15-859(B) Machine Learning Theory

Avrim Blum 01/30/12

Lecture 4: The Perceptron Algorithm (+ continuing on Winnow)

Recap from last time

- Winnow algorithm for learning a disjunction of r out of n variables. eg f(x)= x₃ v x₉ v x₁₂
- h(x): predict pos iff $w_1x_1 + ... + w_nx_n \ge n$.
- Initialize w_i = 1 for all i.
 - Mistake on pos: $w_i \leftarrow 2w_i$ for all x_i =1.
 - Mistake on neg: $w_i \leftarrow 0$ for all x_i=1.
- Thm: Winnow makes at most O(r log n) mistakes.

Recap from last time

- Winnow algorithm for learning a k-of-r function: e.g., $x_3 + x_9 + x_{10} + x_{12} \ge 2$.
- h(x): predict pos iff $w_1x_1 + ... + w_nx_n \ge n$.
- Initialize w_i = 1 for all i.
 - Mistake on pos: $w_i \leftarrow w_i(1+\epsilon)$ for all $x_i=1$.
 - Mistake on neg: $w_i \leftarrow w_i/(1+\epsilon)$ for all $x_i=1$.
 - Use ϵ = 1/2k.
- Thm: Winnow makes at most O(rk log n) mistakes.

Recap from last time

- Winnow algorithm for learning a k-of-r function:
- h(x): predict pos iff $w_1x_1 + ... + w_nx_n \ge n$.
- Initialize w_i = 1 for all i.
 - Mistake on pos: $w_i \leftarrow w_i(1+\epsilon)$ for all $x_i=1$.
 - Mistake on neg: $w_i \leftarrow w_i/(1+\epsilon)$ for all x_i =1.
- Use ϵ = 1/2k.

Analysis:

Each m.op. adds at least k relevant chips, and each m.o.n removes at most k-1 relevant chips. At most $r(1/\epsilon)\log n$ relevant chips total.

Recap from last time

- h(x): predict pos iff $w_1x_1 + ... + w_nx_n \ge n$.
- Initialize w_i = 1 for all i.
 - Mistake on pos: $w_i \leftarrow w_i(1+\epsilon)$ for all $x_i=1$.
 - Mistake on neg: w_i \leftarrow w_i/(1+\epsilon) for all x_i=1.
 - Use ϵ = 1/2k.

Analysis:

- Each m.op. adds at least k relevant chips, and each m.o.n removes at most k-1 relevant chips. At most $r(1/\epsilon)\log n$ relevant chips total.
- Each m.o.n. removes almost as much total weight as each m.o.p. adds. Can make (1+1/(2k)) m.o.n. for every m.o.p. ⇒ Mistake bound O((r/ε)log n).

How about learning general LTFs?

E.g., $4x_3 - 2x_9 + 5x_{10} + x_{12} \ge 3$.

Will look at two algorithms today, each with different types of guarantees:

- Winnow (same as before)
- Perceptron

Winnow for general LTFs

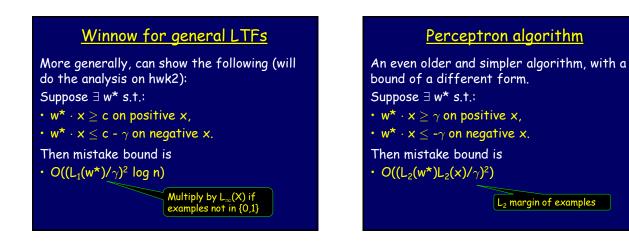
- E.g., $4x_3 2x_9 + 5x_{10} + x_{12} \ge 3$.
- First, add variable y_i = 1 x_i so can assume all weights positive.
- $\text{E.g.}, \ 4x_3 + 2y_9 + 5x_{10} + x_{12} \geq 5.$
- Also conceptually scale so that all weights w_i* of target are integers (not needed but easier to think about)

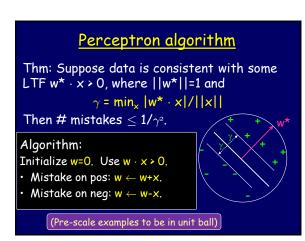
Winnow for general LTFs

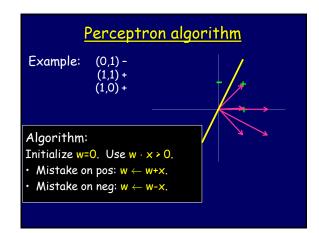
- Idea: suppose we made W copies of each variable, where W = $w_1^* + ... + w_n^*$.
- Then this is just a "w_o* out of W" function!

