

© 2006 by Benjamin E. Lambert. All rights reserved.

IMPROVING INFORMATION RETRIEVAL WITH NATURAL LANGUAGE

PROCESSING

BY

BENJAMIN E. LAMBERT

B.S., University of Massachusetts Amherst, 2003

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2006

Urbana, Illinois

 ii

 iii

Abstract

The goal of this research is to transform a text corpus into a database rich in

linguistic information and robust with multifarious applications. Computational

natural language processing liberates the syntax and semantics of natural language

to convert a plain text corpus into rich database that stores these implicit linguistic

components. Information retrieval techniques index into the otherwise implicit

data that is encoded by the language and its syntax. We use Lemur and the Indri

query language to index this linguistic information. The resulting index supports

numerous applications that can utilize the additional linguistic information. For

one application, searching a document corpus with natural language queries, we

show syntactic and semantic information that improve retrieval performance.

 iv

Dedicated to Yehudah Thunket

 v

Acknowledgments

Thanks to Richard Goldwater, ChengXiang Zhai, and Andrew McCallum for their

support. Thanks also to Trevor Strohman and ChengXiang Zhai for their help

with the Indri Information Retrieval Engine.

 vi

Table of Contents

List of Figures .. viii

List of Tables ... ix

List Of Abbreviations ... x

Chapter 1: Introduction ..1

Chapter 2: Information Retrieval and Natural Language Processing4

2.1 Information Retrieval...4
2.2 Natural Language Processing ..7
 2.2.1 Syntactic NLP ..8
 Part-of-Speech Tagging ...8
 Syntactic Parsing..9
 Shallow Parsing ...11
 Lexical Cohesion ...11
 2.2.2 Semantic NLP ..12
 Named Entity Tagging...12
 Semantic Role Labeling...13

Chapter 3: Related Work ...14

3.1 Linguist’s Search Engine ...14
3.2 Dekang Lin’s Research ..15
3.3 The Sketch Engine ...16
3.4 PhraseNet ...16
3.5 Metadata-based Search ..17

Chapter 4: Software Architecture and Applications ..18

4.1 Software Architecture ..18
 4.2 Applications ...20

 4.2.1 PhraseNet ...20
 4.2.2 iTrack System ..21
 4.2.3 Question Answering Systems ..21
 4.2.4 Active Machine Learning ..22
 4.2.5 Advanced Search ...22
 4.2.6 Toward a Semantics-Based Search Engine..................................22

Chapter 5: Experiments and Results ..23

5.1 Experimental Setup ...23

 vii

 5.1.1 Document and query representation..24
 5.1.2 Indri’s structures query language ..26
 5.1.3 Generating Indri queries from natural language........................27
5.2 Results ...29
 5.2.1 Retrieval options..29
 5.2.2 Results ...31
 5.2.3 Discussion of Results ..32
 5.2.3.1 Raw term and NE placeholder...33
 5.2.3.2 Field restriction features ..33

Chapter 6: Conclusions ..36

References..37

Appendix A: User Manual ...39

Building an Index...39
Using an Index ...43

Appendix B: Maintenance Guide...44

 viii

List of Figures

Figure 1 - The first steps of the Basic IR process (Callan 2006).............................5

Figure 2 - Penn Treebank parts-of-speech ...9

Figure 3 - Syntactic parse tags ...10

Figure 4 - Named-entity tags ...12

Figure 5 - Software Architecture ...20

Figure 6 - Example sentence from the AQUAINT corpus25

Figure 7 - Example corpus schema file..26

Figure 8 - Sample column-format query from the 2002 TREC QA task...............26

Figure 9 - TREC annotated natural language query ..28

 ix

List of Tables

Table 1 - Average precision for each combination..31

Table 2 - Precision at 10, 20, and 30 documents ...32

Table 3 - Percentage increase for POS augmented queries32

 x

List of Abbreviations

IR...Information Retrieval

NLP .. Natural Language Processing

POS .. Part-of-speech

NE ..Named entity

 1

Chapter 1

Introduction

The complexities of human language make searching for information encoded in

natural language far from simple. The meaning, whether subtle or obvious to the

reader, may be implicit in the language. Keyword search limits users to locating

information specified explicitly at the surface level. Processing natural language

text corpora helps to liberate the implicit syntax and semantics. Liberating this

linguistic information allows one to transform a plain text corpus into a database

rich with linguistic information. This database allows searchers to explicitly

search for information that is encoded implicitly in the language. NLP can be

further used to process queries and use information implicit in natural language

queries to locate relevant documents in a natural language database.

