
MANIC: A 19µW @ 4MHz, 256 MOPS/mW, RISC-V microcontroller with embedded MRAM
main memory and vector-dataflow co-processor in 22nm bulk finFET CMOS

Graham Gobieski∗, Oguz Atli†, Cagri Erbagci†, Ken Mai†, Nathan Beckmann∗, Brandon Lucia†
∗Computer Science Department, †Department of Electrical and Computer Engineering

Carnegie Mellon University
Pittsburgh, USA

gobieski@cmu.edu, {aatli, cerbagci, kenmai, blucia}@andrew.cmu.edu, beckmann@cs.cmu.edu

Abstract—Whether powered by a battery or energy harvested
from the environment, low-power (LP) sensor devices require
extreme energy efficiency. These sorts of devices are becoming
pervasive, running increasingly sophisticated applications in in-
hospitable environments. We present MANIC, an energy-efficient
microcontroller (MCU) augmented with a vector-dataflow (VDF)
co-processor. The testchip taped out on a 22nm bulk finFET
CMOS process demonstrates that MANIC is 60% more energy-
efficient than a baseline, scalar, low-power MCU, achieving
peak efficiency of 256 MOPS/mW (2.6× prior work) while
consuming only 19.1µW (@4MHz). To make the system viable
for intermittently powered applications that require non-volatile
storage, MANIC includes a 256KB embedded MRAM.

I. INTRODUCTION

Emerging sensing applications demand extremely energy-
efficient data processing in remote environments, e.g., for on-
device machine learning or signal processing. Unfortunately,
existing digital programmable microcontrollers (MCUs) waste
energy on instruction supply (i.e., fetch, decode, and control)
and data movement. In this work we describe MANIC, the
first digital integrated circuit implementation of the vector-
dataflow [2] execution model. Vector-dataflow execution sub-
stantially reduces the energy costs of instruction supply and
data movement, significant improving energy efficiency without
compromising programmability.

Fig. 1 illustrates the differences among execution models of
a baseline low-power scalar MCU, vector MCU, and MANIC’s
vector-dataflow. Blue arrows denote data flow, and orange
arrows denote control flow.
• A scalar MCU performs one operation per instruction,

burning energy for instruction fetch, decode, and control
and for register-file (RF) accesses to load operands and
store results. These instruction and data-movement overheads
consume the majority of the entire system’s energy.

• A vector MCU performs multiple operations per instruction,
repeating the same operation to each vector element. Vector
operation amortizes the energy cost of instructions across
many operations, but each operation still reads from and
writes to the vector register file (VRF). In fact, since the
VRF is much larger than a scalar RF, data movement energy
increases in the vector design.

• Like vectors, MANIC’s vector-dataflow (VDF) execution
model amortizes instruction fetch costs over many operations,
but VDF also minimizes VRF energy by avoiding VRF
accesses. To avoid VRF accesses, VDF dynamically analyzes
a window of vector instructions, identifying how data flows

+

×

st

RF

RF

RF

+[0] +[1] +[2]

Vector RF

RF

×[0] ×[1] ×[2]

Vector RF

st[0] st[1] st[2]

Vector RF

Vector RF

Scalar Vector

+[0]

Vector RF

×[0]

Vector RF

st[0]

+[1]

×[1]

st[1]

×[2]

st[2]

+[2]

MANIC
Vector-dataflow

Many accesses to RF

Costly insn supply Amortizes insn supply

Many accesses to VRF

Amortizes insn supply

Few accesses to VRF

Intermediates 
forwarded directly 
from producer to 
consumer

Figure 1: Comparison of execution models. In MANIC’s vector-
dataflow execution, vectors reduce instruction-supply energy and
dataflow forwarding reduces data-supply energy.

between instructions. VDF then forwards values directly from
a producer instruction to a consumer instruction, without
writing those forwarded, intermediate values into the VRF.

