
1

Kobold: Simplified Cache Coherence for
Cache-Attached Accelerators

Jennifer Brana, Brian C. Schwedock, Yatin A. Manerkar,
Nathan Beckmann

Abstract—The ever-increasing cost of data movement in computer
systems is driving a new era of data-centric computing. One of the
most common data-centric paradigms is near-data computing (NDC),
where accelerators are placed inside the memory hierarchy to avoid the
costly transfer of data to the core. NDC systems show immense potential
to improve performance and energy efficiency. Unfortunately, adding
accelerators into the memory hierarchy incurs significant complexity for
system integration because accelerators often require cache-coherent
access to memory. The complex coherence protocols required to handle
both cores and cache-attached accelerators result in significantly higher
verification costs as well as an increase in directory state and on-chip
network traffic. Furthermore, these mechanisms can cause cache pollution
and worsen baseline processor performance.

To simplify the integration of cache-attached accelerators, we present
Kobold, a new coherence protocol and implementation which restricts
the added complexity of an accelerator to its local tile. Kobold introduces
a new directory structure within the L2 cache to track the accelerator’s
private cache and maintain coherence between the core and accelerator.
A minor modification to the LLC protocol also enables accelerators to
improve performance by bypassing the local L2. We verified Kobold’s
stable-state coherence protocols using the Murphi model checker and
estimated area overhead using Cacti 7. Kobold simplifies integration
of cache-attached accelerators, adds only 0.09% area over the baseline
caches, and provides clear performance advantages vs. naïve extensions
of existing directory coherence protocols.

Index Terms—Cache coherence, near-data computing, data-centric

F

1 Introduction
Computer systems are increasingly bottlenecked by the rising cost of
data movement. To combat this trend, near-data computing (NDC)
designs propose accelerators that move compute closer to data. Cache-
attached accelerators are a promising direction for NDC that enables
fine-grain collaboration between cores and accelerators by offloading
work to within the CPU cache hierarchy.

Fig. 1 shows täkō [12], a representative recent system with
cache-attached accelerators. täkō augments a baseline, cache-coherent
multicore with an engine (i.e., accelerator) on each tile, granting the
engine efficient access to data in the tile’s L2 and last-level cache
(LLC) banks. Each engine also has its own private data cache (eL1D).
Challenges: Cache-attached accelerators must maintain coherence with
the core’s caches to usefully access shared memory. However, intro-
ducing accelerators into the coherence protocol increases verification
costs, directory state, and network traffic.

To complicate matters further, accelerators desire access to different
levels of the cache hierarchy, depending on the application [8, 12].
Applications with frequent accelerator-to-core communication (e.g.,
irregular prefetchers) want the accelerator to sit beneath the core’s
private L2, but applications operating over large datasets (e.g., graph
search) want the accelerator to access the LLC directly, without
polluting or waiting for the L2. Systems should therefore provide
cache-attached accelerators with efficient access to both the L2 and
LLC, but this is not supported by existing coherence protocols.

• Jennifer Brana is at the University of Portland and Carnegie Mellon
University. Brian C. Schwedock and Nathan Beckmann are at Carnegie
Mellon University. Yatin A. Manerkar is at the University of Michigan.

C
al

lb
ac

k 
Bu

ffe
r

Core

L3 Cache Bank

Data Array

Ta
g 

Ar
ra

y

L2 Engine

L1D L1I

Dataflow Fabric

rTLBTLB

Hardware 
Scheduler

Tile

eL1D

Fig. 1: täkō [12] adds a reconfigurable engine (i.e., accelerator) to each
tile of a CMP. Engines accelerate tasks for data that resides in the L2
or LLC bank on that tile. Each engine has a coherent eL1D cache.

