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Abstract 

 
The goal of this project is to make use of Web site access logs to make intelligent 
link recommendations for an organization’s Web site.  Several methods are used to 
make recommendations with varied parameters.  Each method is evaluated based 
on whether automatically recommended pages are accessed later in the same 
browsing session.  Several evaluation metrics are used to compare the methods.  
Our best results show a recommendation accuracy of around 60%. These 
techniques are applied and implemented with existing data sets as well as new data 
from UIUC CS department’s Web site. 

 
1. Introduction 
 
No Web site can claim to be perfect.  Some sites are more easily navigated than others and users 
may have varying preferences as to how a site is laid out.  An ideal Web site would need to be 
constantly updated so that the most relevant information for each user is always the easiest to 
access. 
 The goal of this research is to investigate how we can make an organization’s Web site 
most easily used without the constant intervention of the site’s administrator.  To make the site 
more easily used we attempt to automatically provide convenient links to “recommended” Web 
pages.  Several techniques are used to provide recommended links to pages linked to from the 
current page as well as other pages on an organization’s Web site. 
 Since we would like to recommend pages without any user or administrator effort, we must 
rely on other data sources to infer which pages a given user is likely to prefer.  The two main 
sources of information utilized respectively capture information about both the community’s 
patterns and individual patterns: the organization’s Web site access log and individual user 
history. 
 There are various scenarios in which a user may benefit from good recommendations.  For 
example, a user may know the page they are looking for, but have to click several links before 
arriving at the desired page.  In this case, we would like to recognize frequently occurring 
sequences of page requests.  Then if it is detected that a user has begun to follow one of these 
sequences, the terminal page of the sequence should be recommended. 
 Another scenario where a user may benefit from recommendations is when the user does 
not know what page they are looking for.  In this case, we would like to use the community’s 
collective behavior to recommend pages.  For example, the most frequently clicked links show 
which are the most popular pages. 
 The benefits of providing this service can be seen with a simple example.  If the Computer 
Science Department has a page listing seminar announcements buried many links from the main 
page and many users access this page on the day a popular researcher is speaking, the Web server 
will likely receive many requests for the pages that link the main page to the particular seminar’s 
page.  If the server detects this sequence of requests occurring more frequently than other 
sequences, it can provide a convenient link to the content.  If the pattern is very common, the 
server might display a link directly to the seminar page from the main page.  If the pattern is only 
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moderately common, it might provide a link from the other pages en route to the seminar page. 
 This tool would be useful to both Web browsers and Web content publishers.  Web 
browsers would benefit from the convenience of getting good quality page recommendations.  
These recommendations could save the users’ time and recommend pages that users would not 
otherwise encounter.  Web publishers benefit by providing the easy access to in-demand content 
dynamically and conveniently without effort. 
 
2. Related Research 
 
The focus of much of the previous work on mining Web access patterns has been on Web 
personalization [1][2] which is not the center of our focus. However, there has also been some 
closely related work to what we have done. Masseglia et al. [3] analyze access log files with data 
mining techniques such as mining association rules and sequential patterns. After interesting 
patterns are discovered, they use the patterns to customize dynamically the hypertext 
organization. This is done by adding navigation links to each page based on the results of the data 
mining. Similar work is done on the Web site logs of the Wharton Business School at University 
of Pennsylvania [4]. A survey of the previous work in this area has been done by Eirinaki et al. 
[5]. Gunduz et al. [8] proposed a clustering-based method that calculates the similarity of 
browsing sessions based on the amount of time spent viewing similar pages.  

Another general theme of research on Web server log analysis for Web page 
recommendations focuses on probabilistic methods, specifically first-order and higher-order 
Markov models. Davison [7] surveys Markov-based probabilistic techniques for Web page 
recommendations. Deshpande et al. [9] show that higher-order Markov models are impractical for 
many applications due to the large number of states and increased space and runtime 
requirements. In Section 3.3 a dynamic Markov model is proposed which models temporal trends 
of interest shared among many users of the Web site. 

Our work differs from previous work in that we attempt to model both user and 
community browsing patterns in real-time. The other achievement in our work is that by 
combining different methods which incorporate different users’ needs, we make highly dynamic 
and useful recommendations to users.  
     
3. Our approach 
 
To automatically generate Web page recommendations several techniques are used.  These 
techniques include: dynamic first-order Markov model, truncated dynamic first-order Markov 
model, trained machine learning classifiers, and sequential pattern mining.  Each technique has its 
strengths and weaknesses.  For example, the sequential pattern mining algorithms are better able 
to recommend pages that are several clicks away from the current page whereas the Markov 
models are better able to recommend the links on the current page.  The machine learning 
algorithms are more easily extensible in that the feature types can easily be changed. 

The following sections describe each method formally.  Techniques for evaluation and 
results are described in Sections 4 and 5. 
 
