

Mistakes(perceptron) · 1/°2 + 2(°-hinge-loss(w*)) 

 

Proof: consider |w ¢ w*| and ||w|| 

• Each mistake increases |w ¢ w*| by at least °. 
(w + x) ¢ w* = w ¢ w* + x ¢ w* ¸ w ¢ w* + °. 

• Each mistake increases w¢w by at most 1. 
(w + x) ¢ (w + x) = w¢w + 2(w¢x) + x¢x · w¢w + 1. 

• So, in M mistakes, °M · |w¢w*| · ||w|| · M1/2. 

• So, M · 1/°2. 

Kernel functions 
See board… 