Insights: The complexity added to the shared LLC protocols caused
by cache-attached accelerators can be mitigated if the accelerator’s
eL1D and its local L2 bank look like a single, unified cache to the
LLC. This is achievable by adding extra state within each tile of the
chip-multiprocessor (CMP) to track coherence between the core and
accelerator. Keeping coherence between the core and accelerator local
to the tile reduces the necessary directory state and on-chip network
traffic, while also minimizing impact to the LLC protocol.

However, just making the eL1D a child of the L2, as in traditional
hierarchical coherence designs, can harm performance for systems in
which the accelerator would rather sit beneath the LLC. L2 pollution
can be mitigated by replacement policies [12], but going through the
L2 still incurs unnecessary latency [8]. Consequently, we propose a
design in which data accessed only by the accelerator bypasses the L2.

Approach: Our goal is to design a coherence protocol which (i)
restricts the complexity of cache-attached accelerators to within each
tile of a CMP and (ii) befits accelerators independent of which cache
level they want to access. Our solution, Kobold, adds a directory-like
structure to each tile, called the mis-direction filter (MDF) that tracks
the state of the accelerator’s eL1D. The MDF augments the L2 (see
Fig. 2a) and allows the processor and accelerator to safely share data
and transfer ownership within the tile, with minimal modification to the
baseline directory coherence protocol at the LLC. The L2 and eL1D
maintain coherence between themselves and coordinate responses to
LLC requests, leveraging the MDF to reduce unnecessary messages.

L1D

Core

Engine

L2 eL1D
MDF

Tile

NoC

L3

(a) Kobold’s cache hi-
erarchy design. A mis-
direction filter (MDF) aug-
ments the L2 in each tile.

L2 Cache Structure

State 
Function

Tag

Data

State

V StateTag Data
V StateTag Data

V StateTag Data

…

Traditional L2 Directory

V StateTag
V StateTag

V StateTag
…

MDF Directory

2048
entries

128
entries

(b) Microarchitecture of the L2 and MDF.

Fig. 2: Architecture of the Kobold system.

The main difference from prior hierarchical protocols is that Kobold
requires negligible additional state and is non-inclusive to prevent
the accelerator from polluting its local L2. Moreover, by leveraging
fast, local communication within a tile, Kobold reduces unnecessary
traffic to the LLC and minimizes the latency of hits and misses in the
eL1D and L2. However, to maintain coherence between the core and
accelerator, the L2 must track the contents of the eL1D using the MDF.
The resulting design is a new twist on hierarchical coherence.

Summary of results: We evaluate Kobold in the context of the
täkō [12] architecture by modifying a baseline MESI coherence
protocol. Our design significantly reduces communication to the LLC,



2

compared to a näive directory protocol. We verify Kobold’s stable-state
coherence protocol in Murphi [5]. We also estimate Kobold’s area
overhead (from the MDF) at just 0.09% of the baseline caches.

2 Background and Motivation
2.1 Near-Data Computing
To minimize data movement, many architectures propose moving
processing logic closer to data, rather than moving data to compute.
Some designs propose “processing in-memory” architectures that
place compute logic in memory [6]. Others propose “near-data
accelerators” (NDAs) which place co-processors off-chip close to main
memory [2]. NDAs benefit streaming applications, but are inappropriate
for applications with data reuse or fine-grained sharing.

For applications with significant locality or frequent data sharing
between core and accelerator, others propose integrating accelerators
within the cache hierarchy, allowing CPUs to offload work to caches [8,
12]. Cache-attached accelerators share a unified address space with the
host cores, eliminating the need to control low-level data movement
in software. However, accessing the shared memory of the host core
requires accelerators to maintain coherence.

2.2 Coherence and Consistency
2.2.1 Directory-Based Coherence Protocols
Directory-based protocols use a directory structure to track child caches.
For coherence requests, the directory determines the actions required
based on the current location(s) and state of the block.