MANIC is designed for on-device processing in energy-
constrained sensor devices. MANIC implements VDF as a
coprocessor to a low-power RISCV microcontroller in commer-
cial 22nm bulk finFET CMOS. The design integrates embedded
MRAM main memory, providing non-volatility required by
batteryless and intermittent computing applications [5]. MANIC
achieves an active operating power consumption of 19µW at
4MHz. MANIC is the first silicon implementation of VDF.
MANIC’s VDF implementation substantially improves over
a highly-optimized low-power baseline, eliminating 60% of
the base design’s energy consumption, with a peak execution
efficiency of 256MOPS/mW, a 2.6× improvement over the
state-of-the-art.

II. EXECUTION MODEL AND MICROARCHITECTURE

Fig. 2 shows MANIC’s microarchitecture, split along the
two phases of execution: Decode & Rename and Execute.
MANIC executes vector instructions, not scalar instructions,
so fetches far fewer instructions from memory compared to a
scalar system. To minimize power and energy, MANIC executes



Scalar
CoreRename

Insn Buffer

v0 f0
v1 f2
v2 f1
v5 f3

VDecoder

4KB
4KB

VRF

Vector 
index

M
UX+1

0

Insn
index

M
UX+1

0

Vissue VExecute

Data
Address

× M
UXALU

M
ul

Decode & Rename Execute

VM
em

or
y

4KB D$

M
UX

VW
rit

eb
ac

k

M
UX

M
UX

Forwarding 
Buffer

32B

VGate

Figure 2: Pipeline diagram of MANIC VDF coprocessor. The
Decode&Rename phase identifies dataflow dependencies between
operations, buffers decoded instructions in the Insn Buffer, and
renames operands. The Execute Phase has five pipelines stages: VIssue
(state machine tracking progress), VGate (gathers operands), VExecute,
VMemory, and VWriteback.

vector instructions one element at a time — it does not process
vector elements in parallel. This design choice is a significant
microarchitectural distinction from prior vector designs, which
process entire vectors in parallel to maximize performance.
The CPI is approximately 1 * vector length, depending on
memory.

During the Decode & Rename Phase, MANIC buffers a
window of decoded instructions (“Insn Buffer”) and identifies
dataflow between them. Instructions do not begin execution
until a sufficient number have been buffered and analyzed
(see next paragraph). Similar to register renaming in high-
performance, out-of-order cores, MANIC tracks dataflow using
a rename table that records the last instruction to have written
each vector register. The rename table is a sixteen entry table
composed of flops (144b) that holds the index (the "name") of
the register operand. When decoding an instruction, MANIC
checks the rename table to identify the producer instructions
for the current instruction. If the producer instruction(s) are
in the Insn Buffer, MANIC renames the current instruction’s
operands to point to the “Forwarding Buffer” (a 32B buffer)
instead of the 4KB VRF, allocating space in the Forwarding
Buffer for producer(s) if necessary. Vector instructions are
also annotated with “Kill” hints that indicate that they are the
final consumer of a vector register. When a Kill hint is seen,
MANIC disables writeback for producer instruction(s), since
their outputs need not be recorded in the VRF.

The Execute Phase begins once the instruction buffer is full,
a vfence instruction is reached, or the forwarding buffer is fully
allocated. MANIC has a five-stage execution pipeline. Unlike
conventional vector execution, MANIC’s VDF executes a series
of operations per element before going to the next element
(Fig. 1). This execution order minimizes the number of in-flight
values so that they fit in the 32B Forwarding Buffer. VIssue
tracks execution progress and maintains a pointer into the
instruction buffer, decodes instructions, and (only if necessary)
initiates VRF reads; VGate determines the source for each
operand (the VRF, Forwarding Buffer, or bypass paths) and
steers operands to the multiplier or ALU; VExecute computes
the ALU and multiplier results; VMemory issues loads and

RISC-V
Scalar Core

2KB
I$ 4KB D$

I2C

Boot 
ROM 64KB

SRAM
256KB
MRAMMain

Memory

MANIC

Arbiter

Arbiter

GPIO

IO
 B

us 4KB

VRF

Figure 3: Block diagram of MANIC. MANIC contains a RV32IMEC
MCU, the VDF coprocessor connected to a 4KB VRF, instruction
and data caches and a 64KB SRAM + 256KB MRAM main memory

