

Interactive Annotator Learner

11 – 792

Software Engineering for Information Systems

Benjamin Lambert

Jose Alavedra

Interactive Annotator Learner

Table of Contents

Abstract .. 3
1. Introduction... 4
2. Original Conception .. 4
3. Project Scope... 5
4. Software Engineering process.. 5

4.1. Methodology ... 5
4.1.1. Planning... 5
4.1.2. Task priorities .. 7

4.2. Requirements... 8
4.2.1. Vision .. 8
4.2.2. Use Cases .. 10

4.2.2.1. Brief-format use cases .. 10
4.2.2.2. Fully dressed use cases ... 13

4.3. Analysis... 19
4.3.1.1. Domain Model ... 19

4.4. Design ... 19
4.4.1. Architecture ... 19
4.4.2. Design Class Diagram...20_Toc166246921

4.5. Implementation.. 20
4.5.1. GUI.. 20
4.5.2. Evaluation.. 22
4.5.3. Document recommendations .. 22

4.6. Results... 23
4.6.1. Experiment goals ... 23
4.6.2. Evaluation metrics ... 23
4.6.3. Human Annotator Simulator .. 23
4.6.4. Simulation parameters.. 23
4.6.5. Simulated case ... 24
4.6.6. Varied human performance comparison ... 24
4.6.7. Decreased labor.. 25
4.6.8. Recommenders and learning curves ... 26

4.7. Conclusions ... 27
4.8. Future work ... 27

5. Reflections and lessons learned ... 27
6. Deliverable.. 28

6.1. Acknowledge... 28
6.2. IAL Source code and documentation ... 28
6.3. IAL Configuration ... 28

7. Glossary .. 28
8. References... 29

Interactive Annotator Learner

Page 3

Abstract

When using machine learning techniques for a new NLP problem or in a new domain one
of the least exciting aspects is manually labeling new training data for the new
problem/domain. The current process of manually annotating text can be very time-
consuming, tedious, and expensive. We show how integrating the manual annotation
process with the machine learning process makes the task easier, faster, and more
effective.

By integrating these two processes, manual annotation and machine learning, they can
help each other. The learning algorithm can help the user by proposing new annotations
to the user who simply confirms, edits, or deletes the proposed new annotations (rather
than hunting through the corpus for them). Likewise, the human annotator can help the
learning algorithm by annotating examples that the learning algorithm thinks will be most
informative (i.e. it actively learns).

We call this integrated system an Interactive Annotator Learner because it allows the
human annotator to interact directly with the machine learning process. This is as
opposed to the typical procedure where manual annotation completed before the data is
exposed to the learning algorithms. We have implemented an Interactive Annotator
Learner that achieves this goal. We also show how this system can be used to improve
the learning curve of learning algorithms and how it reduces manual labor. We do this by
simulating the manual annotation process using previously annotated data.

Interactive Annotator Learner

Page 4

1. Introduction
The purpose of this work is to develop a prototype of an Interactive Annotator
Learner (IAL) system that shows the advantages and disadvantages of combining
manual annotations1 with machine learning processes, in contrast to a traditional
manual annotation process.
The prototype has been developed as part of the 11-792 Software Engineering for
Information Technology course at Carnegie Mellon University during the spring
2007 semester.

2. Original Conception
The original elements considered for the IAL are depicted in the next figure.

Figure 1 Interactive Annotator Learner original conception

• It shows a human querying an annotation database using a search engine.
• Based on the documents retrieved, the user can create and store new

annotations in a repository (annotations database)
• An annotator learner (machine learning piece of software) can then use the set

of stored annotations to train a learned annotator

1 Please refer to the glossary of terms at then end of the document for descriptions of the concepts used in
the document (e.g. annotation, annotator, type, etc)

Interactive Annotator Learner

Page 5

• The learned annotator is used to automatically create new annotations in the
repository that the user can then query, confirm or update

• The ontology system is used to provide a context for the annotations, defining
relationships between annotation types and even hierarchies between them

• The IAL system also provides a set of recommended documents that can be
used by the user to improve the accuracy of the learned annotator

3. Project Scope

The IAL system developed during the spring semester includes all the elements
described in the previous section with the exception of the Ontology System.
After deliberation of the functionalities that could be developed during the four
months corresponding to the spring semester and in accordance with the must-
have functionalities specified by the stakeholders, our team committed to develop
the following modules:

• A GUI that allows the user to perform basic annotation operations in a
document