However, naïvely extending directory-based coherence to support
cache-attached accelerators does not work well. Fig. 3 shows an
architecture where the accelerators’ eL1Ds are additional sharers
under the LLC. In this example, all transactions between the core
and accelerator pass through the LLC, and data is written back to the
LLC when transferred. Alternatively, the eL1D and L2 caches could
directly forward data to each other when prompted by the LLC. This
optimization eliminates data transfer through the LLC, but the request
must still go through the LLC to update the directory. Unfortunately,
any communication with the LLC is quite wasteful because the core
and accelerator reside on the same tile, while the LLC directory can be
across the chip. This naïve design also doubles LLC directory state to
track twice as many sharers. To alleviate these issues, other types of
coherence have been proposed.

L1D

Core

Engine

L2

1) Load

2) GETS

3) GETS 5) Data

7) Data

8) Data

NoC

eL1D

4) INVX6) Data

3)6) 4) 5)

L3

Tile
Step L1D eL1D L2 L3

Init) I M I M
1) I M I M

2) I M I M
3) I M I M

4) I M I M
5) I S I S

6) I S S S
7) S S S S

8) S S S S

Fig. 3: Naïve architecture where the accelerators’ eL1Ds are treated
as additional sharers under the LLC. Example transaction for core
read request when the eL1D holds the data in the modified (M) state.
‘I’ represents Invalid, and ‘S’ represents Shared.

2.2.2 Hierarchical Coherence Protocols
Directory-based protocols face scaling challenges due to the storage
required to track all caches and on-chip network traffic. To improve
scalability, multicore chips can be organized into hierarchies of caches
with multiple levels of directories. Intermediate levels of the hierarchy
serve as directories for the lower levels, reducing storage overhead in

the LLC. Additionally, locality enables the majority of transactions to
be performed within a cluster, reducing traffic to the LLC.

The DASH [7] architecture improves scalability by mitigating the
bottlenecks of directory protocols. To maintain coherence, DASH uti-
lizes two coherence protocols: a snooping-based intra-cluster protocol
and a directory-based inter-cluster protocol. Private data references are
localized to the cluster, reducing accesses to the directory.

Kobold is also a hierarchical coherence protocol that, like DASH,
uses a combination of local snooping and directories to improve
scalability and limit coherence traffic. However, unlike DASH, Kobold
does not add an intermediate cache on the critical path to arbitrate
remote accesses. Instead, Kobold uses peer-to-peer communication
to maintain intra-tile coherence via the MDF, and the accelerator can
speculatively bypass the L2 to access the LLC directly.

2.2.3 Cache Inclusion
A key design choice when building a multi-level cache hierarchy is
whether to enforce inclusion. Inclusive caches benefit from snoop
filtering. However, inclusion leads to data duplication, reducing
effective cache size. Additionally, data brought in by the eL1D can
remain in the L2 long after it is evicted from the eL1D.

Kobold starts from a baseline inclusive protocol. However, Kobold
implements the L2 as non-inclusive of the eL1D and integrates an
additional directory (MDF) within the L2 to enable snoop filtering. The
MDF is not exclusive of the L2; tags can exist in both the MDF and
the L2 at the same time. Furthermore, the MDF is used to determine
coherence messages for requests originating from both the LLC and
the core. Finally, the MDF holds a copy of the eL1D tags but tracks
the overall state of the tile, as discussed below (see Fig. 4).

2.2.4 Coherence and Consistency for Heterogeneous Systems
Inter-device communication in heterogeneous architectures is a major
bottleneck that has motivated the adoption of a unified coherent
address space. Allowing the host and accelerator to share a single,
coherent address space greatly improves inter-device communication
and simplifies programming. However, ensuring that shared memory
remains coherent is a major challenge due to the diverse memory
demands and coherence properties of accelerators.

Recent coherence protocols target discrete co-processors located
near memory, where communication is expensive between cores
and accelerators. CoNDA [4] is a recent coherence mechanism that
allows NDAs to optimistically execute kernels to gather information
on memory accesses. It uses this information to avoid unnecessary
coherence requests. Spandex [1] is a coherence interface that efficiently
supports integrating a variety of devices with divergent memory access
patterns and diverse coherence properties into a single address space.