MRAM

SRAM

MANIC
Scalar

Caches

Figure 4: Die shot of the MANIC testchip taped out on a 22nm bulk
finFET CMOS process. The dimensions of the MANIC block are
1.600 mm x 0.355 mm, and the logic, SRAM and MRAM power
domains take up an area of 0.09 mm2, 0.15 mm2 and 0.33 mm2

respectively.

stores; and VWriteback writes results to the Forwarding Buffer
or VRF, as appropriate. VGate reduces switching activity in
VExecute by steering operands to dedicated input registers for
the ALU or multiplier to, e.g., prevent a VADD from toggling
the multiplier. This is important because, unlike conventional
vector execution, the active instruction changes every cycle in
MANIC, increasing activity on control and data signals.

III. TESTCHIP

Fig. 3 shows a block diagram of the MANIC system-
on-chip. MANIC comprises a low-power-optimized RISC-V
(RV32IMEC) MCU, 2KB instruction cache, 4KB data cache
(shared with the coprocessor), IO-bus supporting I2C and GPIO,
main-memory (1KB boot ROM, 64KB SRAM, and 256KB
MRAM), and VDF co-processor with 4KB 1r1w VRF. MANIC
can tolerate a single read port in the VRF because dataflow
forwarding significantly reduces read pressure on the VRF,
since most values come from the Forwarding Buffer.

MANIC was fabricated in a 22nm bulk finFET process
with an area of 0.57mm2. Fig. 4 shows the die photo of the
4mm × 8mm testchip containing multiple experiments with



Figure 5: The setup used to test the MANIC testchip. An Arduino
and an FPGA are used to drive the signal IO and digital multimeters
wired in series to the power supplies are used to measure current.

MANIC highlighted. MANIC has separate power domains for
SRAM, MRAM, and logic that can be controlled and measured
independently. The dimensions of the MANIC block are 1.600
mm x 0.355 mm, and the logic, SRAM and MRAM power
domains take up an area of 0.09 mm2, 0.15 mm2 and 0.33
mm2 respectively. MANIC is optimized to run with a 4MHz
to 50MHz clock from an on-die clock generator at 0.4V to
1.0V logic, 0.4V to 1.0V SRAM, and 1.10V MRAM.

IV. EVALUATION

Fig. 5 shows the test setup that we use to verify functionality
and gather energy data from the MANIC testchip. We use an
Arduino to communicate with the I2C bus. This interface
handles loading the program memory and listen to the prints
executed by MANIC. We debug the design and check system
state using a PYNQ-Z1 FPGA board through the debug scan
interface. We measure power draw with high sensitivity using
digital multimeters (Agilent 34405a, Agilent 34410a) wired in
series with the MANIC logic and SRAM power supplies.

We evaluate MANIC across ten benchmarks with random
32b inputs. Fig. 7a shows energy normalized to the baseline
low-power scalar MCU, and Fig. 7b shows energy efficiency
(MOPs/mW). Except where otherwise noted, all results were
collected with MRAM disabled and core voltage at 0.4V. On
average, MANIC reduces energy by 60% vs. the baseline and
achieves 60MOPS/mW at 19µW.
MANIC is energy-efficient: Table I compares MANIC with prior
work [1], [3], [4], [6]. MANIC operates from 0.4V to 1.0V
with a frequency from 4MHz to 50MHz (Fig. 6). MANIC was
designed for energy-minimal, low-power operation: MANIC
consumes 19µW at 4MHz, significantly lower than prior work.
MANIC is more energy-efficient than prior work (by 2.6×),
with a peak efficiency of 256 MOPS/mW (on vector increment)
and 3.7pJ/cycle at 0.4V, 4MHz, room temperature, and MRAM
disabled. (Note that MANIC performs 32b ops, whereas some
prior work performs narrower 16b or 8b ops.) With random
inputs, which cause unrealistic, near worst-case toggling of
data lines, MANIC gets 45 MOPs/mW on dense matrix-matrix
multiplication (DMM).

