15-859(B) Machine Learning
Theory

Lecture 4: The Perceptron Algorithm (+
continuing on Winnow)

Recap from last time

* Winnow algorithm for learning a k-of-r
fUnCTiOn: 6.9., X3 + Xg + XlO + XlZ 3 2

* h(x): predict pos iff wix; + .. + wx, > n.
» Initialize w; = 1 for all i.
- Mistake on pos: w; < w;(1+¢) for all x;=1.
- Mistake on neg: w; + w;/(1+¢) for all x;=1.
- Use e = 1/2k.
+ Thm: Winnow makes at most O(rk log n)
mistakes.

Recap from last time

* h(x): predict pos iff wix; + .. + w.x, > n.
+ Initialize w; = 1 for all i.

- Mistake on pos: w; < w;(1+¢) for all x;=1.

- Mistake on neg: w; < w;/(1+¢) for all x;=1.

- Use e = 1/2k.

Analysis:

+ Each m.op. adds at least k relevant chips, and each
m.o.n removes at most k-1 relevant chips. At most
r(1/¢)log n relevant chips total.

+ Each m.o.n. removes almost as much total weight as
each m.o.p. adds. Can make (1+1/(2k)) m.o.n. for
every m.o.p. = Mistake bound O((r/e)log n).

Recap from last time

+ Winnow algorithm for learning a disjunction
of r out of nvariables. eg f(x)= X3V Xg vV X1,

* h(x): predict pos iff wix; + .. + w,x, > n.
« Initialize w; = 1 for all i.
- Mistake on pos: w; < 2w; for all x;=1.
- Mistake on neg: w; + O for all x;=1.
+ Thm: Winnow makes at most O(r log n)
mistakes.

Recap from last time

* Winnow algorithm for learning a k-of-r function:
e.g., X3+ Xg+Xig+ Xpp > 2.
* h(x): predict pos iff wix; + ... + w,X, > n.
+ Initialize w; = 1 for all i.
- Mistake on pos: w; < w;(1+¢) for all x;=1.
- Mistake on neg: w; < w;/(1+¢) for all x;=1.
- Use e = 1/2k.
Analysis:
+ Each m.op. adds at least k relevant chips, and each

m.o.n removes at most k-1 relevant chips. At most
r(1/¢)log n relevant chips total.

How about learning general LTFs?

E.g., 4x5 - 2Xg + DXy + X1 > 3.

Will look at two algorithms today, each with
different types of guarantees:

+ Winnow (same as before)
+ Perceptron




Winnow for general LTFs
E.g., 4X3 - 2X9 + 5X10 + XlZ = 3

» First, add variable y; = 1 - x; so can assume
all weights positive.

E.g.. 4x3+ 2yg + DXy + Xqp > 5.

+ Also conceptually scale so that all weights
w;* of target are integers (not needed but
easier to think about)

Winnow for general LTFs

More generally, can show the following (will
do the analysis on hwk2):

Suppose 3 w* s.t.:

* w* . x> con positive x,

* w* - x < ¢ - yon hegative x.

Then mistake bound is

* O((L1(w*)/7)? log n)

‘ examples not in {0,1}

Perceptron algorithm

Thm: Suppose data is consistent with some
LTF w* - x> 0, where ||w*||=1 and

v = ming [w* - x|/[]x]]
Then # mistakes < 1/+2.

Algorithm:

Initialize w=0. Usew - x> 0.
* Mistake on pos: w < w+x.
+ Mistake on neg: w + w-x.

[ (Pre-scale examples to be in unit ball) ]

Winnow for general LTFs

+ Idea: suppose we made W copies of each

variable, where W = w* + .. + w,*.

* Then this is just a "wg* out of W* function!

E.g.. 4x3+ 2yg + BXxjg + Xqp > 5.

- So, Winnow makes O(W? log(Wn)) mistakes.

+ And here is a cool thing: this is equivalent
to just initializing each w; fo W and using
threshold of nW.

Perceptron algorithm

An even older and simpler algorithm, with a
bound of a different form.

Suppose 3 w* s.t.:

* w* . x > v on positive X,

* w* . x < -y on negative x.

Then mistake bound is

* O((LawW*)La(x)/7)?)

| L, margin of examples

Perceptron algorithm

Example: (0,1)-
(11)+
(1.0)+

Algorithm:

Initialize w=0. Usew - x > 0.
+ Mistake on pos: w < w+x.
+ Mistake on neg: w + w-x.




Analysis

Thm: Suppose data is consistent with some LTF
w* - x>0, where ||w*||=1 and

v = min, |w* - x| (after scaling so all ||x||=1)
Then # mistakes < 1/42.

Proof: consider |w - w*| and ||w]|

- Each mistake increases |w - w*| by at least .
W+x) - w=w- - w +x - w*>w- -w*+-.

+ Each mistake increases w-w by at most 1.
W+x)-(W+x)=ww+2wx)+xx < ww+1,

*+ So, in M mistakes, YM < |w-w*| < ||w]] < MV2,

+ So, M < 1/+.

What if no perfect separator?

In this case, a mistake could cause |w - w*| to drop.
The ~-hinge-loss of w* = X, max[0, 1 - {x)(x-w*)/~]
Mistakes(perceptron) < 1/+> + 2(v-hinge-loss(w*))

Proof: consider |w - w*| and ||w]]

- Each mistake increases |w - w*| by at least .
W+X) - w=w-w+x - w*>w-w*+1.

+ Each mistake increases w-w by at most 1.
W+x)-(w+x)=ww+2wW-x)+xx < ww+ 1

+ So, in M mistakes, YM < |w-w*| < ||w|| < M¥2,

+ So, M <1/

What if no perfect separator?

In this case, a mistake could cause |w - w*| to drop.

The y-hinge-loss of w* = 3, max[0, 1 - I(x)(x-w*)/~]

(by how much, in units of ~, would you have to move
the points to all be correct by )

Proof: consider |w - w*| and ||w]|

- Each mistake increases |w - w*| by at least .
W+x)-w=w-w+x-w*>w-w*+~.

+ Each mistake increases w-w by at most 1.
W+x)-(w+x)=ww+2w-x)+xx <ww+ 1,

+ So, in M mistakes, YM < |w-w*| < ||w]]| < MV2,

+ So, M < 1/+.

Kernel functions

See board...