Overall, we find that prior protocols for heterogeneous systems do
not work well for cache-attached accelerators because they assume
infrequent communication between the core and accelerator. This
assumption does not hold for the fine-grain communication commonly
exhibited by cache-attached accelerators.

2.2.5 Formal Verification of Coherence Protocols
Modern CMPs employ coherence protocols that ensure high perfor-
mance at the cost of significant verification complexity. To eliminate
bugs from protocols, an exhaustive search of the protocols’ state
space is required. Verification overheads typically grow very fast
with respect to protocol complexity, so it is desirable to limit the
additional coherence-related complexity of the accelerators’ caches to
their respective tiles.

3 Kobold Design and Implementation
We consider a chip-multiprocessor (CMP) where each tile contains
a core, private L1D/L1I, private L2, shared LLC bank, and cache-
attached accelerator with its own private eL1D (see Fig. 1). To avoid



3

adding state and coherence complexity to the LLC, Kobold confines
nearly all modifications to within a tile. Similar to prior hierarchical
coherence protocols, the eL1D is logically a child of the L2, alongside
the core’s L1D/L1I, and the L2 is responsible for maintaining coherence
between the core and accelerator. But unlike prior protocols, the L2
is not inclusive of the eL1D, and the L2 and eL1D operate as peers
via snooping to handle many coherence transactions, enabling the
accelerator to access either the L2 or LLC “directly”.

3.1 Overview
In Kobold, additional coherence complexity and state is restricted
to the L2 and eL1D. The L2’s responsibilities are to (i) maintain
coherence between its local L1D and eL1D banks, and (ii) prevent the
accelerator from polluting the L2 bank. Kobold’s design enforces these
requirements with minimal overheads by augmenting the L2 with a
small directory structure called the mis-direction filter (MDF).

Fig. 2a shows Kobold’s cache hierarchy. The eL1D and the core’s
L1D (and L1I, not shown) are logically children of the L2, as far as
coherence is concerned. However, the eL1D operates as a peer cache
of the L2 to, e.g., avoid polluting the L2 with data accessed by the
eL1D. Interaction between the L2 and eL1D is mediated by the MDF.

L1D

Core

Engine

L2 eL1D
MDF

4) Data

3) INVX

1) Load

2) GETS5) Data

6) Data

Tile

NoC

L3

Step L1D eL1D MDF L2 L3

Init) I M M I M
1) I M M I M

2) I M M I M
3) I S M I M

4) I S M S M
5) S S M S M

6) S S M S M

Fig. 4: Kobold architecture where the L2 tracks eL1D state with an
MDF. Example transaction for core read request when the eL1D holds
the data in the modified (M) state.

Mis-direction filter: The MDF tracks the contents of the eL1D. It is a
metadata-only array that maintains only the tags and coherence state
for data in the eL1D. (The MDF tracks coherence state for the entire
tile, which may diverge from the state in the eL1D, as in Fig. 4.)