0 8 16 24 32 40 48
Frequency (MHz)

0.7

0.6

0.5

0.4

Vo
lta

ge
 (V

)

Figure 6: Shmoo plot of the MANIC testchip.

FFT DWT Viterbi DConv DMM DMV SConv SMM SMV Sort Avg
S

ca
la

r

M
A

N
IC

S
ca

la
r

M
A

N
IC

S
ca

la
r

M
A

N
IC

S
ca

la
r

M
A

N
IC

S
ca

la
r

M
A

N
IC

S
ca

la
r

M
A

N
IC

S
ca

la
r

M
A

N
IC

S
ca

la
r

M
A

N
IC

S
ca

la
r

M
A

N
IC

S
ca

la
r

M
A

N
IC

S
ca

la
r

M
A

N
IC

0.0

0.2

0.5

0.8

1.0

N
or

m
al

iz
ed

en
er

gy

SRAM Logic

(a) Normalized energy consumption of benchmark applications running
on the scalar RISC-V core versus on the MANIC VDF co-processor.

FFT DWT Viterbi DConv DMM DMV SConv SMM SMV Sort Avg

S
ca

la
r

M
A

N
IC

S
ca

la
r

M
A

N
IC

S
ca

la
r

M
A

N
IC

S
ca

la
r

M
A

N
IC

S
ca

la
r

M
A

N
IC

S
ca

la
r

M
A

N
IC

S
ca

la
r

M
A

N
IC

S
ca

la
r

M
A

N
IC

S
ca

la
r

M
A

N
IC

S
ca

la
r

M
A

N
IC

S
ca

la
r

M
A

N
IC

0

25

50

75

100

M
O

P
S

/m
W

(b) Energy efficiency (MOPS/mW) of the benchmark applications
running on scalar core vs MANIC.

FFT
DWT

Vite
rbi

DConv
DMM

DMV
SConv

SMM
SMV

Sort Avg
0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

en
er

gy

Scalar Vector MANIC

(c) Normalized energy consumption of the scalar core, low-energy
vector co-processor and MANIC VDF co-processor

Figure 7: Energy and efficiency evaluation of MANIC.



2017 [4] 2018 [3] 2019 [1] 2020 [6] This work

Architecture Scalar &
Vector Scalar Scalar Scalar w/

SIMD ext.
Scalar &

Vector-dataflow
ISA RISC-V Thumb-2 Thumb-2 Thumb-2 RISC-V

Process
(nm)

28
FD-SOI

14
Tri-gate

28
FD-SOI 65 LP 22 bulk FF

Core Area
(mm2) 1.07 6.25 0.675 6 0.57

Voltage
(V) 0.48-1.0 0.4-1.0 0.4 0.4-0.75 0.4-1.05 Core

1.1 MRAM
Frequency

(MHz) 20-797 0.2-950 40-80 0.8-38 4-48.9

Memory
(KB)

56KB
SRAM

64+64+384
SRAM

32+32
SRAM

128 ROM,
16+4 SRAM

64 SRAM,
256 MRAM

Power
Budget
(mW)

1-200 1-20 1 1-4 0.019-2 w/o MRAM
1-2 w/ MRAM

Average
Power
(µW)

50000 80 144 47

19.1 w/o MRAM
@ 4MHz1

1.7mW w/ MRAM
@ 49MHz1

Peak
Efficiency

(MOPS/mW)2

41.8
MFlops/mW

Not
reported 97 Not reported 256 w/o MRAM

33.2 w/ MRAM

Best Active
Energy

(pJ/Cycle)

Not
reported 6.2 3 10.9 3.7 w/o MRAM

29 w/ MRAM

1 Over all benchmarks 2 32b operations

Table I: MANIC vs. prior work. MANIC is 2.6× more efficient than
prior work, achieving 256 MOPS/mW (@19µW & 4MHz).

Vector-dataflow uses less energy than vector: To make a fair
comparison between VDF and vector execution models, we also
taped out an alternative SoC design with an optimized vector
co-processor in the same process technology. Fig. 7c overlays
the normalized energies of MANIC (Blue), the vector design
(Green), and the scalar baseline (Purple). Both the vector design
and MANIC achieve state-of-the-art energy-efficiency; Vector
execution already achieves state-of-the-art energy-efficiency,
using 54% less than the scalar MCU; MANIC’s VDF execution
reduces energy by a further 12%.

