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Abstract—Much prior work has studied cache replacement, but
a large gap remains between theory and practice. The design of
many practical policies is guided by the optimal policy, Belady’s
MIN. However, MIN assumes perfect knowledge of the future
that is unavailable in practice, and the obvious generalizations
of MIN are suboptimal with imperfect information. What, then,
is the right metric for practical cache replacement?

We propose that practical policies should replace lines based
on their economic value added (EVA), the difference of their
expected hits from the average. Drawing on the theory of Markov
decision processes, we discuss why this metric maximizes the
cache’s hit rate. We present an inexpensive implementation of
EVA and evaluate it exhaustively. EVA outperforms several prior
policies and saves area at iso-performance. These results show
that formalizing cache replacement yields practical benefits.

I. INTRODUCTION

Last-level caches consume significant resources, often over

50% of chip area [24], so it is crucial to manage them

efficiently. Prior work has approached cache replacement from

both theoretical and practical standpoints. Unfortunately, there

is a large gap between theory and practice.

From a theoretical standpoint, the optimal policy is Belady’s

MIN [10, 25], which evicts the candidate referenced furthest

in the future. But MIN needs perfect knowledge of the future,

which makes it impractical. In practice, policies must cope

with uncertainty, never knowing exactly when candidates will

be referenced. Theory-based policies account for uncertainty

by using a simplified, statistical model of the reference stream

in which the optimal policy can be solved for.

Unfortunately, these policies generally perform poorly com-

pared to empirical designs. The key challenge faced by

theoretical policies is choosing their underlying statistical

model. This model should capture enough information about

the access stream to make good replacement decisions, yet must

be simple enough to analyze. For example, some prior work

uses the independent reference model (IRM), which assumes

that candidates are referenced independently with static, known

probabilities. In this model, the optimal policy is to evict the

candidate with the lowest reference probability, i.e., LFU [2].

Though useful in other areas (e.g., web caches [4]), the IRM

is inadequate for processor caches because it assumes that

reference probabilities do not change over time.

Instead, replacement policies for processor caches are

designed empirically, using heuristics based on observations of

common-case access patterns [11,14,16,17,19,20,21,30,35,39].

We observe that, unlike the IRM, these policies do not assume

static reference probabilities. Instead, they exploit dynamic

behavior through various mechanisms. While often effective,

high-performance policies employ many different heuristics and,
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lacking a theoretical foundation, it is unclear if any are taking

the right approach. Each policy performs well on particular

programs, yet no policy dominates overall, suggesting that these

policies are not making the best use of available information.

This paper seeks to bridge theory and practice. We take

a principled approach that builds on insights from recent

empirical designs. First, we show that policies should replace

candidates by their economic value added (EVA); i.e., how many

more hits one expects from each candidate vs. the average

candidate. Second, we design a practical implementation of

this policy and show it outperforms existing policies.

Contributions:Contributions:Contributions:Contributions: This paper contributes the following:

• We discuss the two main tradeoffs in cache replacement: hit

probability and cache space, and describe how EVA reconciles

them in a single, intuitive metric.

• We show that EVA maximizes the cache hit rate by drawing

on Markov decision process (MDP) theory.

• We present a practical implementation of EVA, which we

have synthesized in a 65 nm commercial process. EVA adds

1% area on a 1 MB cache vs. SHiP. Our implementation is

the first adaptive policy that does not require set sampling

or auxiliary tag monitors.

• We evaluate EVA against prior high-performance policies on

SPEC CPU2006 and OMP2012 over many cache sizes. EVA

reduces LLC misses over these policies at equal area, closing

57% of the gap from random replacement to MIN vs. 47%

for SHiP [39], 41% for DRRIP [17], and 42% for PDP [14].

Fewer misses translate into large area savings—EVA matches

SHiP’s performance with gmean 8% less total cache area.

These contributions show that formalizing cache replacement

yields practical benefits. EVA blends theory and practice to

maximize upon available information and outperform many

recent empirical policies. Beyond our particular design, we

expect our analysis will prove useful in the design of future

high-performance policies.

Road map:Road map:Road map:Road map: Sec. II reviews prior approaches to cache re-

placement, and Sec. III discusses the key constraints that

practical policies face. Sec. IV presents EVA and Sec. V

sketches its theoretical justification. Sec. VI presents a simple

implementation, which Sec. VII evaluates.

II. BACKGROUND

Practical replacement policies must cope with uncertainty,

never knowing precisely when a candidate will be referenced.

The challenge is uncertainty itself, since with complete infor-

mation the optimal policy is simple: evict the candidate that is

referenced furthest in the future (MIN [10, 25]).

Broadly speaking, prior work has taken two approaches to

replacement under uncertainty. On the one hand, designers



can develop a probabilistic model of how programs reference

memory and then solve for the optimal replacement policy

within this reference model. On the other hand, designers can

observe programs’ behaviors and find best-effort heuristics that

perform well on common access patterns.
These two approaches are complementary: theory yields

insight into how to approach replacement, which is used in

practice to design policies that perform well on real applications

at low overhead. For example, the most common approach to

replacement under uncertainty is to predict when candidates

will be referenced and evict the candidate that is predicted

to be referenced furthest in the future. This longstanding

approach takes inspiration from theory (i.e., MIN) and has been

implemented in recent empirical policies [17, 20]. (However,

Sec. III shows that this strategy is suboptimal.)
Yet despite the evident synergy between theory and practice,

the vast majority of research has been on the empirical side. We

believe that, given the diminishing performance improvements

of recent empirical policies, theoretical approaches deserve a

second look.
Replacement in theory:Replacement in theory:Replacement in theory:Replacement in theory: The challenge for theoretical policies

is to define a reference model that is simple enough to solve

for the optimal policy, yet accurate enough that this policy is

effective. In 1971, Aho et al. [2] studied page replacement

within the independent reference model (IRM), which assumes

that pages are accessed non-uniformly with known probabilities.

They model cache replacement as a Markov decision process,

and show that the optimal policy is to evict the page with the

lowest reference probability, i.e., LFU. Though the IRM ignores

temporal locality, and recent work recognizes this shortcoming,

it nevertheless remains the de facto model [37].
However, the IRM is an especially poor reference model for

processor caches. Unlike web caches, which are accessed by

thousands of independent users, processor caches are accessed

by relatively few threads. As a result, their references tend to

be tightly correlated and exhibit complex, dynamic behaviors.

It is this time-varying complexity, which must be captured to

achieve good performance, that the IRM discards.
For example, consider a program that scans repeatedly over

a 100 K-line array. Since each address is accessed once every

100 K accesses, each has the same “reference probability”.

Thus the IRM-optimal policy, which evicts the candidate with

the lowest reference probability, cannot distinguish among

lines and would replace them at random. In fact, the optimal

replacement policy is to protect a fraction of the array so that

some lines age long enough to hit. Doing so can significantly

outperform random replacement, e.g., achieving 80% hit rate

with a 80 K-line cache. But protection works only because of

dynamic behavior: reference probabilities are not static, but

change in correlated and predictable patterns. The independent

reference model does not capture this common behavior.
More recently, a large body of work [1, 9, 15, 18, 33] has

studied cache behavior under more complex memory reference

models. (Garetto et al. [15, §VI] summarize recent work that

models caches in distributed systems.) However, since these

reference models are difficult to analyze, prior work focuses

on comparing policies (e.g., LRU vs. k-LRU) or tuning their

parameters, not on finding policies that truly maximize upon

available information.