Fig. 2b shows the microarchitecture of the L2 in Kobold. Ignoring
the MDF, the operation of the main L2 tag and data arrays is unchanged
from a baseline CPU cache hierarchy: e.g., data is inserted into the L2
tag and data arrays upon a L1D miss. However, to ensure coherence
between the L2 and eL1D, the MDF is accessed in parallel with the
main L2 tags to determine the coherence action. Using the MDF to
track the eL1D tags in the L2 enables Kobold to perform snooping-like
logic on-demand with no performance overhead. (The MDF is much
smaller than the L2 tags and is accessed in parallel.) If a line is cached
in the eL1D, metadata for the line will be tracked in both the eL1D
tags and MDF, and the state in the MDF will determine whether a
memory transaction can be handled locally within the tile or if the
LLC must be contacted to, e.g., upgrade permissions.
Avoiding L2 pollution: Finally, the MDF is key to enabling coherence
for cache-attached accelerators without disrupting core performance.
Prior work has demonstrated that, with a conventional inclusive cache
hierarchy, cache-attached accelerators can cause severe cache pollution
by streaming data into the L2 that evicts the core’s working set, slowing
down cores by >4× in some cases [12]. The MDF achieves a similar
objective without modifying the L2 replacement policy or inserting
data into the L2 at all: Kobold tracks the eL1D contents in the MDF
and never inserts data into the L2 unless it is accessed directly by a
core. When data is evicted from the eL1D, its tag is simultaneously
evicted from the MDF, and the L2 contents are unaffected (though
permissions may be upgraded, depending on the state in the MDF; see
Fig. 6 below). Kobold thus eliminates L2 pollution by design.

M E S I

FWD_L2_GETS

UPGRADE_M

FWD_L2_GETS

FWD_L2_GETS

FWD_L2_GETX

FWD_L2_GETX

FWD_L2_GETX

UPGRADE_E

Fig. 5: Finite-state machine for eL1D. Only shows new intra-tile
messages in Kobold that enable coherence between the eL1D and L2.

3.2 Kobold’s Cache Coherence Protocol
Kobold introduces peer-to-peer communication between the eL1D and
L2 that allows the caches to maintain coherence and data within a tile
and coordinate responses to LLC requests. Fig. 5 highlights the new
MESI state transitions at the eL1D, which are triggered by messages
from the L2. The L2 MESI finite state machine is similarly modified
in Kobold, but we omit the figure due to space constraints.

New requests fall into two categories: data requests and upgrades.
(i) A GET request is forwarded from the L2 to eL1D when the core
requests data which is located in the eL1D but not L2. The eL1D
replies directly with the data and downgrades state if necessary; the
LLC is not involved. (ii) Upgrades are sent when the L2 evicts data
that is also in the eL1D, but the data is tracked with higher permissions
in the MDF than eL1D. For example, if the data is tracked as modified
(M) in the MDF but tracked as shared (S) in both the L2 and eL1D,
when the L2 evicts the data a FWD_L2_GETX is sent to the eL1D to
upgrade its state to M. This eliminates redundant coherence traffic to
the LLC by allowing the L2 and eL1D to change states while the tile’s
state remains unchanged from the LLC’s perspective.

3.2.1 Handling LLC requests
Requests from the LLC (i.e., downgrades or invalidations) to the tile
are broadcast to both the eL1D and L2 caches. We ensure that only
one of the caches, usually the L2, responds to LLC coherence requests.
To enable this, the L2 protocol uses the MDF to determine when it
must wait for the eL1D to complete an LLC request before responding
to the LLC. Upon completing the LLC request, the eL1D sends an
acknowledgement to the L2 cache. Following this acknowledgement,
the L2 cache can respond to the LLC if needed.

In transactions requiring a data response or writeback, the L2
services requests when it can. However, when the eL1D holds the only
copy of data, the eL1D responds. To ensure only one cache writes back
at a time, the L2 cache prompts the eL1D to issue the response itself.

3.2.2 Handling core requests
Each time a core-issued request reaches the L2, the L2 and MDF
are searched in parallel. The L2 cache controller uses both results to
determine how to proceed (see Fig. 2b).

If the L2 cannot service the request but the MDF holds the line
with the requested permissions, the request is forwarded to the eL1D.
The eL1D responds to the request and downgrades its state if necessary.
Upon receiving a response from the eL1D, the L2 updates its local
state as well as the MDF to reflect any changes to the eL1D.

As demonstrated in Fig. 4, in the case that the line is not found in
the L2 and the MDF holds the line in E or M when S is requested, the
request is satisfied accordingly. However, during the transaction the
eL1D downgrades, leaving both the eL1D and L2 in the same state
(S) while the MDF maintains its original state. The state of the MDF
now reflects the overall state of the tile (M), rather than the state of the
eL1D. This mechanism avoids involvement of the LLC when a core
and its local accelerator access the same data.