3.1 Preliminaries 
 
From a Web server’s perspective, page requests are just a sequence of requests from various IP 
addresses at irregular intervals.  The Web server has no internal concept of  a user, what that user 
is looking for, nor if an extended period without any requests means the user is reading a page or 
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is no longer using the site.  Thus, it is necessary for us to define a few concepts of which the Web 
server is unaware. 
 
Definition. Browsing Session.  A Web browsing session is defined to be the longest sequence of 
requests from the same IP address where each request is made within k seconds of the previous 
request. 
 
For most of the experiments described in this paper we set the session length to be 600 seconds or 
10 minutes.  The intuition is that most Web pages on the CS departmental Web site do not take 
more than 10 minutes to read in entirety and  a 10 minute period of inactivity indicates the user is 
no longer actively using the Web site. 

It should be noted that this definition does not imply that a browsing session is a single 
person or that the browser is human.  A session is defined for an IP address, but NAT networking 
may mean that many people are browsing the site using the same IP address.  Many requests may 
also not be from humans.  Such requests likely are made by Web crawlers which systematically 
request all the pages on a site so that they can be index and later searched. 

In the experiments described in this paper, Web requests made by crawlers are filtered 
from the data.  In the data cleaning stage, crawlers are filtered in two ways.  One is by ignoring 
requests that do not come from a browser-declared browser type of “Mozilla” (this type includes 
Internet Explorer, Netscape, Firefox as well as other popular browsers); crawlers often give 
themselves away as “Alexa crawler” or “Google bot”.  The second is by using the convention 
that Web crawlers download the file “robots.txt” from a Web server before crawling the server.  
The “robots.txt” file lists parts of the Web site that are not permitted to be crawled.  Thus, we 
also filter crawlers by ignoring all IP addresses that request the “robots.txt” file. 
 
3.2 Dynamic First-Order Markov Model 
 
The first attempt to make recommendations is based on a continuously updating Markov model.  
In this model, every time a user transitions from one page to another page during a session the 
frequency of that transition is incremented. 
 The Markovian assumption for this first-order model is that the next requested page 
depends on the previously requested page.  In other words, the next requested page depends on 
the page the user is currently looking at.  To choose recommended pages, the pages that have the 
highest probability given the current page are selected.  To make more than one recommendation, 
the k pages with highest conditional probability are recommended. 
 

arg max
recd∈W

p(recd | curr)  where   p(recd | curr) = # req. for curr then recd
#  req. for  curr

 

 
This is slightly different than a regular Markov model in that it is continuously updated.  The 
model begins with equal probabilities for all transitions and updates the probabilities to reflect 
each the probability of each transition based on all the data seen so far. 
 
 
 
 
 
 
 

Figure 1. First Order Website Markov model. 
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3.3 Truncated Dynamic First-Order Markov Model 
 
The standard first-order model described in the previous section cumulatively models the 
browsing behavior on the Web site from when it beings recording page requests.  This approach 
is able to model long-term browsing patterns that do not change over time.  However, this 
approach cannot effectively capture ephemeral browsing patterns.  For example “bursty” request 
patterns such as those to upcoming seminars or admissions pages during admission season are not 
effectively modeled.  In an attempt to model very recent browsing patterns, we also maintain a 
model of the page requests for the previous t seconds. 
 In order to do this, we maintain both a transition matrix for all the transition probabilities 
(counts) and a transition queue of all of the transitions that occurred during that last t seconds.  
Every time we make a recommendation, we check the tail of the queue to determine if the least 
recent transition occurred in the last t seconds.  If it did not, the transition count in the transition 
matrix is decremented for the outdated transition.  Each new page request is added to the head of 
the queue along with the time the request was made.  With this model, the parameter t can be 
varied to change the window size of the activity modeled. 
 