• A training module to create learned annotators
• An evaluation module that permits assess the performance of the learned

annotators
• A recommendation module that provides a list of documents to the user to

improve the performance of the learned annotators
• A searching module that allows the user to retrieve documents from the

repository based on annotation types or general words

4. Software Engineering process

4.1. Methodology
In this project we used iterative software development practices learned as

part of the 11-791 Software Engineering for IS course during the fall 2006
semester.
4.1.1. Planning

• After we had a list of functionalities required for our project and we
had established a preliminary scope for it, our team defined a set of
milestones and activities to perform during the different project phases.
We used Trac (Integrated Software Configuration Management and
Project Management) as a centralized tool to follow up the activities
each team member had to accomplish and to have a centralized view
of the project status. In this web site we defined the milestones for our
software solution, the tasks (represented as tickets in Trac) that should
be accomplished as part of each milestone, and the responsible for
each of these tasks. In addition, we created tickets for each issue
identified during the different development phases. Even though our
team was composed by two people and maintained close
communication about the current issues, the use of this tool was useful
to have a big picture of the status of our project, track the percentage
of progress accomplished and quickly identify risks.

Interactive Annotator Learner

Page 6

Figure 2 Milestones created in Trac

Interactive Annotator Learner

Page 7

Figure 3 Tickets associated to the Interactive annotator framework milestone

4.1.2. Task priorities

Our team performed a risk analysis to prioritize the use cases and activities
that should be performed at the beginning of the project (those with highest
risk).
The following figures show the result of this analysis.

Interactive Annotator Learner

Page 8

Use Case Task Risk Importance

UC6 Learn how M3 works (high) 1 1

UC6 Convert XCAS file to M3 file format 1 1

UC6 How to configure M3

- Choose learning algorithm

- Choose feature selection process ??? 1 1

UC6 Figure out how to store the learned annotator and embed in UIMA annotator 1 1

UC6 Implement a way to specify training documents 1 1

UC7 Convert M3 output to annotation in DB (easy? any post-processing of M3 output?) 2 2

UC7 Write (one) UIMA annotator that has a type system parameter 2 2

UC7 Automatically generate type system descriptor(s) and subclasses of UIMA’s Annotation class

- Generate AE descriptors (XML) ???? (may only need to update the type system descriptors)

- Generate type system descriptors (XML)

- Call JCasGen on type system to generate the Annotation types 2 2

UC7 Implement a way to specify which documents to annotate (same as above?) 2 2

UC2 Find out how to use Java Indri search API (Matt knows??) 3 4

UC2 Write command-line interface to test searching (search and print results) 3 4

UC2 Write GUI for searching (later; low priority) 3 4

UC3,UC4 Write a GUI for annotations

0. see if we can get source for xcasviewerapp or if Eric Riebling (or someone) can work with us.

1. use xcasviewerapp?? (doesn’t have newAnnotationType() functionality)

 -Find out if we can extend this to add new types on the fly

 -Wouldn’t need to change this at all if we implement (part of) UC5 and were only adding

annotations, but we need to be able to “verify”, edit, and delete annotations

2. reuse UIMA viewer (doesn’t add annotation functionality)?

3. write something from scratch 4 3

UC5 Implement “add new type” which triggers new type system re-build 5 5

UC5 Delay “RUD” types until later. 5 5

UC10 Devise a model of user actions, and keep track of them 6 9

UC8 Install Indri CAS consumer 7 6

UC8 Test Indri index with sample documents and queries 7 6

UC8 Connect to UI 7 6

UC11 Write a CAS consumer (that compares automatically generated with manually). 8 7

UC11 Use the methods defined for choosing which documents to evaluate on 8 7

UC9 Write CAS consumer to get corpus annotation stats 9 8

UC12 Implement something trivial (recommend documents that don’t have any annotations of some type

or documents with lowest accuracy/P/R) 10 11

UC1 Create GUI to add/remove documents 11 10
Figure 4 Prioritized use cases and tasks

UC1. Add /Remove document(s) to/from corpus

UC2. Search for documents * (assumes corpus is indexed)

UC3. View document *

UC4. CRUD + Verify annotations*

UC5. CRUD types

UC6. Retrain the annotators (include support to indicate types)*

UC7. Run annotators on some docs*

UC8. Index corpus*

UC9. Get corpus statistics

UC10. Selective undo annotations

UC11. Evaluate trained annotator*

UC12 Recommend documents
Figure 5 IAL use cases

4.2. Requirements

4.2.1. Vision
The interactive annotator learner simplifies the task of annotating text and training
automatic annotators. It combines all the tools needed for:

• annotating text documents
• creating and managing a type system

Interactive Annotator Learner

Page 9

• training, running, and testing automatic annotators
• managing training and test document collections
• searching documents for text to annotate/correct

In addition, the system will be able to recommend documents that will most likely
help the learning algorithms to improve their performance quickly.
 The advantage of this integrated approach is that the human annotator can
see exactly how well the trained automatic annotators perform and correct the
automatic annotator’s mistakes. A good learning algorithm will learn quickly
from the user’s corrections and then improve the automatic annotator to make
fewer mistakes on each annotate/train/test phase. As the automatic annotator gets
better and better, the user’s role becomes more to verify and correct annotations
rather than to create all the annotations manually.
 Since some learning algorithms have proven to perform very well with
little training data, this should greatly simplify the task of annotating text. This is
good for all parties because the process may become very tedious for the
annotator if they have no assistance with the task. Manual annotators are also
expensive to train and employ, so the interactive annotator learning will reduce
the labor costs of hiring annotators.

Imagined sequence of events for a typical user (annotating a building):

1. User opens document from corpus
2. User highlights “NSH,” enter a type and click on “Annotate”
3. System sends annotation to ADB
4. System sends annotation to Minorthird (machine learning framework)
5. System updates the type system
6. Minorthird updates its automatic annotator
7. The system runs Minorthird annotator on entire corpus
8. User searches for his/her annotation type and fixes any mis-annotated text
 a. Adding more annotations
 b. Deleting wrong annotations
 c. Adjusting annotations (e.g. changing the span)
9. System sends corrections to Minorthird

Initial prototypes

Interactive Annotator Learner

Page 10

Figure 6 Search and corpus browse options

Figure 7 Annotation and Type editor

4.2.2. Use Cases
The following list shows the use cases identified during the analysis phase. Even
though they are the desired functionality for the project, our team focused on
developing only a subset of this use cases and some times a reduced number of
features corresponding to a particular use case. A note will be included at the end
of the use cases that were not implemented at all or when a simplified version was
developed in the prototype.

4.2.2.1. Brief-format use cases

Interactive Annotator Learner

Page 11

a. UC1: Add/Remove document(s) to/from corpus

In the corpus viewer, user indicates they would like to add or remove a document
from the corpus. User selects the document to be added or removed. System asks
user to confirm choice. Documents are copied to/from corpus repository and
corpus viewer component is notified of the change.
Note: This use case was not implemented. The IAL system uses a predefined
corpus or set of documents. The user could add or remove documents manually
though.

b. UC2: Search for documents

In the corpus viewer, user enters a query in query input interface. Query consists
of a combination of tags and text (including operators for overlapping tags and
text, Boolean query operators, and proximity operators). System identifies files in
the corpus matching the query, and displays a list of the matching documents.

c. UC3: View document

In the corpus viewer, user indicates which document they would like to view
and/or annotate. System opens the document in the document viewer which
displays the document as well as options for controlling which annotation types
are to be highlighted.
Note: The GUI developed supports different annotation types in a document, but
does not offer an option to filter which annotations will be highlighted.

d. UC4: CRUD + Verify annotations

In the document viewer, the user is presented with the text of the open document
with user-specified annotations highlighted. Simply viewing the annotations is
the ‘read’ component of this UC. The user may additionally add new annotations
and ‘edit’ existing annotations (which may mean either adjusting the span or
changing the annotation type). Finally, as a special case of the ‘update’ case, we
allow the user to ‘verify’ an automatically generated annotation (this is really an
update operation because it’s changing an attribute of the annotation). Each of the
CRUD steps registers with the system immediately and so the display updates
immediately. The user must indicate that they would like to save the document
for the changes to be written to permanent storage and for the changes to be
available to the learning/training algorithms.
Note: The delete operation has not been developed.

e. UC5: CRUD types

In either the document viewer or the corpus viewer, user indicates that they would
like to update the type system/ontology. The user may view the type system
hierarchy and structure. The user may then change the type system by indicating
which type he would like to change then he may change either the name or the
parent type. The user may also delete types. All changes to the type system,
especially changes to types that already have annotations in the corpus must be
confirmed. Changing or a deleting any type prompts the user to specify how the

Interactive Annotator Learner

Page 12

change should be reflected in the corpus (e.g. when an annotation is renamed, do
we go through the corpus and rename all instances of that annotation type? When
a type is deleted, do we then go through the corpus and delete all annotations of
that type?)
Note: Only the create option has been implemented. The ontology system was out
of the scope of the prototype.