If the line is found in the MDF in state S when M is requested,
concurrent requests are sent to the eL1D and the LLC. The eL1D



4

supplies the data to the L2 and transfers its permissions to the L2. An
LLC request is sent in parallel to obtain exclusive permission, and, after
receiving an acknowledgement from the LLC, the L2 finally upgrades
to M and can satisfy the request.

If the line is not in the L2 or MDF, the request is sent directly to
the LLC. Using the MDF to determine that the eL1D does not have the
data ensures the L2 does not send an unnecessary request to the eL1D.
Rather, the L2 immediately sends a request for the data to the LLC,
ensuring the critical path is the same as an L2 miss in a baseline CMP.

3.2.3 Handling accelerator requests

When an accelerator-issued request misses in the eL1D, the request is
first forwarded to the L2. In the case that the L2 can service the request
fully, data is transferred, the L2 is downgraded if necessary, and the
MDF is updated to reflect the new eL1D state (see steps 2-7 in Fig. 6).

L1D

Core

Engine

L2 eL1D
MDF

2) Store5) ACK4) INV 7) Data

6) Data

1) PUTS
3) GETX
8) PUTX

8)

Tile

L3

NoC
8) PUTX

Step L1D eL1D MDF L2 L3

Init) S S M S M
1) S I I M M

2) S I I M M
3) S I I M M

4) I I I M M
5) I I M I M

6) I M M I M
7) I M M I M

8) I I I I M

Fig. 6: Continuation of the example from Fig. 4 where the data is
evicted from the eL1D (step 1), stored by the accelerator (steps 2-7),
and finally evicted from the eL1D again (step 8).

If the L2 holds the block in E or M when S is requested, the L2
downgrades and sets the MDF to its old state. The L2 and eL1D caches
share the data but the MDF and LLC track the data as E or M.

If the L2 cannot service the request, it informs the eL1D which
sends the request to the LLC. When the LLC responds, a state change
is sent to update the MDF before the eL1D completes the request.
“Direct” LLC access via speculative L2 bypass: So far, Kobold
adds L2 latency to the critical path of eL1D misses. This is to prevent
requests arriving at the LLC while the L2 has a valid copy of the
data. However, for applications which desire direct access to the LLC,
the additional L2 latency on every eL1D miss can significantly harm
performance [8].

Instead, in Kobold, the eL1D can speculatively issue an LLC
request in parallel with an L2 request to hide L2 latency. To enable
these speculative requests, the LLC needs to handle two additional
scenarios: requests for data that the child has (a) in a shared state, and
(b) in an exclusive state. Scenario (a) is common in prior protocols
which allow the L2 to silently drop clean data. However, scenario (b)
would not occur in a silent-drop protocol because dirty data cannot be
dropped silently. Accordingly, Kobold requires a minor modification
to the LLC protocol to ignore redundant requests to data owned by
the requesting tile in an exclusive state, since the L2 will handle the
request and no response from the LLC is required.

Speculative L2 bypass improves performance at the cost of
unnecessary LLC accesses on misspeculation (i.e., when the data
is actually in the L2). We observe that bypass can be predicted
accurately [11], particularly since cache-attached accelerators often
have strong predictors of data’s location (i.e., at which level tasks were
scheduled to execute [8, 12]).

3.2.4 Handling evictions

When the L2 replaces a block, it first checks the state in the L2 directory
and the MDF. If only the L2 cache holds the line, the L2 issues a PUT
request to the LLC. However, if the MDF also holds the tag (i.e., the
eL1D has the data), the L2 silently drops the data. If the MDF tracks

the data as in E or M while the L2 holds the data in S, the eL1D state
is upgraded to that of the MDF and the L2 drops its copy.