3.4 Trained Machine Learning Classifier 
 
A natural approach to learning Web browsing patterns is to learn a classifier that outputs a page 
to be recommended.  This classifier could take as input any number of things including: recently 
browsed pages, user preferences, and site meta-information.  To begin with, we trained a 
classifier with the names of all pages previously visited this session as input.  In an online fashion 
the learning algorithm updates its linear function every time it makes an incorrect 
recommendation.  The linear function provides an activation level for each possible 
recommendation, so we can recommend the top k pages.  However, the linear function is updated 
every time the top recommendation is not correct. 
 Details about the learning algorithms are beyond the scope of this paper.  The algorithms 
used are perceptron, winnow, and naïve Bayes with the default parameters of the SNoW learning 
architecture.  For each of the experiments described in this paper, a single classifier is trained 
with training examples where the target classes are any page on the Web site.  The current page is 
included as a feature.  An alternative architecture would be to learn one classifier per page on the 
Web site rather than one large classifier for all pages on the Web site. 
 All the results shown in this paper for this learning architecture are based on a user’s 
browsing history.  So it is the page names (or unique identifiers of) that constitute the features of 
each example.  In addition to just using the names of previously viewed pages, we also used the 
fex feature extraction tool to also use combinations of recently visited pages as features. 
 The two additional combinations of features we uses are called by SNoW: bigrams and 
sparse collocations.  Bigrams are ordered pairs of consecutive page requests.  Sparse collocations 
of requests are conjunctions of pages requested in the current browsing session.  For example, the 
browsing sequence A, B, C produces the bigram features: {(A,B), (B,C)} and the spare 
collocations {(A,B), (A,C), (B,C)} (where the order does not matter).  Thus each training and 
testing example consists of a generated list of features based on the names of recently requested 
pages and the target class is the next requested page. 
 Features can also easily be generated from the pages contents of each page.  For example, 
each distinct word on a recently visited page could be a feature.  Intuitively, the contents of each 
page should help to make recommendations because a Web page may serve several purposes and 
words on the page may be more indicative than the viewing of the page itself.  Experiments 
contained in this paper do not utilize the page contents due to limitations of the fex and SNoW 
software: trained and testing example file are prohibitively large in fex format. 
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3.5 Sequential Pattern Mining 
 
The techniques described in the previous sections make recommendation for what will be the next 
page in a sequence of page requests.  However, those techniques do not attempt to recommend 
the pages that the user is ultimately looking for.  For example, if the sequence A B C D E 
is repeated in the log by many users, page E  should be recommended to users from page A. 

For this project, we divide the entire log into disjoint browsing sessions and treat each 
sequence of user page requests as analogous to a biological sequence in which the same pattern 
may occur many times in the same sequence.  Thus the problem can be also be visualized as a 
biological pattern mining problem, with Webpage names instead of biological bases. 

Web page recommendations are constructed from mined sequential patterns of length 
two.  These patterns are ordered pairs of page names.  The pairs occur in order in the original 
sequences with or without other pages in between.  The PrefixSpan algorithm [6] is used to 
determine the most common sequential patterns of length two.  Recommendations for page X are 
given by taking the most frequent patterns (i.e. those with greatest support) of length two that 
begin with X. 
 
4. Evaluation and Results 
 
The best way to evaluate the utility of the recommended links would be to incorporate them into a 
popular Web site and monitor the behavior of users that go to the Web site to see what percentage 
of them click on the recommended links.  However, access to such a Web server was unavailable.  
Instead Web server logs were used, with the expectation that users will often eventually find the 
page they are looking for even if not immediately with the assistance of a recommendation 
system.  

The general idea is to divide the entire log into two sets: training set and testing set. After 
this, our model is trained using the training data and the testing set is used for performing 
evaluations.  The assumption is that the testing data will reflect actual user behavior in the future.  

The data that we used for our evaluation is described in Section 4.1. As the evaluation 
process is slightly different for each approach, we describe them separately for each of our 
approaches in sections 4.2, 4.3, and 4.4.  
 
4.1. Data 
 
The Web server logs are long lists of Web page requests.  Each request is represented by IP, time, 
requested page, browser type, referring page, etc.  We used the following Web server logs for our 
evaluations: 
 
• CS Department Web server logs from Dec 6, 2004 to Feb 28, 2005.  
• NASA Kennedy Space Center Web server log collected over July and August 1995. 
• CS Department Web server logs from Nov 1, 2003 to Nov 11, 2003.  
 
In order to use the logs for our training and evaluation purposes we had to do the following to 
make sure the data is clean and ready for training and evaluation: 
1. Actual IP addresses were removed for privacy reasons, and were replaced with arbitrary IP 
addresses. 
2. The requests for files of type .jpg, .gif, .css, etc. were discarded because often a single page 
request triggers many such uninformative requests. 
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3. Many of the requests to the Web server are actually made by the crawlers. Well-behaved 
crawlers are supposed to first get the file “robots.txt” on the Web server before crawling. We take 
advantage of this and discard requests from all IP addresses that request “robots.txt”. 
4. Unsuccessful GET requests were discarded. These requests include requests that the return 
code for them is not 200 (e.g. 404, etc). 
5. Consecutive requests for the same page, which we call refreshes, were also deleted from the 
log. 
 
Finally we divide each user’s activity into possibly several sessions based on the inactivity time 
between clicks. If a user remains inactive for more than X seconds, we consider his/her click as 
the start of a new session. We will use the notion of a session frequently during the description of 
our evaluation techniques. 
 