f. UC6: Retrain the annotators

In the corpus viewer, the user selects the Retrain annotators option. The system
shows a form where the user can search and select multiple types, search and
select multiple documents (training data) and select the frequency for running the
retraining annotator process. After the user fills the form and selects the run
option, the system saves the specified options. Then, the system sends the list of
types and documents to the Machine Learning Subsystem. The Machine Learning
Subsystem reads the training documents from the document server subsystem and
retrains the annotators. It also sends the trained annotators to the annotator
subsystem. Finally, the system reports to the user the result of the process.
Note: The IAL system was intended to support synchronous and asynchronous
modes to train annotators. Right now only the synchronous mode has been
implemented.

g. UC7. Run annotators on some docs

In the corpus viewer, the user selects the Re-annotate option. The system shows a
form where the user can search and select multiple types, search and select
multiple documents (testing data), search and select multiple gold data documents
and select the frequency for running the re-annotation process. After the user fills
the form and selects the run option, the system saves the specified options. The
system sends the list of types and documents to the Annotator subsystem. The
Annotator subsystem reads and updates the specified documents from the
document server subsystem. Finally, the system reports to the user the result of
the process.
Note: The system allows running one type at a time. The system supports
synchronous mode for running the annotators.

h. UC8: Index corpus

In the corpus viewer, the user can select the re-index option. The system will
present a form where the user can specify the frequency of the re-index process.
Then, this re-index process will read the Annotations database and populate the
Indri Repository using the types available in the system as index keys. All this
process will allow the user to query the documents that matches the criteria
specified in a search engine.

i. UC9: Visualize corpus

In the corpus viewer, the user can select the Visualize corpus option. Then, the
system will show statistics about the percentage of documents that have been
manually annotated, automatically annotated or both.

Interactive Annotator Learner

Page 13

Note: This use case has not been implemented.

j. UC10: Selective undo annotations
In the document viewer, the user can review the automatically generated
annotations. Using the type list included in the document viewer, the user can
select the types he/she considers do not have a good performance. After having
selected a set of types, the user can select the Undo option. Then, the system will
require a user confirmation to rollback the changes performed over the corpus by
the latest automatic annotation process (UC7). The undo process only affects the
annotations corresponding to the types selected by the user.
Note: This use case has not been implemented. However, each automatic
annotation includes an attribute that indicates in which iteration it was created.
With this feature, it is possible to implement this use case.

k. UC11: Evaluate trained annotator

In the corpus viewer, the user can select the “Evaluate trained annotator” option.
The system will show a form in which the user can specify the location of gold-
standard data or manually select a set of documents that will be used to assess the
trained annotator performance. In addition, the user can specify a list of types that
he/she wants to evaluate. When the user selects the run option in the loaded form,
the evaluation process will begin. The system evaluates and reports the
performance of the annotators taking into account the specified types and gold
standard data.
Note: The location of the gold-standard data is preset in a configuration file so it
is not specified by the use through the GUI. The system evaluates an annotation
type at a time.

l. UC12. Recommend documents to annotate

User selects a type or type system that they would like to annotate. System
presents a ranked list of documents that will help the system to learn the types in
the type system.

4.2.2.2.Fully dressed use cases
The main use cases identified during the requirements phase were also
documented in a fully dressed format

• Use Case UC4: CRUD + Verify annotations

Scope: Interactive Annotator Learner
Level: user goal
Primary Actor: Annotator user
Stakeholders and interests:

• Annotator user: Wants to add new annotations for the system to learn from
and wants to edit, delete, and verify automatically generated annotations.

• Machine Learning Subsystem: wants to receive good training data or
feedback to update its annotators.

Interactive Annotator Learner

Page 14

• Document server subsystem: Wants to update its index to reflect the
changes in the annotations.

Preconditions: Document viewer is displaying a document.
Success guarantees: The updated annotations are saved to a permanent storage
location and are available to the learning algorithm.
Main success Scenario:

1. System displays a list of all the annotation types in the current document
2. User specifies which annotation types are to be highlighted.
3. System (or user) assigns colors or patterns for each annotation type
specified and highlights each annotation of that type with the designated
color/pattern. (R in CRUD)
4. To add an annotation: user selects an annotation type, then selects a span of
text, and then indicates that a new annotation be created at that span. (C)
5. New annotation is recorded and the display reflects the new annotation.
6. To edit an annotation: user updates the span or the annotation type of a
visible annotation. (U)
7. System asks user to confirm update
8. New annotation is registered and the display is updated
9. To delete an annotation: user selects a visible annotation and indicates that
it should be deleted. (D)
10. System prompts user to confirm deletion
11. Annotation is removed from the system and the display is updated.
User repeats steps 4-11 until finished.
12. User indicates that they would like to save the changes
13. System saves all changes to the permanent storage location.
14. User closes the document viewer.