Since the behavior of real programs is not captured in

analytically tractable models, empirical work has tended to

ignore theory and focus on best-effort heuristics instead.
Replacement in practice:Replacement in practice:Replacement in practice:Replacement in practice: Many high-performance policies try

to emulate MIN through various heuristics. DIP [30] avoids

thrashing by inserting most lines at low priority, and detects

when it is advantageous to do so. SDBP [21] and PRP [11]

predict which lines are unlikely to be reused. RRIP [17, 39]

and IbRDP [27] try to predict candidates’ times until reference.

PDP [14] protects lines from eviction for a fixed number of

accesses. IRGD [35] computes a statistical cost function from

sampled reuse distance histograms. And Hawkeye [16] emulates

MIN’s past decisions. Without a theoretical foundation, it is

unclear if any of these policies takes the right approach. Indeed,

no policy dominates across benchmarks (Sec. VII), suggesting

that they are not making the best use of available information.

We observe two relevant trends in recent research. First,

most empirical policies exploit dynamic behavior to select a

victim, most commonly by using the recency and frequency

heuristics [28]. Most policies employ some form of recency,

favoring candidates that were referenced recently: e.g., LRU

uses recency alone, and RRIP [17, 39] predicts a longer time

until reference for older candidates. Similarly, a few policies

that do not assume recency still base their policy on when a

candidate was last referenced: PDP [14] protects candidates

until a certain age; and IRGD [35] uses a heuristic function of

ages. Another common way policies expoit dynamic behavior

is through frequency, favoring candidates that were previously

reused: e.g., LFU uses frequency alone, and “scan-resistant”

policies like ARC [26] and SRRIP [17] favor candidates that

have been reused at least once.

Second, recent high-performance policies adapt themselves

to the access stream to varying degrees. DIP [30] detects

thrashing with set dueling, and thereafter inserts most lines at

LRU to prevent thrashing. DRRIP [17] inserts lines at medium

priority, promoting them only upon reuse, and avoids thrashing

using the same mechanism as DIP. SHiP [39] extends DRRIP by

adapting the insertion priority based on the memory address,

PC, or instruction sequence. Likewise, SDBP [21], PRP [11],

and Hawkeye [16] learn the behavior of different PCs. And

PDP [14] and IRGD [35] use auxiliary monitors to profile the

access pattern and periodically recompute their policy.

These two trends show that (i) candidates reveal important

information over time, and (ii) policies should learn from this

information by adapting themselves to the access pattern. But

these policies do not make the best use of the information they

capture, and prior theory does not suggest the right policy.

We use planning theory to design a practical policy that

addresses these issues. EVA is intuitive and inexpensive to

implement. In contrast to most empirical policies, EVA does

not explicitly encode particular heuristics (e.g., recency or

frequency). Rather, it is a general approach that aims to make

the best use of limited information, so that prior heuristics

arise naturally when appropriate (Sec. IV).

III. REPLACEMENT UNDER UNCERTAINTY

Given the many approaches taken in prior work, we start

from first principles. All replacement policies have the same

goal and face the same constraints: they try to maximize the



cache’s hit rate with limited cache space. We can develop the

intuition behind EVA by precisely characterizing these tradeoffs.

We are interested in where hits come from and how cache

space is used over time. To analyze this, we break up cache

space over time into lifetimes, the idle periods between hits and

evictions. In Fig. 1, a line comes into the cache at access t, hits

at access t+4, and is evicted at t+10. This gives two lifetimes,

as shown. We further define a line’s age as the number of

accesses since it was last referenced. So in Fig. 1, the line’s

first lifetime ends in a hit at age 4 (there are 4 accesses from

t to t+ 4), and the second lifetime ends in an eviction at age

6 (there are 6 accesses from t+ 4 to t+ 10). Note how age

resets to zero upon each reference.

Inserted Hit Evicted
↓ @ t ↓ @ t+ 4 ↓ @ t+ 10

1st Lifetime 2nd Lifetime . . .

Age: 1 2 3 4|0 1 2 3 4 5 6|0

Fig. 1: Lifetimes and ages for a single cache line over time
(increasing left-to-right). Time is measured in accesses.

Lifetimes and ages let us precisely describe the tradeoffs in

cache replacement. We introduce two random variables, H and

L, which give the probability of hits and lifetimes of different

ages. That is, P[H = 5] is the probability that a line will hit at

age 5, and P[L = 5] is the probability that its lifetime will end

at age 5 (i.e., in either a hit or eviction at age 5). Probability is

a natural way to reason about the inherent uncertainty facing

all practical replacement policies.

Policies try to maximize the cache’s hit rate, which neces-

sarily equals the average line’s hit probability:

Cache hit rate = P[hit] =

∞
∑

a=1

P[H = a] , (1)

but are constrained by limited cache space. Specifically, the

average lifetime equals the cache size, N :

N = E[L] =

∞
∑

a=1

a · P[L = a] (2)

Eq. 2 is essentially Little’s Law with an arrival rate of one, since

time is measured in accesses (see [5, §B.3] for its derivation).

Comparing these two equations, we see that hits are equally

beneficial irrespective of their age, yet the cost in space

increases in proportion to age (the factor of a in Eq. 2). So

to maximize the cache’s hit rate, the replacement policy must

attempt to both maximize hit probability and limit how long

lines spend in the cache.

But how should policies balance these competing, in-

commensurable objectives? With perfect information, MIN

is a simple policy that achieves both ends. Unfortunately,

MIN does not easily generalize under uncertainty: obvious

generalizations like evicting the candidate with the highest

expected time until reference [17,27,35] or the lowest expected

hit probability [11, 21] are inadequate, since they only account

for one side of the tradeoff.

Example:Example:Example:Example: Inspired by MIN, several recent policies predict time

until reference and evict the candidate with the longest one [17,

27, 35]. A simple counterexample shows why predictions of

time until reference are inadequate.

Suppose the replacement policy has to choose between two

candidates: A is referenced immediately with probability 9/10,

and in 100 accesses with probability 1/10; and B is always

referenced every two accesses. (See [5, §B.2] for an example

of how such situations could arise in practice.) In this case, the

best choice is to evict B, betting that A will hit immediately,

and then evict A if it does not. Doing so yields an expected hit

rate of 9/10, since every access to A has a 9/10 probability of

hitting. In contrast, evicting A yields an expected hit rate of 1/2,

since accesses to B produce one hit every two accesses. Yet A’s

expected time until reference is 1×9/10+100×1/10 = 10.9,

and B’s is 2. Thus, according to their predicted time until

reference, A should be evicted. This is wrong.

Predictions fail because they ignore the possibility of future

evictions. When behavior is uncertain and changes over time,

the replacement policy can learn more about candidates as

they age. This means it can afford to gamble that candidates

will hit quickly and evict them if they do not, say, by keeping

A for one access to see if it hits. But simple generalizations of

MIN ignore this insight, e.g., expected time until reference is

unduly influenced by large reuse distances that will never be

reached in the cache. In this example, it is skewed by reuse

distance 100, but the optimal policy never keeps lines this long,

so it is wrong for it to influence replacement decisions.