Most contemporary search systems only support searching for words or

phrases explicitly contained in a text (and possibly explicit metadata about the

text such as subject headings), without respect to the syntax, semantics, or

pragmatics of the terms in the original language. Searchers may become aware of

the limitations of keyword search when their original query fails and they begin to

search for synonyms of their original search terms or look to their own intuitions

about how linguistic characteristics manifest themselves in relevant documents

(for example a profession researchers such as librarians might ask themselves,

“would the author be writing this query term in present or past tense?”).

The problem is that the user and computer have different representations

of the information. The user may have some notion of what the desired

information will look like and project this notion into query terms that the user

believes may be present in relevant documents. However, the user may not be

 2

able to estimate this correctly; the relevant documents may be written in a very

different voice from that which the searcher uses. The user’s search terms are

estimated by the user and so are subjectively influenced by the user’s point-of-

view and experience.

Another user searching for the same information (who perhaps has more

knowledge about the field) may have a better idea of the context in which the

information will appear and consequently be better able to choose search terms

(for example field-specific terminology). The two users may search be searching

for semantically equivalent information but on the surface the two form very

different queries neither of which may match the actual relevant documents.

Techniques like latent semantic indexing (LSI) may be used to find

relevant documents that do not explicitly use the query terms. However, while

this may improve retrieval performance in some cases by generalizing the query,

at the same time it loses the ability to make very precise queries. Ideally, we

would like to model the semantics of the documents and queries so that we can

generalize to other terms but not lose the original semantics of the query.

Most information retrieval and search engines do not model the linguistic

semantics of documents. Most also do not model the syntax of the language. On

the other hand, if they do model the syntax it is limited to the simplest syntax:

word order.

The farthest extreme of modeling semantics would be to re-encode a

corpus into a machine-interpretable form (such as logic) and store the corpus in a

knowledge base (KB). One difficulty with this solution is that the natural

language sentences are often not easily translated to a logical form. Another

difficulty with this is that it almost necessitates a structured query language,

because the user must be able to match predicates and relations in the KB.

This research does not attempt to dig so deeply into the semantics, but

attempts to use some of the linguistic syntax and semantics to aid with

information retrieval. Rather than construct an omniscient KB, we use existing

statistical NLP tools to extract syntactic and semantic information from text.

 3

 If the goal of information retrieval is to match the semantics of a user query to

the semantics of a text documents, keyword search falls well short of the goal.

Keyword search incorporates neither syntax nor semantics into the search

heuristics. This research attempts to make progress toward a more linguistically

and semantically driven search engine. This research combines syntactic and

semantic analysis with information retrieval.

This research incorporates systematic natural language processing (NLP) with

information retrieval via existing inference network technologies. This takes the

information retrieval to the point where the semantics of the natural language

corpus can be accessed by a query language as though it were a database. The

value of accessing information from a natural language corpus in this way is

demonstrated by its generality, allowing multifarious applications. However, it

does not require an average user to learn and use a complex query language. In

fact, we show how effective structured queries can be automatically formulated

from natural language queries and how these queries perform better than the same

queries without linguistic annotations.

 4

Chapter 2

Information Retrieval and Natural

Language Processing

In this chapter, we introduce information retrieval and natural language

processing to give the reader some background on these two subjects which are

central to this research.

2.1 Information Retrieval

The information retrieval (IR) model we use is an example of ad hoc retrieval.

This model is called ad hoc because users have information needs and to satisfy

an information need they form a query ad hoc. Once the information need is

satisfied, they throw out the query and do not use it again. The query is

formulated ad hoc to help satisfy the information need. This is opposed to text

filtering IR techniques where the IR model retains a representation of the

information need and over time select documents to present to a user. However,

the techniques presented in this research are sufficiently general that it could be

applied to either ad hoc or text filtering IR.