Extensions:
1a. If there are no annotations in the current document, the system indicates so.
3a. Overlapping or embedded annotations are displayed with a special emphasis
so the user knows there are multiple annotations in the region.
4a. If the span or type is invalid, prompt user to retry
4b. If an identical annotation is already present, warn the user, and have them
confirm that they would like to proceed.
6a. If the span or type is invalid, prompt user to retry
6b. If there is more than one annotation at the specified location, prompt user to
choose which annotation they would like to edit.
9a. If there is more than one annotation at the specified location, prompt user to
choose which annotation they would like to delete.
9b. If the annotation contains any non-visible information such as attributes, alert
the user that the information will also be lost.
14a. If changes have not been saved prompt the user to save changes first.

Special requirements:

Interactive Annotator Learner

Page 15

 There should be an option to display annotations with patterns rather than
colors for the color-blind.
Frequency of Occurrence:

May occur as frequently as every 10 seconds or every few minutes
Open Issues:

• Use Case UC6: Retrain Annotators

Scope: Interactive Annotator Learner
Level: user goal
Primary Actor: Annotator user
Stakeholders and interests:
• Annotator user: Wants to select the types and as a consequence the annotators

that must be retrained. Wants to select the documents from a corpus that will
be used as training data. Wants to select the frequency of the annotator
training process (on demand, daily, weekly, monthly).

• Machine learning subsystem: Wants to receive a set of documents and a type
system to retrain the annotators.

• Annotator subsystem: Wants to receive a set of trained annotators from the
Machine Learning Subsystem.

• Document server subsystem: Wants to receive queries from the user to
identify the documents (list) to be annotated. Wants to provide the documents
(content) that will be used by the Machine Learning subsystem to retrain the
annotators.

Preconditions: User interface is loaded, the document server and machine
learning subsystems are available.
Success guarantees: The annotators selected by the user (through the type
system) are retrained using the data specified. The documents used in the
retraining annotator process will be updated to indicate they were used as training
data. The list of types, documents and options selected by the user are saved.
Main success Scenario:

1. The user selects the Retrain annotators option.
2. The system shows a form where the user can:

a. Search and select multiple types
• Search and select multiple documents (training data)
• Select the frequency for running the retraining annotator process

3. The user fills the form
4. The user selects the run option
5. The system saves the options chosen by the user.
6. The system sends the list of types and documents to the Machine Learning

Subsystem.
7. The Machine Learning Subsystem reads the training documents from the

document server subsystem.
8. The Machine Learning Subsystem retrains the annotators.

Interactive Annotator Learner

Page 16

9. The Machine Learning Subsystem sends the trained annotators to the
annotator subsystem.

10. The system reports to the user the result of the process.

Extensions:
*a. At any time system fails:
 1. The user must restart the system and request recovery of prior state
 2. System reconstructs prior state
 2.a. System determines that the original retraining process is running.
 1. System notifies the user and does not allow run the process
again until the original one has finished
3a. Document server or type system not available:

1. The system notifies the user about the errors.
4a. Missing obligatory fills:

1.The user could omit one of the mandatory fields, for example “training
data”. In this case the system shows an error message and the user must complete
the required fields.
Special requirements:
 None
Technology and Data Variations List:
 The system should provide asynchronous notifications when the retraining
process finishes.
Frequency of Occurrence:

Nearly continuous.
Open Issues:
 Precise process frequencies that should be supported by the system.

• Use Case UC7: Run trained Annotators

Scope: Interactive Annotator Learner
Level: user goal
Primary Actor: Annotator user
Stakeholders and interests:

• Annotator user: Wants to select the types and as a consequence the
annotators that must be run over a set of documents. Wants to select the
documents from a corpus that will be used as testing data and evaluate the
performance of the trained annotators. Wants to select the frequency to run
the annotators over a set of documents (on demand, daily, weekly,
monthly). Wants also options to run the annotators over a set of
documents in a corpus to create gold data annotations.

• Annotator subsystem: Wants to receive a set of documents and a list of
types to determine the annotators that must be run.

• Document server subsystem: Wants to provide the documents that must be
updated by the annotator subsystem.