IV. EVA REPLACEMENT POLICY

Since it is inadequate to consider either hit probability or

time until reference alone, we must find some way to reconcile

them in a single metric. In general, the optimal metric should

satisfy three properties: (i) it considers only future behavior,

since the past is a sunk cost; (ii) it prefers candidates that

are more likely to hit; and (iii) it penalizes candidates that

take longer to hit. These properties both maximize the hit

probability and minimize time spent in the cache, as desired.

We achieve these properties by viewing time spent in the

cache as forgone hits, i.e., as the opportunity cost of retaining

lines. We thus rank candidates by their economic value added

(EVA), or how many hits the candidate yields over the “average

candidate”. EVA is essentially a cost-benefit analysis about

whether a candidate’s odds of hitting are worth the cache space

it will consume.

This section describes EVA and gives a motivating example.

Sec. V discusses why EVA maximizes the hit rate.

Intuition:Intuition:Intuition:Intuition: EVA views each replacement candidate as an invest-

ment, trying to retain the candidates that yield the highest

profit (measured in hits). First, EVA rewards each candidate

for its expected future hits. Then, since cache space is a scarce

resource, EVA needs to account for how much space each

candidate will consume. EVA does so by “charging” each

candidate for the time it will spend in the cache. Specifically,

EVA charges candidates at a rate of a single line’s average hit

rate (i.e., the cache’s hit rate divided by its size), since this

is the long-run opportunity cost of consuming cache space.

Altogether, the EVA for a candidate is:

EVA = Expected hits −
Cache hit rate

Cache size
× Expected time



A. Computing EVA

We compute EVA using conditional probability and the

random variables H and L introduced above. (Sec. VI discusses

how to efficiently sample these distributions.) To begin, we

compute EVA from candidates’ ages, using the time since

last reference to inform EVA’s decisions. Inferring EVA from

candidates’ ages roughly corresponds to the recency heuristic

(Sec. II), except that EVA does not assume recently used

candidates are more valuable (see example below).

We compute EVA from the candidate’s expected remaining

lifetime and its hit probability in that lifetime. Let r(a) be

the expected hit probability (reward, or benefit) and c(a) the

forgone hits (cost). Then from the equation above, EVA at age

a is just their difference, EVA(a) = r(a)− c(a).
The reward r(a) is the expected number of hits for a line

of age a, i.e., its hit probability. This is basic conditional

probability, where age a restricts the sample space to lifetimes

at least a accesses long:

r(a) = P
[

hit|age a
]

=
P[H > a]

P[L > a]
(3)

Likewise, the forgone hits c(a) is the expected number of

hits that could be obtained from replacing the candidate, which

increases in proportion to the candidate’s remaining lifetime.

Each access would yield, on average, hits equal the cache’s

hit rate h divided by its size N :

c(a) =
h

N
× E

[

L− a|age a
]

=
h

N
×

∑∞
x=1 x · P[L = a+ x]

P[L > a]
(4)

To summarize, we select a victim by comparing each

candidate’s EVA and evict the candidate with the lowest EVA.

Our implementation does not compute EVA during replacement.

Instead, it infrequently ranks ages by computing their EVA.

Moreover, Eqs. 3 and 4 at age a each require just a few

arithmetic operations to compute from age a+1, so computing

EVA is inexpensive. Sec. VI gives the full details.

B. Example

To see how EVA works, consider an example application that

scans alternating over two arrays of different sizes, called the

‘small’ and ‘big’ arrays. The cache size is such that the small

array fits in the cache, but the big array does not. Specifically,

the arrays take 16 K and 128 K lines, and the cache has 64 K

lines. Fig. 2 shows the resulting distribution of reuse distance,

i.e., the number of references between accesses to the same

address. (Reuse distances are twice the size of arrays because

each receives half of accesses.) Without further information

about candidates, this distribution is all the replacement policy

has to choose among candidates. What is the right policy?

Replacement policy:Replacement policy:Replacement policy:Replacement policy: In this example, we want to cache the

small array and some part of the big array. Fig. 3 shows how

EVA ranks candidates to achieve this.

Fig. 3 shows a candidate’s EVA (y-axis) vs. its age (x-axis).

Initially, at age zero, candidates have decent EVA because half

the time they are part of the small array and will hit quickly.

To be precise, at age zero a candidate’s EVA is zero, since we
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Fig. 2: Example reuse distance distribution of an application
scanning over two arrays. The big array does not fit in cache.
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Fig. 3: The replacement policy should cache the small array and
part of the big array. Due to uncertainty, it must wait until after
the small array to evict candidates.

have not yet learned anything about the candidate. Zero is not

a low EVA value; it indicates average behavior.

A candidate’s EVA increases with age as it gets closer to

(possibly) hitting in the small array. This is because the hit

probability does not change, but its expected remaining lifetime

shrinks in proportion to age. The result is a line increasing from

age zero up to the reuse distance of the small array (“Cache

small array” in Fig. 3). The replacement policy will thus evict

MRU among ages in this range, since younger lines have lower

EVA. This is the optimal policy for a scanning pattern.

However, if a candidate’s age increases beyond the small

array, then its EVA plummets because the policy has learned it

must be an access to the big array (“Evict after small array”

in Fig. 3). These candidates have many more accesses to go

before hitting (i.e., a long expected remaining lifetime), so

their EVA is negative—they take so long to hit that they are

not worth the investment. The replacement policy will thus

preferentially evict candidates with ages in this range, i.e.,

accesses to the big array that still have a long time to hit.

Finally, EVA gradually increases with age as a candidate

gets closer to hitting in the big array, until eventually old

candidates have the highest EVA among all candidates (“Cache

big array eventually” in Fig. 3). Their EVA is larger than

young candidates because their hit probability is larger, since

some young candidates are accesses to the big array that are

later evicted. The replacement policy will thus protect older

candidates from eviction, fitting as much of the big array as

possible.

Performance:Performance:Performance:Performance: Fig. 4 shows the performance of a cache using

this policy, namely its distribution of hits and evictions at

different ages. All accesses to the small array hit, but only a

fraction of those to the big array hit. Evictions are concentrated

after the small array, since these ages have the lowest EVA



in Fig. 3. This is as desired: the cache cannot fit both arrays,

and the policy must wait until after the small array to learn

whether an access is to the big or small array.
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Fig. 4: The cache holds the entire small array and part of the
big array (hit rate: 64%). Uncertainty wastes some cache space,
since evictions must occur after the small array.

Uncertainty comes at a cost, since these evictions waste

space. Ideally, a cache with 64 K lines could hold the 16 K

lines of the small array plus 48 K lines of the big array, giving

a hit rate of 1/2 × 16K/16K + 1/2 × 48K/128K = 69%.

But with uncertainty, some space must be spent learning

whether accesses are to the small or big array. This wastes

space proportional to the size of the small array, so given

the information in Fig. 2, Eq. 2 implies that the maximum

achievable hit rate on this example is 64%. EVA achieves this

performance, maximizing upon the available information.
In contrast, no “protecting distance” in PDP [14] can do

so. Protecting the small array gives a hit rate of 50%, and

protecting the big array wastes so much cache space that it

actually lowers the hit rate to 44%.
Summary:Summary:Summary:Summary: This example shows how EVA changes over time,

adapting its policy to the access pattern. Our contribution is

identifying hit probability and expected lifetime as the key

tradeoffs in cache replacement, and reconciling them in a

single metric.
For simplicity, we have so far assumed that information is

limited to that revealed by aging. We now discuss how EVA

uses more information to make better decisions.