 In the standard IR model both the information need and the documents must

first be translated into some alternate representation. Figure #1 shows the first

step of the basic IR process where documents and information needs are

translated into a new representation according to Prof. Jamie Callan’s lecture

notes from his Information Retrieval class taught at Carnegie Mellon University

(Retrieval Models 2006).

In most cases, the information need is translated by a user into a query.

Queries are often keyword queries sometimes with Boolean or phrase operators.

 5

The document is often represented as a “bag of words” or an “ordered bag of

words” for IR with phrase operators. Some more expressive document

representations include support for structured documents that may have fields

such as title, abstract, body, etc.

 Some IR models extend the representation of the information need beyond the

original keywords. This can be done by augmenting the original query terms with

additional terms added found in a variety of ways such as query expansion,

relevance feedback, or machine-readable thesauri (see Baeza-Yates 1999 Ch. 5

for more details). The representation used in this research retains the original

query terms but augments them with linguistic tags. The text representation is

augmented similarly.

New methods of text representation often change the way documents and terms

are weighted and how to map document terms into new vector spaces. For

example, latent semantic indexing performs a change of basis in the vector space

where the original dimensions correspond to documents and the terms in them. In

this research, we treat the text representation as the original text (with some

stopping and stemming) augmented with linguistic tags.

This research differs from other approaches to IR in how we represent

documents and queries. The information need is represented as a natural

language query. It is often a one-sentence description of the information need.

Information need Document

Representation Representation

…………….

Figure 1 - The first steps of the Basic IR process (Callan 2006)

 6

We leverage the fact that the information need is described in natural language so

that the order and structure of the description can be used to aid retrieval. What is

different about our representation is that we explicitly represent the linguistic data

that is automatically extracted from the natural language query. So, our

information need is expressed as a natural language sentence with explicit

linguistic information (such as parts-of-speech, named-entity types, etc.)

 Similar to the query representation, the document representation explicitly

includes automatically extracted linguistic information. Transforming a plain text

document into our representation means passing it through automatic natural

language processing components and annotating the documents with the linguistic

information. The resulting representation is far more than an ordered bag of

words. The result includes linguistic tags on individual words as well as small

windows of linguistic spans such as sentence, phrase, named-entity that can be

used in the retrieval model. An example of what this representation buys us is the

ability to search for the terms cheap and jewelry in the same NP (noun phrase).

This will allow us to search for sentences where cheap modifies jewelry but not

other parts of the sentence. This query would match both “cheap jewelry” and

“cheap sterling silver jewelry” but not “…expensive jewelry given to a cheap

person…” The distinction between these two cannot be represented by proximity

operators alone since proximity operators can easily cross phrase boundaries.

Some members of the IR community would argue that this is a wasteful

text representation. For one thing, it requires significant additional storage to

store the linguistic information. Another drawback to this text representation is

that it is time-consuming to process a corpus and extract all that linguistic

information. It is true that the NLP is time-consuming because every sentence in

every document must be processed by several annotators. Some annotators, such

as syntactic parsers, could take approximately one second per sentence. If the

indexer only indexes the raw terms, it may be able to process up to 40 gigabytes

per hour. Annotating every sentence requires much more time. On the other

hand, data only needs to be processed once, so the time to index may not be an

important factor if the corpus is relatively static. The argument in favor of

 7

spending the time to annotate each sentence is that we get better retrieval

performance and can generate queries that are more expressive.

One could argue whether as to whether we are justified in indexing all this

additional linguistic data. The argument could be made that most of the necessary

information is on the surface. However, the field of linguistics studies the

intricacies involved in translating from some mental representation to a surface

representation. Humans when reading written language need time to read and

understand the text, so it may be necessary for the computer to slow down to

“read” the text to gain a better “understanding” of what the text really says.

2.2 Natural Language Processing

Much of the work that has been done in natural language processing (NLP) has

not been applied to IR. The extent that most search engines use NLP is to match

morphological variants of query terms. In this section, we discuss some of the

NLP techniques we apply to IR. These include syntactic parsing, part-of-speech

(POS) tagging, named entity recognition, and others.