Interactive Annotator Learner

Page 17

Preconditions: User interface is loaded, the document server and annotator
subsystems are available.
Success guarantees: The annotators selected by the user (through the type
system) are run over the data specified. The documents used in the testing process
will contain new annotations created by the trained annotators and will include a
field to indicate they were used as testing data.
Main success Scenario:

1. The user selects the Re-annotate option.
2. The system shows a form where the user can:

• Search and select multiple types
• Search and select multiple documents (testing data)
• Search and select multiple gold data documents
• Select the frequency for running the re-annotation process

3. The user fills the form
4. The user selects the run option
5. The system saves the options chosen by the user.
6. The system sends the list of types and documents to the Annotator

subsystem.
7. The Annotator subsystem reads and updates the specified documents from

the document server subsystem.
8. The system reports to the user the result of the process.

Extensions:
*a. At any time system fails:
 1. The user must restart the system and request recovery of prior state
 2. System reconstructs prior state
 2.a. System determines that the original re-annotation process is
running.
 1. System notifies the user and does not allow run the process
again until the original one has finished
3a. Document server or type system not available:

1. The system notifies the user about the errors.
4a. Missing obligatory fills:

1.The user could omit one of the mandatory fields, for example “training
data”. In this case the system shows an error message and the user must complete
the required fields.
Special requirements:
 None
Technology and Data Variations List:
 The system should provide asynchronous notifications when the re-
annotation process finishes.
Frequency of Occurrence:

Nearly continuous.
Open Issues:

 Precise process frequencies that should be supported by the system.

Interactive Annotator Learner

Page 18

Add /Remove

document (s) to/ from corpus

Search for

documents

Reindex corpus

Retrain the

annotators

Interactive Annotator Learner

Annotator User

Time

“actor”

Document server

subsystem

“actor”

Machine Learning

subsystem

“actor”

Annotator

subsystem

Run annotators

Visualize corpus

Evaluate trained

annotator

View document

CRUD Types

CRUD + verify

Annotations
Selective undo

annotations

“actor”

Index Service

subsystem

Recommend

documents to annotate

Figure 8 Use Case Diagram

Interactive Annotator Learner

Page 19

4.3. Analysis
4.3.1.1.Domain Model

Figure 9 Domain Model

4.4. Design
4.4.1. Architecture

The following figure shows the different layers envisioned for our
application (even though it can be different from our prototype). While the
domain layer contains the main components of our system, the techinical
services include the frameworks and packages that we used in the
implementation. Our technical vision of an IAL system considers that the
technical services can be easily replaced with other components in the
future.

Figure 10 Logical Architecture

Interactive Annotator Learner

Page 20

4.4.2. Design Class Diagram

4.5. Implementation

4.5.1. GUI

The IAL system provides a basic GUI that includes the following options:
• Add new types – Allows the user to create arbitrary annotation

types
• Add new annotations – Add new annotations to a document based

on the types created by the user

Interactive Annotator Learner

Page 21

• Train annotators – This option uses Minorthird’s machine learning
algorithms to train a new annotator. The system ask the user to
specify a set of documents for training

• Run annotators – Once an annotator has been trained, the user can
specify a set of documents for testing.

• Evaluate annotators – This option evaluates the performance of the
learned annotator calculating precision and recall statistics for each
individual document used during the testing process and overall
statistics as well.

• Index corpus – Start an indexing process that allows the user to
search for documents using different criteria (keywords or indri
sentences for instance)

• Search – Uses the index created with the Index corpus option to
retrieve documents that the user wants to annotate

• Get recommended documents – Retrieves a set of documents that
the IAL system recommends to improve the accuracy of a learned
annotator. The system ask the user to select an annotation type and
a recommendation method.

Figure 11 IAL main options

Interactive Annotator Learner

Page 22

Figure 12 Adding annotations

4.5.2. Evaluation
The following statistics were captured to assess the performance of learned
annotators:

 Precision = #auto-annotator got right / #it guessed
 Recall = #learned annotator got right / #it should have gotten right
 F-measure an average of P and R

These statistics are recorded in an XML file that then is used in the
recommendation option.

4.5.3. Document recommendations

As mentioned before, the IAL system allows the user to select the
recommendation method that will be used to obtain a set of documents to
improve a learned annotator. Our team included this feature since there is
not evidence that a single recommendation method can be the best option in
all the cases.