C. EVA with classification

The main challenge that replacement policies face is un-

certainty about candidates’ future behavior. One common

technique to reduce uncertainty is to break candidates into

multiple classes and tune the policy to each class. Classification

is widely used in prior work, e.g., policies classify by reuse,

thread, PC, etc. (Sec. II).
Since EVA is based on conditional probability, EVA naturally

supports classification by conditioning on a candidate’s class.

(Indeed, EVA thus far simply classifies candidates by age.) This

formal probabilistic approach lets EVA specialize its policy to

each class without any a priori preferences among classes.
Example:Example:Example:Example: We can see how EVA incorporates classification by

revisiting the above example. In this application, we should

differentiate accesses to the big and small arrays. This lets

us rank the candidates of each class separately, as illustrated

in Fig. 5. Classification changes the ranks at small ages, as

the replacement policy no longer needs to wait to learn about

candidates. This has two implications: (i) accesses to the small

array become more valuable because they are certain to hit

quickly, and (ii) accesses to the big array have low EVA at age

zero, since we now know immediately that they will take many

accesses to hit. These differences let the replacement policy

evict candidates more quickly, reducing waste from evictions

and thereby caching more of the big array. In this example

classification gives perfect information, but generally this is

not the case.
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Fig. 5: Classification reduces uncertainty. Now, the replacement
policy need not wait until after the small array to evict.

Classification improves cache performance, as shown in

Fig. 6. There are now more hits to the big array, and the hit

rate improves to 69%, which is optimal for this cache size

and access pattern. This performance improvement is possible

because evictions now occur very early, so minimum cache

space is wasted on them.
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Fig. 6: With classification, the cache holds the entire small array
and more of the big array (hit rate: 69%). Evictions occur
immediately, freeing space for more hits.

To illustrate classification in EVA, we now show how

EVA incorporates the frequency heuristic by distinguishing

candidates that have been reused at least once, similar to prior

scan-resistant policies (Sec. II).
Classification by reuse:Classification by reuse:Classification by reuse:Classification by reuse: We divide the cache into two classes:

lines that have hit at least once, and newly inserted lines that

have not. We use this simple scheme because it has proven

effective in prior work [17, 22, 26]. (In the above example,

the “reused class” is the small array and the fraction of the

big array that fits.) However, unlike prior work, EVA does not

assume an a priori preference for reused candidates, and EVA

supports arbitrary classification schemes (e.g., our technical

report [6] classifies candidates by size in compressed caches).
Until now, we have considered only the current lifetime

when computing expected future hits, as we lacked further

information. When distinguishing among classes, this is insuf-

ficient, and we must consider all future lifetimes since classes

often behave differently over the long run.



The details depend on the classification scheme. When

classifying by reuse, if a lifetime ends in a hit, then the next

will be a reused lifetime (by definition). Otherwise, if it ends in

an eviction, then the next will be a non-reused lifetime (again

by definition). Fig. 7 illustrates classification by reuse; we want

to compute EVA over all future hits and misses, starting from

a line of age a and class C on the left.

Remaining lifetime 

from age � and class �
Reused lifetime 

from age 

Non-reused 

lifetime from age 

Hit Miss

Hit

Miss

Fig. 7: With classification, we must consider behavior in future
lifetimes to compute EVA.

Details:Details:Details:Details: We denote the EVA of reused lines as EVAR(a), and

the EVA of non-reused lines as EVANR(a). We further condition

EVA’s terms with a line’s class. For example, the reward for a

reused line is:

rR(a) =
P
[

H > a|reused
]

P
[

L > a|reused
] (5)

Compared to Eq. 3, the only difference is the added condition of

“reused”. Forgone hits (cR(a)) and non-reused lines (rNR(a),
cNR(a)) are similarly conditioned.

We refer to class C whenever either R or NR apply. EVA for

a single lifetime is unchanged: EVAC
lifetime(a) = rC(a)−cC(a),

but now future lifetimes cannot be ignored.
We can express long-run EVA for any age as a function of

the long-run EVA of reused and non-reused lines at age zero,

following Fig. 7. If the hit rate of class C at age a is hC(a),
then the corresponding, long-run EVA is:

EVAC(a) = EVAC
lifetime(a) (Current lifetime)

+hC(a) · EVAR(0) (Hits → Reused)

+(1− hC(a)) · EVANR(0) (Misses → Non-reused)

Finally, the average access’s EVA—i.e, the “average differ-

ence from the average”—is zero by definition, so:

0 = h · EVA
R(0) + (1− h) · EVA

NR(0)

Solving these equations reveals a simple relationship between

each class’s EVA and the EVA of reused lines:

EVAC(a) = EVAC
lifetime(a) +

hC(a)−h
1−hR(0)

· EVAR
lifetime(0) (6)

The second term essentially says that the more hits class C
produces vs. the average, the more it will behave like a reused

line in the future.
Summary:Summary:Summary:Summary: Classification is a common way to reduce uncer-

tainty. EVA naturally supports classification through conditional

probability, automatically specializing its policy to each class.

Though conceptually simple, we must account for long-term

differences between classes to accurately compute EVA.
We focus on classification by reuse for concreteness, but

these ideas apply to other classification schemes as well. One

must simply express how lines transition between classes and

then solve for EVA. For example, our technical report [6]

classifies candidates in a compressed cache by their size.

EVA takes a different approach to classification than most

recent work. Several recent policies break accesses into many

classes, often using the requesting PC, and then adapt their

policy to each class [11, 16, 21, 39]. However, with thousands

of classes, these policies are restricted to simple decisions for

each class (e.g., a single bit—is the class is valuable or not?),

and they rely on a baseline policy (e.g., random, LRU, or RRIP)

once candidates are inserted. In contrast, EVA ranks ages at

fine granularity, but this restricts EVA to use fewer classes (e.g.,

just two with classification by reuse). An important area of

future work is to explore the best balance of these approaches.

V. WHY EVA IS THE RIGHT METRIC

The previous section described and motivated EVA. This

section discusses why EVA is the right metric to maximize

cache performance under uncertainty. We first present a naı̈ve

metric that intuitively maximizes the hit rate, but show that

it unfortunately cannot capture long-run behavior. Fortunately,

prior work in Markov decision processes (MDPs) has encoun-

tered and solved this problem, and we show how EVA adapts

the MDP solution to cache replacement.

Naı̈ve metric:Naı̈ve metric:Naı̈ve metric:Naı̈ve metric: We want a replacement metric that maximizes

the cache’s hit rate. With perfect knowledge, MIN achieves this

by greedily “buying hits as cheaply as possible,” i.e. by keeping

the candidates that are referenced in the fewest accesses. Stated

another way, MIN retains the candidates that get the most hits-

per-access. Therefore, a simple metric that might generalize

MIN is to predict each candidate’s hits-per-access, or hit rate:

E[hit rate] = lim
T→∞

Expected hits after T accesses

T
(7)

and retain the candidates with the highest hit rate. Intuitively,

keeping these candidates over many replacements tends to

maximize the cache’s hit rate.