If the eL1D replaces a block in a private state, it concurrently issues
a PUT request to the LLC and informs the MDF that it replaced the
line (see step 8 in Fig. 6). However, when the eL1D replaces a block
in the S state, more indirection is required. First, the eL1D checks if
the L2 cache holds the line. If the L2 does not hold the data, the MDF
is invalidated and the L2 triggers the eL1D to issue a PUT request to
the LLC. However, if the L2 holds the data, the eL1D silently drops
the data, the MDF is invalidated, and the L2 is upgraded to reflect the
previous state of the MDF if necessary (see step 1 in Fig. 6).

4 Evaluation
Verification: We used the Murphi model checker [5] to formally
verify Kobold’s stable-state protocols. We made the model transaction-
atomic based on the method in [9]. Our Murphi model verified Kobold’s
protocols against the single-writer, multiple-reader invariant and proved
deadlock-freedom. During verification, Murphi explored 12,534 states.
Area: We used Cacti 7 [3] to evaluate the area requirements of the MDF.
Like täkō [12], we evaluate with a 128KB L2, 8KB eL1D, and 512KB
LLC per tile. In 22nm, Cacti estimates the L2 size as 0.2706mm2,
the LLC bank as 0.5963mm2, and the MDF size as 0.00076mm2.
Compared against the baseline area of the L2 cache and LLC bank, the
MDF adds an area overhead of only 0.09%.

5 Future Work & Conclusion
In this era of memory-hierarchy specialization and heterogeneous
architectures, ease of integration is vital for incorporating specialized
hardware like cache-attached accelerators. Even in homogenous
systems, cache coherence is a challenging mechanism to correctly
implement and verify. To integrate cache-attached accelerators with
minimal impact on coherence complexity and system overhead, we
introduced the Kobold coherence protocol. By keeping additional
coherence actions local to a single CMP tile, Kobold significantly
simplifies accelerator integration, minimizes on-chip network traffic,
and avoids impacting baseline processor performance.

Moving forward, we plan to generate the fully concurrent protocols,
i.e., the transient states and transitions required for concurrency.
Specifically, we plan to modify the HieraGen tool [10] to support
Kobold’s non-inclusive hierarchy design.

References
[1] J. Alsop et al., “Spandex: A flexible interface for efficient heterogeneous

coherence,” in ISCA, 2018.
[2] R. Balasubramonian et al., “Near-data processing: Insights from a micro-

46 workshop,” IEEE Micro, 2014.
[3] R. Balasubramonian et al., “Cacti 7: New tools for interconnect exploration

in innovative off-chip memories,” ACM TACO, 2017.
[4] A. Boroumand et al., “Conda: Efficient cache coherence support for

near-data accelerators,” in ISCA, 2019.
[5] D. Dill et al., “Protocol verification as a hardware design aid,” in VLSI,

1992.
[6] C. E. Kozyrakis et al., “Scalable processors in the billion-transistor era:

IRAM,” IEEE Computer, 1997.
[7] D. Lenoski et al., “The directory-based cache coherence protocol for the

dash multiprocessor,” in ISCA, 1990.
[8] E. Lockerman et al., “Livia: Data-centric computing throughout the

memory hierarchy,” in ASPLOS, 2020.
[9] T. Olausson, “Towards the automatic synthesis of cache coherence

protocols,” Ph.D. dissertation, 2020.
[10] N. Oswald et al., “HieraGen: Automated generation of concurrent,

hierarchical cache coherence protocols,” in ISCA, 2020.
[11] M. K. Qureshi and G. H. Loh, “Fundamental Latency Trade-offs in

Architecting DRAM Caches,” in Proc. of the 45th annual IEEE/ACM intl.
symp. on Microarchitecture, 2012.

[12] B. C. Schwedock et al., “täkō: A polymorphic cache hierarchy for general-
purpose optimization of data movement,” in ISCA, 2022.