MRAM characterization: MANIC contains a 256KB embedded
MRAM to make the system viable for intermittently powered
applications that require non-volatile storage. Fig. 8 character-
izes the embedded MRAM and presents a case study of designs
with MRAM enabled. MRAM leakage is 663µW, reads take
170ns and 13.7pJ/bit, while writes take 8.4µs and 929pJ/bit.
Write latency is independent of clock frequency.

A case study of DMM puts these numbers into context.
Fig. 8b includes several system configurations: 1) MANIC
running out of MRAM with the DCache enabled @49MHz, 2)
MANIC running out of MRAM as fast as possible @231MHz
(this necessitates the DCache being disabled), 3) MANIC
running from SRAM, DCache enabled, and MRAM enabled
@49MHz, and 4) MANIC running as fast as possible @166MHz
(w/o DCache) and MRAM enabled. Configuration 4 achieves
max efficiency with 11MOPS/mW (compared to 46MOPS/mW
when MRAM is disabled) and configuration 2 achieves max
efficiency for running from MRAM with 2.3MOPS/mW. As
found in prior low-power systems, MRAM’s high static power
is a significant challenge for energy efficiency, requiring fine-
grain power gating of MRAM to avoid static power from
severely degrading system efficiency. Addressing this challenge
is the subject of future work.

Size (KB) 256
Area (mm2) 0.31
Voltage (V) 1.1
Leakage (µW) 663
32b Read Latency @ 50 MHz (ns) 170
32b Write Latency @ 50 MHz (µs) 8.4
32b Read Energy (pJ) 437
32b Write Energy (nJ) 29.7
Read Energy (pJ/bit) 13.7
Write Energy (pJ/bit) 929

(a) MRAM characterization.

Configurations
1 2 3 4

0.0

2.5

5.0

7.5

10.0

M
O

P
S

/m
W

1: Running from MRAM, DCache enabled, 48.9 MHz, 0.64V Core
2: Running from MRAM, DCache disabled, 231 MHz, 1.0V Core
3: Running from SRAM, MRAM enabled, DCache enabled, 48.9 MHz,

0.64V Core
4: Running from SRAM, MRAM enabled, DCache disabled, 166 MHz,

1.0V Core

(b) MOPS/mW for DMM.

Figure 8: MRAM characterization and a case study on running DMM
with different DCache and main memory storage configurations.

V. CONCLUSION

Extreme energy-efficiency is a requirement for low-power
sensor devices deployed to inhospitable environments. This
work presented MANIC, the first silicon implementation of
vector-dataflow execution. MANIC-VDF draws just 19µW
(@4MHz) and is 2.6× more efficient than prior work.

REFERENCES

[1] D. Bol et al., “19.6 a 40-to-80mhz sub-4µw/mhz ulv cortex-m0 mcu soc in 28nm
fdsoi with dual-loop adaptive back-bias generator for 20µs wake-up from deep fully
retentive sleep mode,” in ISSCC, 2019.

[2] G. Gobieski et al., “Manic: A vector-dataflow architecture for ultra-low-power
embedded systems,” in MICRO, 2019.

[3] T. Karnik et al., “A cm-scale self-powered intelligent and secure iot edge mote
featuring an ultra-low-power soc in 14nm tri-gate cmos,” in ISSCC, 2018.

[4] B. Keller et al., “A risc-v processor soc with integrated power management at
submicrosecond timescales in 28 nm fd-soi,” JSSC, 2017.

[5] B. Lucia et al., “Intermittent computing: Challenges and opportunities,” in SNAPL
2, 2017.

[6] P. Prabhat et al., “27.2 m0n0: A performance-regulated 0.8-to-38mhz dvfs arm
cortex-m33 simd mcu with 10nw sleep power,” in ISSCC, 2020.


	Introduction
	Execution Model and Microarchitecture
	Testchip
	Evaluation
	Conclusion
	References