The problem:The problem:The problem:The problem: Eq. 7 suffices when considering a single lifetime,

but it cannot account for candidates’ long-run behavior over

many lifetimes: To estimate the future hit rate, we must compute

expected hits over arbitrarily many future accesses. However,

as cache lines are replaced many times, they tend to converge

to average behavior because their replacements are generally

unrelated to their original contents. Hence, all candidates’ hit

rates converge in the limit. In fact, all candidates’ hit rates are

identical: solving Eq. 7 as T → ∞ yields h/N , the cache’s

per-line hit rate, for all ages and classes.

In other words, Eq. 7 loses its discriminating power over

long time horizons, degenerating to random replacement. So

while estimating candidates’ hit rates is intuitive, this approach

is fundamentally flawed as a replacement metric.

The solution in a nutshell:The solution in a nutshell:The solution in a nutshell:The solution in a nutshell: EVA sidesteps this problem by

changing the question. Instead of asking which candidate gets

a higher hit rate?, EVA asks which candidate gets more hits?

The idea is that Eq. 7 compares the long-run hit rates of

retaining different candidates:

lim
T→∞

hits1(T )

T

?
> lim

T→∞

hits2(T )

T
, (8)



but unfortunately both sides of the comparison converge to the

same quantity. We can avoid this problem by simply multiplying

by T and subtracting both sides:

lim
T→∞

[

hits1(T )− hits2(T )
] ?
> 0 (9)

This equation is equivalent to the original, but measures small

differences in long-run behavior that would otherwise disappear

in the limit.

These metrics are are useful in different contexts. When

rates are unequal in the limit, Eq. 8 is well-behaved, but Eq. 9

diverges to ∞. Eq. 8 is thus the appropriate metric. However,

when rates are the same in the limit, Eq. 8 cannot discriminate,

but Eq. 9 can. Hence, Eq. 9 is the appropriate metric. Since

hit rates are equal in the limit, it makes sense to follow Eq. 9

and rank candidates by which gets more hits in the limit.

The solution in detail:The solution in detail:The solution in detail:The solution in detail: We are not the first to encounter this

optimization problem or devise the above solution, which

has been previously proposed in the context of Markov

decision processes (MDPs). MDPs model decision-making under

uncertainty by extending Markov chains to have actions in

each state. Each action yields an associated reward.1

A large body of prior work has studied policies to achieve

different objectives and proved conditions of optimality. (For a

comprehensive treatment, see Puterman [29].) In our case, the

reward is cache hits, the actions are accesses (some of which

invoke the replacement policy), and we care about maximizing

the average reward (i.e., hit rate). When studying the optimal

policy for such MDPs, researchers ran into exactly the same

problem as above: all actions yield the same average reward in

the limit. To solve this problem, they introduce a new quantity

called the bias, which is similar to Eq. 9 above.

The bias is defined as the expected difference in total reward

from the current state vs. the average. In other words, after T
actions from the current state, one would expect some total

reward. Meanwhile, averaging across states, the MDP would

have yielded a reward equal to its average reward times T .

The bias is just the difference between these two quantities in

the limit:

Bias = lim
T→∞

Reward after T actions − Avg. reward × T

This bias is thus similar to Eq. 9, but it compares actions

against the average rather than against each other.
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R
e
w

a
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⇒
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s

Reward after T

Avg. reward× T

Fig. 8: Bias is the long-run
difference between the total re-
ward and the average reward.

Fig. 8 illustrates the bias.

The y-axis shows total reward,

and the x-axis shows time

(measured in actions). The

solid line shows the expected

total reward starting from the

current state; the dashed line

shows the expected total re-

ward averaged over all states.

The expected reward fluctu-

ates initially, as returns from

the current state differ from

the average, but eventually settles to yield the average reward

1For interested readers, our technical report [6] presents a detailed cache
replacement MDP using a reference model from our recent work [8, 9].

in the limit. The distance between these two lines in the limit

is the bias, generally a finite but non-zero number.

Maximizing the bias provably maximizes the average re-

ward [29, §8.4]. Thus, to maximize the cache’s hit rate, we

should try to maximize the bias among replacement candidates.

From theory to practice:From theory to practice:From theory to practice:From theory to practice: EVA does exactly this. Bias and EVA

are directly analogous:

Bias =limT→∞ Reward after T − Avg. reward × T

EVA = Expected hits − Hit rate
Cache size

× Time

Sec. IV-A gives the bias over a single lifetime: the reward is

the hit probability, the average reward is a single line’s hit rate,

and the time horizon T is the remaining lifetime. Sec. IV-C

gives the bias over all future lifetimes (i.e., as T → ∞), as

illustrated in Fig. 7. MDP theory tells us how to combine these

terms into a metric that maximizes the cache’s hit rate.

Two critical points deserve emphasis:

Optimality:Optimality:Optimality:Optimality: First, maximizing the bias provably maximizes the

average reward. It is not a heuristic. MDP theory provides

metrics that allow greedy, local decisions to provably optimize

global outcomes [29]. Maximizing the bias is equivalent to

maximizing the hit rate, except that it is well-behaved in the

limit and so lets us model long-run behavior.

Generality:Generality:Generality:Generality: Second, because maximizing the bias reconciles

hit probability and cache space, which we have argued are the

fundamental constraints (Sec. III), it gives broad optimality

conditions. For example, both perfect information (MIN) and

the IRM [2] are special cases.

EVA is easy to extend to many different contexts. For instance,

with small modifications EVA can model a compressed cache,

where candidates have different sizes and policies based on

time until reference—even MIN!—are clearly suboptimal [6].

Convergence:Convergence:Convergence:Convergence: MDPs are solved using iterative algorithms that

are guaranteed to converge to an optimal policy within arbitrary

precision. In particular, policy iteration [23] alternates between

computing the expected total reward for each state and updating

the policy. Our implementation takes an analogous approach,

alternatively monitoring the cache (“computing rewards”) and

updating ranks.

EVA can converge to changes in behavior because it is neutral

towards candidates it knows nothing about—their EVA is zero.

Since zero represents average behavior, other, below-average

candidates will be evicted preferentially. EVA thus naturally

explores the behavior of these “unknown candidates”, and a

few tend to age long enough to discover any changes in their

behavior. If even a few of these candidates hit, conditional

probability gives them large EVA because so few candidates

survive to these ages. This creates a virtuous circle, as favoring

these candidates leads to further hits.

Nevertheless, with classification, it is possible to construct

cases where EVA gets stuck evicting one class. This pathology

could be fixed by rarely tagging some candidates as “explorers”

that are not evicted until they reach the maximum age. However,

we find that EVA performs well in practice and do not consider

this mechanism further.



VI. IMPLEMENTATION

Our implementation is shown in Fig. 9: (i) A small table,

called the eviction priority array, ranks candidates to select

a victim. (ii) Counters record the age distribution of hits of

evictions. And, infrequently, (iii) a lightweight software runtime

computes EVA from these counters and updates the eviction

priorities.