NLP algorithms automatically extract information contained implicitly in

the text. Before discussing the application of these NLP techniques to

information retrieval, it is important to understand the state-of-the-art NLP

research and how much information we can hope to extract automatically from

language in text format.

Much NLP research has been to identify syntactic features in language.

Parsing, chunking, POS tagging, lexical cohesion are all examples of syntactic

analysis. Semantic analysis, such as semantic role labeling, has generally not

achieved the same degree of success as syntactic analysis. Since it seems that

humans need background knowledge to comprehend the meaning of a sentence, it

should not be surprising. Some researchers in the field see syntactic NLP as “low

hanging fruit” which has been the primary focus of NLP researchers at the

expense of research in semantic NLP.

This section provides an overview of the NLP techniques that have been

used in this research. These include both syntactic NLP such as parsing, shallow

 8

parsing, part-of-speech tagging, as well as semantic NLP such as named-entity

tagging and semantic role labeling.

2.2.1 Syntactic NLP

Part-of-Speech Tagging

Part-of-speech may be one of the most basic forms of syntax. All languages have

parts-of-speech, although the word classes vary from language to language

(Shopen 1985). The reader is likely familiar with broadest part-of-speech word

classes such as verb, adjective, noun, etc. These word classes can be further

broken down many times over (such as into plural nouns, infinitive verbs, etc.).

In English, there is no canonical set of word classes. Linguistic typologists

generally formulate tests to judge what part-of-speech a particular word is.

However, even these linguistic tests can discover conflicting evidence for several

parts-of-speech. For example, the English word many shows the behavior of

determiner, predeterminer, and adjective.

 A rather large set of word classes is used by the Penn Treebank project (shown

in Figure #2). These include non-alphabetic classes to encompass all tokens

including punctuation. The Penn Treebank project provides an extensive manual

of these parts-of-speech and how manual annotators are to determine a POS in

context (Treebank 2002).

 In this research, a POS classifier is used to tag the corpus with POS tags. This

POS tagger is based on the SNoW learning architecture (Roth 1998).

 9

Figure 2 - Penn Treebank parts-of-speech

Syntactic parsing

Whereas parts-of-speech may be the most basic level of syntax, a full syntactic

parse contains the most syntactic information. The high information content in a

syntactic parse tree may be overwhelming for many computer applications,

including information retrieval. In a full-parse, each word is a member of

numerous constituent structures which are not readily collapsible into a single

compact description of that constituent structure. Figure #3 shows one way of

describing syntax and grammatical roles in a compact form. These are syntactic

parse tags used in PhraseNet (Tu 2003).

Pound sign NNP Proper singular noun

$ Dollar sign NNPS Proper plural noun

'' Close double quote PDT Predeterminer

`` Open double quote POS Possessive ending

' Close single quote PRP Personal pronoun

` Open single quote PP$ Possessive pronoun

, Comma RB Adverb

. Final punctuation RBR Comparative adverb

: Colon, semi-colon RBS Superlative Adverb

LBR Left bracket RP Particle

RBR Right bracket SYM Symbol

CC Coordinating conjunction TO to

CD Cardinal number UH Interjection

DT Determiner VB Verb, base form

EX Existential there VBD Verb, past tense

FW Foreign word VBG Verb, gerund/present participle

IN Preposition VBN Verb, past participle

JJ Adjective VBP Verb, non 3rd ps. sing. present

JJR Comparative adjective VBZ Verb, 3rd ps. sing. present

JJS Superlative adjective WDT wh-determiner

LS List Item Marker WP wh-pronoun

MD Modal WP$ Possessive wh-pronoun

NN Singular noun WRB wh-adverb

NNS Plural noun

 10

 A word in a parse tree can be described by the depth, the words in the same

constituent structure, the head word of that structure, the type of constituent

structure, and other information about the structure that it modifies or attaches to.

Thus, for information retrieval it is important that we choose only features that

can be used effectively.

 One way of using all the information in a parse tree for information retrieval

would be to treat each constituent structure as a section of the document. This

would allow the user to search for terms that occur in any specified type of

constituent (e.g. nouns phrase or s-bar) and search for terms that co-occur in the

same constituent structures. One could imagine a document scoring function that

weights more highly query terms that co-occur in smaller constituent structures

(this would be similar to a scoring function based on term proximity but would be

proximity within the parse tree). For example, given the parse:

 ((Jack and Jill)NP (went (up (the hill)NP)PP)VP)S.

