
1

15-859(B) Machine Learning
Theory

Avrim Blum
01/30/12

Lecture 4: The Perceptron Algorithm (+
continuing on Winnow)

Recap from last time

• Winnow algorithm for learning a disjunction
of r out of n variables. eg f(x)= x3 v x9 v x12

• h(x): predict pos iff w1x1 + … + wnxn ¸ n.

• Initialize wi = 1 for all i.
– Mistake on pos: wi Ã 2wi for all xi=1.

– Mistake on neg: wi Ã 0 for all xi=1.

• Thm: Winnow makes at most O(r log n)
mistakes.

Recap from last time

• Winnow algorithm for learning a k-of-r
function: e.g., x3 + x9 + x10 + x12 ¸ 2.

• h(x): predict pos iff w1x1 + … + wnxn ¸ n.

• Initialize wi = 1 for all i.
– Mistake on pos: wi Ã wi(1+²) for all xi=1.

– Mistake on neg: wi Ã wi/(1+²) for all xi=1.

– Use ² = 1/2k.

• Thm: Winnow makes at most O(rk log n)
mistakes.

Recap from last time

• Winnow algorithm for learning a k-of-r function:
e.g., x3 + x9 + x10 + x12 ¸ 2.

• h(x): predict pos iff w1x1 + … + wnxn ¸ n.

• Initialize wi = 1 for all i.
– Mistake on pos: wi Ã wi(1+²) for all xi=1.

– Mistake on neg: wi Ã wi/(1+²) for all xi=1.

– Use ² = 1/2k.

Analysis:
• Each m.op. adds at least k relevant chips, and each

m.o.n removes at most k-1 relevant chips. At most
r(1/²)log n relevant chips total.

Recap from last time
• h(x): predict pos iff w1x1 + … + wnxn ¸ n.

• Initialize wi = 1 for all i.
– Mistake on pos: wi Ã wi(1+²) for all xi=1.

– Mistake on neg: wi Ã wi/(1+²) for all xi=1.

– Use ² = 1/2k.

Analysis:
• Each m.op. adds at least k relevant chips, and each

m.o.n removes at most k-1 relevant chips. At most
r(1/²)log n relevant chips total.

• Each m.o.n. removes almost as much total weight as
each m.o.p. adds. Can make (1+1/(2k)) m.o.n. for
every m.o.p.) Mistake bound O((r/²)log n).

How about learning general LTFs?

E.g., 4x3 - 2x9 + 5x10 + x12 ¸ 3.

Will look at two algorithms today, each with
different types of guarantees:

• Winnow (same as before)

• Perceptron

2

Winnow for general LTFs

E.g., 4x3 - 2x9 + 5x10 + x12 ¸ 3.

• First, add variable yi = 1 – xi so can assume
all weights positive.

E.g., 4x3 + 2y9 + 5x10 + x12 ¸ 5.

• Also conceptually scale so that all weights
wi* of target are integers (not needed but
easier to think about)

Winnow for general LTFs

• Idea: suppose we made W copies of each
variable, where W = w1* + … + wn

*.

E.g., 4x3 + 2y9 + 5x10 + x12 ¸ 5.

• Then this is just a “w0* out of W” function!

• So, Winnow makes O(W2 log(Wn)) mistakes.

• And here is a cool thing: this is equivalent
to just initializing each wi to W and using
threshold of nW. But that is same as
original Winnow!

Winnow for general LTFs

More generally, can show the following (will
do the analysis on hwk2):

Suppose 9 w* s.t.:

• w* ¢ x ¸ c on positive x,

• w* ¢ x · c - ° on negative x.

Then mistake bound is

• O((L1(w*)/°)2 log n)

Multiply by L1(X) if
examples not in {0,1}

Perceptron algorithm

An even older and simpler algorithm, with a
bound of a different form.

Suppose 9 w* s.t.:

• w* ¢ x ¸ ° on positive x,

• w* ¢ x · -° on negative x.

Then mistake bound is

• O((L2(w*)L2(x)/°)2)

L2 margin of examples

Perceptron algorithm

Thm: Suppose data is consistent with some
LTF w* ¢ x > 0, where ||w*||=1 and

° = minx |w* ¢ x|/||x||

Then # mistakes · 1/°2. +
+

+

+
+

+

-

-
-

-

-




w*

Algorithm:
Initialize w=0. Use w ¢ x > 0.

• Mistake on pos: w Ã w+x.

• Mistake on neg: w Ã w-x.

(Pre-scale examples to be in unit ball)

Perceptron algorithm

Example:

-
(0,1) –
(1,1) +
(1,0) + +

+

Algorithm:
Initialize w=0. Use w ¢ x > 0.

• Mistake on pos: w Ã w+x.

• Mistake on neg: w Ã w-x.

3

Analysis
Thm: Suppose data is consistent with some LTF
w* ¢ x > 0, where ||w*||=1 and

° = minx |w* ¢ x| (after scaling so all ||x||=1)

Then # mistakes · 1/°2.

Proof: consider |w ¢ w*| and ||w||

• Each mistake increases |w ¢ w*| by at least °.
(w + x) ¢ w* = w ¢ w* + x ¢ w* ¸ w ¢ w* + °.

• Each mistake increases w¢w by at most 1.
(w + x) ¢ (w + x) = w¢w + 2(w¢x) + x¢x · w¢w + 1.

• So, in M mistakes, °M · |w¢w*| · ||w|| · M1/2.

• So, M · 1/°2.

What if no perfect separator?
In this case, a mistake could cause |w ¢ w*| to drop.

The °-hinge-loss of w* = x max[0, 1 – l(x)(x¢w*)/°]

(by how much, in units of °, would you have to move
the points to all be correct by °)

Proof: consider |w ¢ w*| and ||w||

• Each mistake increases |w ¢ w*| by at least °.
(w + x) ¢ w* = w ¢ w* + x ¢ w* ¸ w ¢ w* + °.

• Each mistake increases w¢w by at most 1.
(w + x) ¢ (w + x) = w¢w + 2(w¢x) + x¢x · w¢w + 1.

• So, in M mistakes, °M · |w¢w*| · ||w|| · M1/2.

• So, M · 1/°2.

What if no perfect separator?
In this case, a mistake could cause |w ¢ w*| to drop.

The °-hinge-loss of w* = x max[0, 1 – l(x)(x¢w*)/°]

Mistakes(perceptron) · 1/°2 + 2(°-hinge-loss(w*))

Proof: consider |w ¢ w*| and ||w||

• Each mistake increases |w ¢ w*| by at least °.
(w + x) ¢ w* = w ¢ w* + x ¢ w* ¸ w ¢ w* + °.

• Each mistake increases w¢w by at most 1.
(w + x) ¢ (w + x) = w¢w + 2(w¢x) + x¢x · w¢w + 1.

• So, in M mistakes, °M · |w¢w*| · ||w|| · M1/2.

• So, M · 1/°2.

Kernel functions
See board…