Tag 

Array

Data

Array

Eviction Logic
Eviction prio arrays

Event counters

Software  

updates

(infrequent)

Per-Line Replacement State

Coarse age (3-7 bits)

Reused/non-reused (1 bit)

State needed by EVA Candidate classes & 

ages (from tag) 
1 7 5 3

1 5 6 7 12 10 2 14

9 3 11 16 13 8 15 4

Non-reused

Eviction Priority Arrays

Reused

Reused

Non-reused

Candidate priorities 9 2 13 6

Age

1 Find priorities

2 Evict highest prio (non-reused at age 5)

3 Update monitor

Hit Counters Eviction Counters

Reused

+1

Non-reused

(b) Choosing a victim(a) Changes needed to support EVA

Fig. 9: An efficient implementation of EVA.

This implementation requires trivial hardware: narrow com-

parisons and increments plus a small amount of state. All of

the analytical complexity is pushed to software, where updates

add small overheads. This hybrid design is broadly similar to

prior work in cache partitioning [7]; however, we also describe

a hardware-only implementation in Sec. VI-D.

Unlike prior policies, EVA does not devote a fraction of

sets to monitoring alternative policies (cf. [17, 30]), nor does

it require auxiliary tags to monitor properties independent of

the replacement policy (cf. [7, 14, 35]). As a result, our imple-

mentation makes full use of the entire cache and eliminates

overheads from monitors. EVA also does not need to forward

the requesting PC to the LLC, which, though widely used

in prior work, complicates the core-cache interface and adds

network bandwidth.

A. Hardware operations

Aging:Aging:Aging:Aging: We use per-set, coarsened ages [14]. Each cache line has

a k-bit age, and each set has a j-bit counter that is incremented

upon an access to the set (k = 7 and j = 4 in our evaluation).

When a set’s counter reaches a value A, it is reset and every

age in the set is incremented until saturating at 2k − 1.
Ranking:Ranking:Ranking:Ranking: To rank candidates cheaply, we use a small eviction

priority array. We use each candidate’s age to index into the

priority array, and evict the candidate with the highest eviction

priority. We set priorities such that if age a1 is ranked higher

than age a2, then EVA(a1) < EVA(a2) (as described below). To

ensure that lines are eventually evicted, saturated ages always

have the highest eviction priority.

To work with classification, we add a reused bit to each cache

tag, and use two priority arrays to store the priorities of reused

and non-reused lines. Eviction priorities require 2k+1× (k+1)
bits, or 256 B with k = 7.

The eviction priority array is dual ported to support peak

memory bandwidth. With 16 ways, we can sustain one eviction

every 8 cycles, for 19.2 GBps per LLC bank.

Algorithm 1. Algorithm to compute EVA and update ranks.

Inputs: hitCtrs, evictionCtrs — event counters, A — age granularity, N — cache size

Returns: rank — eviction priorities for all ages and classes

1: for a← 2k to 1 : ⊲ Compute hit rates from counters.

2: for c ∈ {NR,R} :

3: hitsc += hitCtrs[c, a]
4: eventsc += hitCtrs[c, a] + evictionCtrs[c, a]

5: hR[a] ← hitsR/eventsR
6: hNR[a] ← hitsNR/eventsNR

7: h ← (hitsR + hitsNR)/(eventsR + eventsNR)
8: perAccessCost ← h× A/N
9: for c ∈ {NR,R} : ⊲ Compute EVA (Eqs. 3 & 4).

10: expLifetime, hits, events ← 0

11: for a← 2k to 1 :

12: expectedLifetime += events
13: eva[c, a] ← (hits− perAccessCost× expectedLifetime)/events
14: hits += hitCtrs[c, a]

15: events += hitCtrs[c, a] + evictionCtrs[c, a]

16: evaReused ← eva[R, 1]/(1− hR[0]) ⊲ Differentiate classes.

17: for c ∈ {NR,R} :

18: for a← 2k to 1 :

19: eva[c, a] += (hC [a]− h)× evaReused

20: order ← ARGSORT(eva) ⊲ Finally, rank ages by EVA.

21: for i← 1 to 2k+1 :

22: rank[order[i]] ← 2k+1 − i

23: return rank

Event counters:Event counters:Event counters:Event counters: To sample the hit and lifetime distributions, we

add two arrays of 16-bit counters (2k×16 b = 256B per array)

that record the age histograms of hits and evictions. When a line

hits or is evicted, the cache controller increments the counter in

the corresponding array. These counters are periodically read

to update the eviction priorities. To support classification, there

are two arrays for both reused and non-reused lines, or 1 KB

total with k = 7.

B. Software updates

The eviction priority array is a versatile mechanism that can

implement many policies, specifically any ranking function of

ages [9], such as random, LRU, PDP [14], IRGD [35], etc. We

set priorities to implement EVA.

Periodically (every 256 K accesses), an OS runtime computes

EVA for active applications. First, we read the hit and lifetime

distributions (H and L) from the counters, and average them

with prior values to maintain a history of application behavior.

(We use an exponential moving average with coefficient 0.8.)

We compute EVA in a small number of arithmetic operations

per age, and sort the result to find the eviction priority for

each age and class. Algorithm 1 gives an efficient procedure

to compute Eq. 6. Updates occur in four passes over ages.

In the first pass, we compute hit rates hR, hNR, and h by

summing counters. Second, we compute per-lifetime EVA

incrementally in five additions, one multiplication, and one

division per age. Third, classification adds one more addition

and multiplication per age. Finally, we sort EVA to find the

final eviction priorities. Our C++ implementation takes just

123 lines of code (excluding debugging and comments), incurs

negligible runtime overheads (see below), and can be found

online at http://people.csail.mit.edu/sanchez.

C. Overheads

Ranking and counters:Ranking and counters:Ranking and counters:Ranking and counters: Our implementation adds 1 KB for

counters and 256 B for priority arrays. We have synthesized

our design in a commercial process at 65 nm at 2 GHz. We

lack access to an SRAM compiler, so we use CACTI 5.3 [36]



Area Energy

(mm2) (% 1 MB LLC) (nJ / LLC miss) (% 1 MB LLC)

Ranking 0.010 0.05% 0.014 0.6%
Counters 0.025 0.14% 0.010 0.4%

8-bit Tags 0.189 1.07% 0.012 0.5%

H/W Updates
0.052 0.30% 380 / 128 K 0.1%

(Optional, Sec. VI-D)

TABLE I: Implementation overheads at 65 nm.

for all SRAMs (using register files instead of SRAM makes the

circuit 4× larger). Table I shows the area and energy for each

component at 65 nm; absolute numbers should be scaled to

reflect more recent technology nodes. We compute overhead

relative to a 1 MB LLC using area from a 65 nm Intel E6750 [13]

and energy from CACTI. Overheads are small, totaling 0.2%

area and 1.0% energy. Total leakage power is 2 mW. Even with

one LLC access every 10 cycles, EVA adds just 7 mW at 65 nm,

or 0.01% of the E6750’s 65 W TDP [13].
Software updates:Software updates:Software updates:Software updates: Updates complete in a few tens of K cycles

and run every 256 K LLC accesses (i.e., several M cycles).

Specifically, with k = 7 age bits, updates take 43 K cycles

on an Intel Xeon E5-2670. Because updates are infrequent,

the runtime and energy overhead is negligible: conservatively

assuming that updates are on the critical path, we observe that

updates take an average 0.1% of system cycles and a maximum

of 0.3% on SPEC CPU2006 apps.

We consider these overheads negligible and choose k = 7,

but EVA lets designers trade off overheads and performance.