• Lowest precision and recall average
• Highest precision and recall average
• Lowest precision
• Highest precision
• Lowest recall
• Highest recall

Interactive Annotator Learner

Page 23

• Lowest F1
• Highest F1
• Most manual annotations
• Fewest manual annotations

4.6. Results

4.6.1. Experiment goals
• Interactive annotating reduces labor (“helps people”)
• Interactive annotating accelerates the learning curve of the learning

algorithm (“helps computers”)

The approach used to verify the advantages offered by an IAL system
are:
• Quantifying the user’s effort as a function of annotator

performance
• Evaluating intermediate learned annotator’s performance as a

function of the amount of training data.

4.6.2. Evaluation metrics
• For the automatic annotator

Precision = #auto-annotator got right / #it guessed
Recall = #learned annotator got right / #it should have gotten right
F-measure an average of P and R

• Human ‘effort’ cost function
5¢ to add an annotation
3¢ to fix
1¢ to confirm

4.6.3. Human Annotator Simulator

In order to perform the experiments and simulate a real-world situation,
our team needed to annotate documents manually. Since there were only
two people participating in this project and because of time constraints,
our team developed an annotator simulator that mimic a human behavior
by using already defined gold-standard data and then creating annotations
based on this information (with some mistakes to simulate an imperfect
human). The simulator takes several parameters to simulate varied degrees
of human annotation performance.

4.6.4. Simulation parameters
The following process simulates a person annotating type T.

1. Gets the top n recommended documents for type T
2. Confirms correct auto-annotations with probability C %
3. Fixes auto-annotations if they are within k characters of correct with

probability E %.

Interactive Annotator Learner

Page 24

4. Looks at the rest of the recommended documents and adds new
annotations with probability A %.

5. If we have not reached a plateau:
1. Train a new automatic annotator
2. Run the new annotator on the data
3. Go to #1.

Note:
The simulated human doesn’t ever confirm or add incorrect annotations
(Good Avenue for future work).

4.6.5. Simulated case

The annotation type we try to learn is “noun phrases” (NPs). The data
corresponds to the Penn TreeBank corpus. Examples:

“it”
“The economy's temperature”
“this era of frantic competition for ad dollars”
“this era”

 Human parameters used in the simulation

• Batch size, N = 2 (# of recommended docs that are annotated each
round)

• Confirmation probability C % (generally very high, 90% or 95%)
• Edit annotation threshold, k = 6 characters
• Edit annotation probability, E %. (generally lower than C%, maybe

50%)
• Add annotation probability A %. (variable 60%, 70%, 80%, etc)
• Semi-CRF annotator learner (learning algorithm used in the

simulation)

4.6.6. Varied human performance comparison
The following figure shows the performance (F1 measure) of a simulated
human adding annotations with 0.6, 0.8, 0.9 and 1 probability (there are
not editions nor confirmations). As expected, the higher the probability of
annotating, the higher the performance.
Based on these results, we selected a simulated human with 0.9
probabilities of adding an annotation (imperfect but even good
performance) to perform further experiments.

Interactive Annotator Learner

Page 25

Figure 13 Varied human performance

4.6.7. Decreased labor

The first figure shows the performance of a simulated human with 0.9
probabilities of adding an annotation (5¢ cost) and the effort/annotation
during the process.
The second graph represents the same human but this time the IAL has
created some automatic annotations so the human can edit and verify these
annotations which have 3¢ and 1¢ cost respectively. As we see, the
effort/annotation (blue line) is reduced compared to the previous scenario.
Note: The graphs presented in the following pages use two Y axis. The
values on the left represent the F1 measure while the right side represents
the effort / annotation.

Interactive Annotator Learner

Page 26

Figure 14 Effort/Annotation comparison

4.6.8. Recommenders and learning curves

The following experiments the effort/annotation corresponding to different
recommendation methods. The graph on the left uses the “Lowest F1
recommender” while the right one uses the “Lowest precision
recommender”. In this case the graphs don’t show significant advantage of
one recommender over the other.

Figure 15 Recommenders comparison

Interactive Annotator Learner

Page 27

4.7. Conclusions
• According to the obtained results, an IAL system seems to reduce the labor

required from a human annotator to achieve a performance comparable to that
of the traditional manual process.

• More experiments should be performed in order to identify the best
recommendation method (if it exists) and even more methods could be
incorporated into the system.

• Performing some experiments can demand considerable time (more than 4
hours). Even an individual training process (a single annotator) can take some
minutes, so it would be convenient consider asynchronous processes that
allows the user to keep working while the most heavy processes run in the
background

• The GUI has an important role in an IAL system since it can affect the effort
required by a human annotator to create or update annotations. A poor design
could minimize the benefits obtained by using an IAL system.