We could treat each phrase as a section of the document. Picture the sentence as a

structured document with section and subsection. Then section S is the entire

document, the first NP is section 1, VP section 2, PP section 2.1 and so on. In

this way, we can directly apply methods for structured retrieval to linguistic

retrieval.

NOFUNC NP NPSBJ VPS PP

ADVP VP ADJPPRD NPPRD VPSSBAR

NPTMP ADVPTMP VPSTPC VPSNOM NPLGS

SBARADV ADJP NPADV VPSADV VPSINV

VPSPRP ADVPMNR SBARTMP PPPRP

PPLOCCLR SBARPRP PPPRD ADVPCLR

VPSPRN VPSCLR NPLOC ADVPLOC ADVPDIR

PPDTV ADVPPRD WHNP CONJP

NPHLN VPSQ VPSNOMSBJ SBARPRD VPSPRD

NPCLR PPPUT NPTTL ADJPPRDS NPTMPCLR

 INTJ PPTMPCLR PPCLR

Figure 3 - Syntactic parse tags

 11

Shallow parsing

We do not attempt to index an entire syntactic parse of each sentence as discussed

in the previous section. Rather, as a simplification of the syntactic parse, we only

consider the main constituent structures of a sentence as “chunks” of the sentence.

This is in effect a “shallow” parse. Thus, a sentence may be partitioned off into a

noun phrase (NP) subject, followed by a verb phrase (VP), and perhaps ending

with a prepositional phrase (PP). This type of NLP may be particularly useful for

IR since it breaks a sentence down into a few manageable chunks without greatly

increasing the amount of data. One use of a shallow parse in IR would be to use a

document scoring function to give a higher score to documents that use some of

the query terms in the same phrase both in the query and in the document. The

shallow parser used in this research was developed by the Cognitive Computation

Group (Munoz et al. 1999).

Lexical Cohesion

Cohesive lexical units are multi-word terms that together function as a member of

the lexicon. An example of this is fire hydrant in which the meaning is not

obviously inferred from the words in the phrase alone. A certain amount of

background knowledge is needed to understand the phrase. For many of these

phrases it can be assumed that speakers of the language have a lexical entry for

that term.

 This is an aspect of NLP where it is not known precisely how NLP can help

IR. Jamie Callan asks in his Information Retrieval course at Carnegie Mellon

University “Does phrase indexing help?” There is no definitive answer, “it works

well in some situations … it ought to work in a wider range of situations” (Text

Representation 2006).

 In previous unpublished research this author showed that using a variety of

information theoretical methods to identify cohesive multi-word lexical units

improves retrieval performance on the same test suite described in chapter 8

(Lambert 2004). By automatically identifying multiword lexical units in both the

 12

corpus and queries, we increase precision by ranking higher documents that

contain the multiword search terms as a unit rather than just matching documents

that contain both words. The lexical units identified were not used in the

experiments described in chapter 8.

2.2.2 Semantic Language Processing

Named Entity Recognition

Many NLP tasks are semantic in nature. Named-entity recognition (NER) is

perhaps one of simplest methods of semantic NLP. NER is semantic in the sense

that the tagger must attempt to identify the type of the referent (e.g. person,

organization, or location). A NER may use syntactic clues to determine the entity

type (e.g. nearby words such as “Mr.”), but ultimately is determining some

semantic information about the words. We can tell that this is semantic

information because named-entities are generally nouns and any named-entity

could be replaced by any other NE (that agrees in number and gender) and the

sentence would remain syntactically correct. However, the sentence would

probably only make sense semantically if the named-entity were replaced by a NE

of the same type.

The NER used in this research was developed by the Cognitive Computation

Group (NER 2006). See figure #3 for the named-entity tags used in this research.