E.g., $4x_3 + 2y_9 + 5x_{10} + x_{12} \ge 5$.

- So, Winnow makes O(W² log(Wn)) mistakes.
- And here is a cool thing: this is equivalent to just initializing each w_i to W and using threshold of nW. But that is same as original Winnow!







<u>Analysis</u>

Thm: Suppose data is consistent with some LTF w* $\cdot x > 0$, where $||w^*||=1$ and $\gamma = \min_x |w^* \cdot x|$ (after scaling so all ||x||=1) Then # mistakes $\leq 1/\gamma^2$.

Proof: consider |w · w*| and ||w||

- Each mistake increases $|\mathbf{w} \cdot \mathbf{w}^*|$ by at least γ . $(\mathbf{w} + \mathbf{x}) \cdot \mathbf{w}^* = \mathbf{w} \cdot \mathbf{w}^* + \mathbf{x} \cdot \mathbf{w}^* \ge \mathbf{w} \cdot \mathbf{w}^* + \gamma$.
- Each mistake increases ww by at most 1. $(w + x) \cdot (w + x) = w \cdot w + 2(w \cdot x) + x \cdot x \le w \cdot w + 1.$
- So, in M mistakes, $\gamma M \leq |w \cdot w^*| \leq ||w|| \leq M^{1/2}$.
- So, $\mathsf{M} \leq 1/\gamma^2$.

What if no perfect separator?

In this case, a mistake could cause $|w \cdot w^*|$ to drop. The γ -hinge-loss of $w^* = \sum_x \max[0, 1 - l(x)(x \cdot w^*)/\gamma]$ (by how much, in units of γ , would you have to move the points to all be correct by γ)

Proof: consider $|w \cdot w^*|$ and ||w||

- Each mistake increases $|\mathbf{w} \cdot \mathbf{w}^*|$ by at least γ . $(\mathbf{w} + \mathbf{x}) \cdot \mathbf{w}^* = \mathbf{w} \cdot \mathbf{w}^* + \mathbf{x} \cdot \mathbf{w}^* \ge \mathbf{w} \cdot \mathbf{w}^* + \gamma$.
- Each mistake increases www by at most 1. $(w + x) \cdot (w + x) = w \cdot w + 2(w \cdot x) + x \cdot x \le w \cdot w + 1.$
- So, in M mistakes, $\gamma M \leq |w \cdot w^*| \leq ||w|| \leq M^{1/2}$.
- So, $M \leq 1/\gamma^2$.

What if no perfect separator?

In this case, a mistake could cause $|w \cdot w^*|$ to drop. The γ -hinge-loss of $w^* = \sum_x \max[0, 1 - l(x)(x \cdot w^*)/\gamma]$ Mistakes(perceptron) $\leq 1/\gamma^2 + 2(\gamma$ -hinge-loss(w^*))

Proof: consider |w · w*| and ||w||

- Each mistake increases $|\mathbf{w} \cdot \mathbf{w}^*|$ by at least γ . $(\mathbf{w} + \mathbf{x}) \cdot \mathbf{w}^* = \mathbf{w} \cdot \mathbf{w}^* + \mathbf{x} \cdot \mathbf{w}^* \ge \mathbf{w} \cdot \mathbf{w}^* + \gamma$.
- Each mistake increases ww by at most 1. $(w + x) \cdot (w + x) = w \cdot w + 2(w \cdot x) + x \cdot x \le w \cdot w + 1.$
- So, in M mistakes, $\gamma M \leq |\mathbf{w} \cdot \mathbf{w}^{\star}| \leq ||\mathbf{w}|| \leq M^{1/2}$.
- So, $\mathsf{M} \leq 1/\gamma^2$.

Kernel functions

See board...