For example, choosing k = 5 reduces software overheads by

three-quarters while sacrificing little performance (Fig. 14).
Tags:Tags:Tags:Tags: Since the new components introduced by EVA add

negligible overheads, the main overhead is additional tag state.

Our implementation uses 8 bits per tag (vs. 2 bits for SHiP).

This is roughly 1% area overhead, 0.5% energy overhead, and

20mW leakage power.

Our evaluation shows that EVA is competitive with prior

policies when using fewer age bits. But we use larger tags

because doing so produces a more area-efficient design. Unlike

prior policies, EVA’s performance steadily improves with more

tag bits (Fig. 14). EVA trades off larger tags for improved

performance, making better use of the 99% of cache area not

devoted to replacement, and thus saves area at iso-performance.
Complexity:Complexity:Complexity:Complexity: A common concern with analytical techniques

like EVA is their perceived complexity. However, we should

be careful to distinguish between conceptual complexity and

implementation complexity. In hardware, EVA adds only narrow

increments and comparisons; in software, EVA adds a short,

low-overhead reconfiguration procedure (Algorithm 1).

D. Alternative hardware-only implementation

Performing updates in software instead of hardware provides

several benefits. Most importantly, software updates reduce

implementation complexity, since EVA’s implementation is

otherwise trivial. Software updates may also be preferable

to integrate EVA with other system objectives (e.g., cache

partitioning [38]), or on systems with dedicated OS cores (e.g.,

the Kalray MPPA-256 [12] or Fujitsu Sparc64 XIfx [40]).

However, if software updates are undesirable, we have also

implemented and synthesized a custom microcontroller that

performs updates in hardware. Our microcontroller computes

Cores Westmere-like OOO [32] at 4.2 GHz; 1 (ST) or 8 (MT)

L1 caches 32 KB, 8-way set-assoc, split D/I, 1-cycle

L2 caches Private, 256 KB, 8-way set-assoc, inclusive, 7-cycle

L3 cache
Shared, 1 MB–8 MB, non-inclusive, 27-cycle; 16-way,

hashed set-assoc

Coherence MESI, 64 B lines, no silent drops; seq. consistency

Memory
DDR-1333 MHz, 2 ranks/channel, 1 (ST) or 2 (MT)

channels

TABLE II: Configuration of the simulated systems for single-
(ST) and multi-threaded (MT) experiments.

EVA using a single adder and a small ROM microprogram. We

use fixed-point arithmetic, requiring 2k+1×32 bits to store the

results plus seven 32-bit registers, or 1052 B with k = 7. We

have also implemented a small FSM to compute the eviction

priorities, adding 2× 2k+1 × (k + 1) bits, or 512B.

This microcontroller adds small overheads (Table I)—1.5KB

of state and simple logic—and is off the critical path. It was

fully implemented in Verilog by a non-expert in one week, and

its complexity is low compared to microcontrollers shipping

in commercial processors (e.g., Intel Turbo Boost [31]). So

although we believe software updates are a simpler design,

EVA can be implemented entirely in hardware if desired.

VII. EVALUATION

We now evaluate EVA over diverse benchmark suites and

configurations. We show that EVA performs consistently well

across benchmarks, outperforms existing policies, closes the

gap with MIN, and saves area at iso-performance.

A. Methodology

We use zsim [32] to simulate systems with 1 and 8 OOO

cores with parameters shown in Table II. We simulate LLCs

from 1 to 8 MB. The single-core chip runs single-threaded

SPEC CPU2006 apps, while the 8-core chip runs multi-threaded

apps from SPEC OMP2012. Our results hold across different

LLC sizes, benchmarks (e.g., PBBS [34]), and with a stream

prefetcher validated against real Westmere systems [32].
Policies:Policies:Policies:Policies: We evaluate how well policies use information by

comparing against random and MIN; these policies represent

the extremes of no information and perfect information,

respectively. We further compare EVA with LRU, RRIP variants

(DRRIP and SHiP), and PDP, which are implemented as

proposed. We sweep configurations for each policy and select

the one that is most area-efficient at iso-performance. DRRIP

uses M = 2 bits per tag and ǫ = 1/32 [17]. SHiP uses

M = 2 bits and PC signatures with idealized, large history

counter tables [39]. DRRIP is only presented in text because

it performs similarly to SHiP, but occasionally slightly worse.

These policies’ performance degrades with larger M (Fig. 14).

PDP uses an idealized implementation with large timestamps.
Area:Area:Area:Area: Except where clearly noted, our evaluation compares

policies’ performance against their total cache area at 65 nm,

including all replacement overheads. We evaluate performance

and area because the power overheads from replacement are

negligible—e.g., EVA’s are 0.01% of TDP (Sec. VI-C). Area

and performance are thus the main design constraints.

For each LLC size, we use CACTI to model data and tag area.

We use 45 tag bits for address and coherence state. We add
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Fig. 10: Misses per thousand instructions (MPKI) vs. total cache area across sizes (1 MB–8 MB) for MIN, random, LRU, SHiP, PDP,
and EVA on selected memory-intensive SPEC CPU2006 benchmarks. (Lower is better.)

replacement tag bits and other overheads taken from prior work.

Whenever unclear, we use favorable numbers for other policies:

DRRIP and SHiP add 2 bits/tag, and SHiP adds 1.875 KB for

tables (0.1 mm2). PDP adds 3 bits/tag and 10 K NAND gates

(0.02 mm2). LRU uses 8 bits/tag. Random adds no overhead.

Since MIN is our upper bound, we also grant it zero overhead.

Finally, EVA adds 8 bits/tag and 0.04 mm2 (Sec. VI).

Workloads:Workloads:Workloads:Workloads: We execute SPEC CPU2006 apps for 10 B instruc-

tions after fast-forwarding 10 B instructions. Since IPC is not

a valid measure of work in multi-threaded workloads [3], we

instrument SPEC OMP2012 apps with heartbeats that denote

application-level work. Each completes a region of interest

(ROI) with heartbeats equal to those completed in 1 B cycles

with an 8 MB, LRU LLC (excluding initialization).

Metrics:Metrics:Metrics:Metrics: We report misses per thousand instructions (MPKI)

and end-to-end performance; for multi-threaded apps, we report

MPKI by normalizing misses by the instructions executed on

an 8 MB, LRU LLC. EVA’s performance results include the time

spent in software updates, which is negligible (Sec. VI-C).

B. Single-threaded results

Fig. 10 plots MPKI vs. cache area for ten representative,

memory-intensive SPEC CPU2006 apps. Each point on each

curve represents increasing LLC sizes from 1 to 8 MB. First

note that the total cache area at the same LLC size (i.e., points

along x-axis) is hard to distinguish across policies. This is

because replacement overheads are small—less than 2% of

total cache area.

In most cases, MIN outperforms all practical policies by a

large margin. Excluding MIN, some apps are insensitive to

replacement policy. On others, random replacement and LRU

perform similarly; e.g., mcf and libquantum. In fact, random

often outperforms LRU.

EVA performs consistently well:EVA performs consistently well:EVA performs consistently well:EVA performs consistently well: SHiP and PDP improve perfor-

mance by correcting LRU’s flaws on particular access patterns.