4.8. Future work

• Experiments with real humans should be performed in order to evaluate more
accurately the improvement obtained with an IAL system. It would be
interesting determine the real cost of adding, editing or confirming
annotations and also identify other possible variables involved in a manual
process such as fatigue, motivation, etc.

• Experiments that consider negative examples as part of the annotator learning
process should be performed to identify if the learned annotator performance
can be improved with this additional information

• Use POS tag features to compare with state of the art NP annotator learning
• Study how active learning techniques affect the learning curve (e.g.

recommend documents/annotations that have low confidence annotations
from Minorthird

• Examine how using an ontology of types can inform the learning (e.g. Canada
is tagged as a country, so it must also be a location).

5. Reflections and lessons learned

• Working in a two people team has advantages and disadvantages. On one
hand, it was easy to coordinate and keep tracking of each other progress and
also was easy allocate time during the week to perform periodical meetings
(we had a meeting every week). On the other hand, our project was
significantly affected when even one person had a very tight schedule during
some weeks due to other courses. A better planning could have been
performed based on the work load of the team members.

• We didn’t use detailed minutes to keep tracking of the meeting agreements.
Instead of that we included the agreements directly in an email at the end of
the meetings and scanned any diagram or note that was important. It in fact
allowed the team members to be focused on more critical activities.

• Risk analysis is a very good practice to determine the first tasks to work on. In
our case know how to use Minorthird was critical since it was the main

Interactive Annotator Learner

Page 28

component of the annotation learning process. Prioritizing the risky tasks at
the beginning allowed us to spend enough time to mitigate the risks and plan
the other tasks with more confidence.

• Due to the short time available during the semester to complete all the tasks in
the project, we spend most of the time coding new functionalities but it was
difficult to allocate time for testing. Because of that, some bugs were
identified almost at the end of the project so it was difficult to fix them at the
last moment. We could have created a test plan at the beginning of the project
to avoid these situations (it could have reduced the scope of the project
though).

• Some design patterns were difficult to implement given the frameworks that
we were using for the development. Because we developed a prototype and
due to the tight schedule that we had, we considered that it was acceptable to
simplify our design. However, in a real application, a very careful analysis of
the development tools and frameworks should be done to avoid the described
situation.

6. Deliverable

6.1. Acknowledge
The following classes and packages were developed in other projects and our
team used them in coordination with the authors.

• edu.cmu.lti.ial.gui
• edu.cmu.lti.ial.learning.MinorthirdAnnotator
• edu.cmu.lti.ial.learning.MinorthirdCASConsumer

6.2. IAL Source code and documentation

• The source code, documentation, java API and artifacts for our project can be
found in the subversion library defined for the 11-792 course.

svn://seit1.lti.cs.cmu.edu/ial07/InteractiveAnnotatorLearner

6.3. IAL Configuration
See the “IALSetupGuide.doc” file for instructions about how to configure the
IAL system.

7. Glossary

• Annotation: The association of a label with a region of text.
• Corpus: A set of documents corresponding to a particular topic or area of

interest
• Document: A text file that can be annotated
• F1 or F-measure: Measure of the performance of a learned annotator.

Calculated as an average of Precision and Recall
• GUI: Stands for Graphical User Interface
• IAL: Interactive Annotator Learner
• Minorthird: Machine Learning Framework used by the IAL system to train

annotators

Interactive Annotator Learner

Page 29

• Precision: Measure of the performance of a learned annotator.
o #auto-annotator got right / #it guessed

• Recall: Measure of the performance of a learned annotator.
o #learned annotator got right / #it should have gotten right

• Recommendation Method: Defines the algorithm and input variables used to
recommend documents

• Scorer: Class used by the IAL system to assign a numerical value or priority
to the recommended documents. The algorithm used for each scorer is based
on a recommendation method.

• Type: An object used to store the results of analysis. A type is roughly
equivalent to a class in an object oriented programming language, or a table in
a database.

• UIMA: Unstructured Information Management Architecture: a software
architecture which specifies component interfaces, design patterns and
development roles for creating, describing, discovering, composing and
deploying multi-modal analysis capabilities.

Notes:

o Some terms are defined in the context of the present document.
o Some definitions were extracted from the file

UIMA_SDK_Users_Guide_Reference.pdf (chapter 19)

8. References

• Fei Sha and Fernando Pereira. Shallow parsing with conditional random fields.
Technical Report CIS TR MS-CIS-02-35, University of Pennsylvania, 2003.

• Sunita Sarawagi and William W. Cohen. Semi-markov conditional random fields
for information extraction. In NIPS, 2004.