4.2 The Markov model 
 
To evaluate the utility of Markov model’s automated link suggestions we analyze the clicks on 
the recommended pages. To achieve this using the logs, we plug the current page in each session 
into our Markov model recommender and compare the result with the actual next click of the user 
as recorded in the log. If they are the same, we count it as a hit, otherwise it is a miss. The ratio of 
the hits to the total number of recommendations is the accuracy. We also measured the accuracy 
in cases that we recommend two and three pages, in which a recommendation is a hit if the actual 
next click of the user is among the two or three recommended pages. The results of these 
measurements are summarized in Figure 2.  Recommendations made at the end of a browsing 
session are counted neither as hits nor misses since the user does not request any additional pages 
this session. 
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Figure 2. The accuracy of the Markov model recommendations on three data sets. 

 
We also measured the accuracy of the truncated dynamic Markov model with various window 
sizes. The results are shown in Figure 3 below. These results suggest that the larger the window 
size the better the recommendations will be. Basically, using the truncated dynamic Markov 
model would be more useful in cases where temporal trends of interest dominate long-term 
unchanging browsing trends.  The truncated dynamic Markov model may be useful if requests 
consistent with the long-term browsing trends are separated from those that may reflect short-
term trends. 
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Figure 3. The accuracy of the dynamic Markov model recommendations on the Dept 2005 data set. 

 
4.3 Machine learning  
 
Similar to what we did for the Markov model, to evaluate the utility of the automated link 
suggestions made by the machine learning approach we analyze the clicks on the recommended 
pages. Here again we use the logs to measure the accuracy. Hit and missed recommendations are 
defined in the same way as the way we did for measuring the accuracy of the Markov model. The 
only major difference here was that we also had to consider the previous clicks of the user in the 
current session before making the recommendation.  

Due to lengthy running time for feature extraction, not all results were available at the 
time of writing.  It is not surprising that using bigram features achieves higher performance than 
unigram features, since they are a better indication of the “direction” that the user is going in the 
topology of the Web site.  If it is the order of bigrams that translates into performance gains, then 
it is not surprising that sparse collocations fare worse than bigrams.  However, one would expect 
that unordered conjunctions are rich with information.  Perhaps, to the contrary, they add noise 
and obstructive information to the task. 

It may not be surprising that accuracies for this technique are quite low.  The classifier is 
essentially a 2,000 class multi-class classifier where each example has only a handful of active 
features.  A relatively small number of distinct pages are actually recommended.  A “pruning” of 
the learning space would seem to alleviate some of these problems.  For example, employing one 
multi-class classifier per page, with far fewer classes to choose from, would likely generate more 
accurate classifiers. 
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Figure 4. The accuracy of the machine learning approach 
recommendations on the dept 2003 and dept 2005 data sets. 
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4.4 Sequential Pattern Mining 
 
To perform an evaluation of the utility of our recommendations based on the sequential pattern 
mining approach, we used a slightly different method compared to that described in Sections 4.2 
and 4.3. Since we use the sequential pattern mining approach to recommend pages that are 
possibly a few clicks away, we cannot just rely on user’s next click to decide whether a 
recommendation is a hit or not. For this evaluation, the mined patterns get a hit if the user 
requests the recommended page this session and remains on the page for at least t seconds. 
 
Using the above definition for a hit, and making one to three recommendations for each page, we 
got the following accuracy for the recommendations made by the sequential pattern mining 
algorithm: 
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Figure 5. The accuracy of the machine learning approach recommendations on the Dept 
2005 and NASA data sets. 

 
The higher accuracies achieved by the sequential pattern mining algorithm does not necessarily 
mean that this approach works better than the other two. One reason for this is that the evaluation 
method that we used here was a bit different from what we used for evaluating the Markov model 
and also the machine learning based approaches. The other reason is that each of these algorithms 
can predict different types of next clicks and a combination of the above approaches is supposed 
to best meet users’ needs. 
 
5. Conclusions 
 
This research attempts to use statistical models, machine learning, and pattern mining to make 
quality Web page recommendations to browsers of the Web.  Attempts to model ephemeral 
community patterns with a truncated dynamic Markov model demonstrate that ephemeral 
browsing patterns cannot easily be captured without sacrificing higher accuracy temporally-static 
patterns, and instead must be separately handled.  Additionally, some of the challenges and 
parameters for making page recommendations via a trained machine learning classifier are 
demonstrated.  Lastly, sequential pattern mining algorithms are used to mine recommendations of 
a slightly different type with success. 
 No recommendation system is a panacea for Web browsers.  Some systems work well to 
guide a user to links personally clicked very frequently, or those clicked very frequently by 
others.  Other systems work very well at providing statistically cogent recommendations whereas 
others will require manual tuning or feature engineering.  Our conclusion and recommendation is 
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that a successful recommendation system will require a sophisticated combination of many 
factors including: community patterns, patterns of community segments, personal preferences, 
types of links recommendations that are wanted, as well as information intrinsic to the pages and 
meta-data about the pages. 
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