Both perform well on libquantum (a scanning benchmark),

sphinx3, and xalancbmk. However, their performance varies

considerably across apps. For example, SHiP performs particu-

larly well on perlbench, mcf, and cactusADM. PDP performs

particularly well on GemsFDTD and lbm, where SHiP exhibits

pathologies and performs similar to random replacement.

EVA matches or outperforms SHiP and PDP on most apps

and cache sizes. This is because EVA generally maximizes

upon available information, so the right replacement strate-

gies naturally emerge where appropriate. As a result, EVA

successfully captures the benefits of SHiP and PDP within a

common framework, and sometimes outperforms both. Since

EVA performs consistently well, and SHiP and PDP do not,

EVA achieves the lowest MPKI of all policies on average.

The cases where EVA performs slightly worse arise for

two reasons. First, in some cases (e.g., mcf at 1 MB), the

access pattern changes significantly between policy updates.

EVA can take several updates to adapt to the new pattern,

during which performance suffers. But in most cases the

access pattern changes slowly, and EVA performs well. Second,

our implementation coarsens ages, which can cause small

performance variability for some apps (e.g., libquantum).

EVA edges closer to optimal replacement:EVA edges closer to optimal replacement:EVA edges closer to optimal replacement:EVA edges closer to optimal replacement: Fig. 11 compares

the practical policies against MIN, showing the average MPKI

gap over MIN across the most memory-intensive SPEC CPU2006

apps2—i.e., each policy’s MPKI minus MIN’s at equal area.

One would expect a practical policy to fall somewhere

between random replacement (no information) and MIN (perfect

information). But LRU actually performs worse than random

at many sizes because private caches strip out most temporal

locality before it reaches the LLC, leaving scanning patterns

that are pathological in LRU. In contrast, both SHiP and PDP

significantly outperform random replacement. Finally, EVA

performs best. On average, EVA closes 57% of the random-

MIN MPKI gap. In comparison, DRRIP (not shown) closes 41%,

SHiP 47%, PDP 42%, and LRU –9%.

2All with ≥3 L2 MPKI; Fig. 10 plus bzip2, gcc, milc, gromacs,
leslie3d, gobmk, soplex, calculix, omnetpp, and astar.
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EVA saves cache space:EVA saves cache space:EVA saves cache space:EVA saves cache space: Because EVA improves performance,

it needs less cache space than other policies to achieve a given

level of performance. Fig. 12 shows the iso-MPKI total cache

area of each policy, i.e., the area required to match random

replacement’s average MPKI for different LLC sizes (lower is

better). For example, a 21.5 mm2 EVA cache achieves the same

MPKI as a 4 MB cache using random replacement, whereas

SHiP needs 23.6 mm2 to match this performance.

EVA is the most area efficient over the full range. On average,

EVA saves 8% total cache area over SHiP, the best practical

alternative. However, note that MIN saves 35% over EVA, so

there is still room for improvement, though some performance

gap is unavoidable due to the costs of uncertainty (Sec. IV-B).

EVA achieves the best end-to-end performance:EVA achieves the best end-to-end performance:EVA achieves the best end-to-end performance:EVA achieves the best end-to-end performance: Fig. 13 shows

the IPC speedups over random replacement at 35 mm2, the area

of a 4 MB LLC with random replacement. Only benchmarks

that are sensitive to replacement are shown, i.e., benchmarks

whose IPC changes by at least 1% under some policy.

EVA achieves consistently good speedups across apps,

whereas prior policies do not. SHiP performs poorly on

xalancbmk, sphinx3, and lbm, and PDP performs poorly on

mcf and cactusADM. Consequently, EVA achieves the best

speedup overall. Gmean speedups on sensitive apps (those

shown) are for EVA 8.5%, DRRIP (not shown) 6.7%, SHiP

6.8%, PDP 4.5%, and LRU –2.3%.

EVA makes good use of additional state:EVA makes good use of additional state:EVA makes good use of additional state:EVA makes good use of additional state: Fig. 14 sweeps the

number of tag bits for different policies and plots their average

MPKI at 4 MB. (This experiment is not iso-area.) The figure

shows the best configuration on the right; EVA and PDP

use idealized, large timestamps. Prior policies achieve peak

performance with 2 or 3 bits, after which their performance

flattens or even degrades.

Unlike prior policies, EVA’s performance improves steadily

1 2 3 4 5 6 7 8 9 10

Replacement Tag Bits

8.5

9.0

9.5

10.0

10.5

11.0

A
v
g

 M
P

K
I

R
an

do
m

D
R
R
IP

PD
P
SH

iP
EVA

M
IN

8.5

9.0

9.5

10.0

10.5

11.0

B
e

s
t 

A
v
g

 M
P

K
I

Fig. 14: Avg MPKI for different policies at 4 MB vs. tag overheads
(lower is better).

with more state, and its peak performance exceeds prior policies

by a good margin. With 2 bits, EVA performs better than PDP,

similar to DRRIP, and slightly worse than SHiP. Comparing

the best configurations, EVA’s improvement over SHiP is 1.8×
greater than SHiP’s improvement over DRRIP. EVA with 8 b

tags performs as well as an idealized implementation, yet still

adds small overheads. These overheads more than pay for

themselves, saving area at iso-performance (Fig. 12).

With very few age bits, no single choice of age granularity A
works well for all applications. To make EVA perform well with

few bits, software adapts the age granularity using a simple

heuristic: if more than 10% of hits and evictions occur at the

maximum age, then increase A by one; otherwise, if less than

10% of hits occur in the second half of ages, then decrease A
by one. We find this heuristic rapidly converges to the right age

granularity across all evaluated applications. Only Fig. 14 uses

this heuristic, and it is disabled for all other results. Since EVA

is most area-efficient with larger tags, the design we advocate

(8 b tags) does not employ this heuristic.

C. Multi-threaded results

Fig. 15 extends our evaluation to multi-threaded apps from

SPEC OMP2012. Working set sizes vary considerably, so we

consider LLCs from 1 to 32 MB, with area shown in log scale
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on the x-axis. All qualitative claims from single-threaded apps

hold for multi-threaded apps. Many apps are streaming or

access the LLC infrequently; we discuss four representative

apps from the remainder.
As in single-threaded apps, SHiP and PDP improve perfor-

mance on different apps. SHiP outperforms PDP on some apps

(e.g., nab), and both perform well on others (e.g., smithwa).

Unlike in single-threaded apps, however, DRRIP and thread-

aware DRRIP (TADRRIP) outperform SHiP. This difference is

largely due to a single benchmark: smithwa at 8 MB.
EVA performs well in nearly all cases and achieves the

highest speedup. On the 7 OMP2012 apps that are sensitive to

replacement (Fig. 15 plus md, botsspar, and kd), the gmean

speedup over random for EVA is 4.5%, DRRIP (not shown)

2.7%, TA-DRRIP 2.9%, SHiP 2.3%, PDP 2.5%, and LRU 0.8%.

VIII. CONCLUSION

The key challenge faced by practical replacement policies

is how to cope with uncertainty. Simple approaches like

predicting time until reference are flawed. We have argued for

replacement by economic value added (EVA), starting from first

principles and drawing from prior planning theory. We further

showed that EVA can be implemented with trivial hardware, and

that it outperforms existing high-performance policies nearly

uniformly on single- and multi-threaded benchmarks.
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