Number Medical Food

People NumberUnit Religion

LocationCountry OrganizationPoliticalBody Journal

Date LocationState LocationStructure

ProfTitle Sport NumberZipCode

OrganizationCorp OrganizationTeam Book

Organization Animal Plant

Location Event LocationMountain

LangRace DayFestival OrgCGroup

LocationCity OrganizationUniv LocationRiver

Money Color Perform

NumberPercent NumberTime Art

Figure 4 - Named-entity tags

 13

Semantic role labeling

Another type of annotator that attempts to extract semantic information directly is

a semantic role labeler. Semantic role labelers identify how the various noun

phrases relate to the verb in a sentence. For example, in the sentence “John threw

the ball to Mary,” John is the agent who did the throwing. In this example, John

is also the subject of the sentence. Therefore, if we want to search for documents

that talk about John throwing things, we could use our syntactic features to search

for documents that contain a sentence with John as the subject and throw as the

verb. However, in the case of passive sentences such as “The ball was thrown to

Mary by John” the subject is not the agent of the verb. In this example sentence,

the ball is the subject. By labeling the semantic roles of each sentence, we can

locate passive sentences that talk about John throwing by searching for sentences

that contain John as agent with the verb throw.

 Generating structured queries from a user’s input is discussed further in the

chapter on results, but semantic role labels go hand-in-hand with interpreting

natural language queries. For example, for “when” questions we should search

for sentences that have a temporal modifier (arg-tmp in semantic role labeling

parlance). Questions with the subject “who” (e.g. “who threw the ball?” should

search for sentences with an agent (arg0) that have a person named-entity tag.

Questions using the word “whom” (e.g. “to whom was the ball thrown?”) should

search for sentences with a patient (arg1) role filled by a person named-entity.

 Semantic role labels are not used in the experiments described in chapter 5 as

the corpus had not been tagged with semantic role labels at the time of this

writing. The obstacle to such an evaluation is that SRL taggers are relatively slow

compared to other NLP taggers and would take a long time to process an entire

corpus. Questions were SRL tagged with the Cognitive Computation Group’s

2005 CoNLL semantic role labeling shared task submission (Punyakanok). These

question could be readily transformed into the appropriate queries were the corpus

SRL tagged.

 14

Chapter 3

Related Research

Some research with the goal improving information retrieval performance has

focused on exploiting information gathered that is meta to the text itself. For

example, citations or links to a document (Page 1998) are data gathered from

external sources. Latent semantic indexing and query expansion also fall into this

category because they rely on other documents in the computation.

A deeper linguistic analysis is often only performed for specialized

implementations of information retrieval. Question answering systems generally

rely on language processing heavily for question classification, named entity

tagging, and answer extraction. Some systems such as the linguist’s search

engine (Resnick 2003) are specifically designed to search for linguistic

phenomena. It seems that there has been limited research on using deep linguistic

analysis for general information retrieval. Many researchers prefer to develop

more sophisticated algorithms to work with the same surface-level data.

See chapters 2 and 3 for a discussion more broad research related IR and

NLP respectively. This chapter describes research aimed at using NLP in close

coordination with IR.

3.1 Linguist’s search engine

The Linguist’s Search Engine (Resnick 2003) developed at University of

Maryland is a powerful search engine specifically designed to search for syntactic

structures. Users enter English sentences that are parsed into syntactic parse trees

and displayed graphically and textually. The textual parse representation is

shown as the original words annotated with parts-of-speech and constituent

 15

structures designated by embedded parentheses. This text can then be edited to

form a query.

 The parse of the sentence “Jack and Jill went up the hill” is:

(S1 (S (NP (NNP jack) (CC and) (NNP jill))

(VP (VBD went) (PRT (RP up)) (NP (DT the)

(NN hill)))))

If we want to search for other sentences that contain the verb went followed by

the particle up. We remove the entire parse except the part designating the

phrasal verb:

(VP (VBD went) (PRT (RP up)))

Similarly, we can search for the verb look followed by the particle up with the

following query:

(VP (VBD look) (PRT (RP up)))

The Linguist’s Search Engine is designed to search for linguistic patterns

in a corpus and provides support for processing and searching portions of the

Web. The Linguist’s Search Engine is similar in its implementational goal to this

research (to search for linguistic structures in corpora).

 The Linguist’s Search Engine differs from this research in that it searches only

for structures in a full syntactic parse. It is also designed primarily to be used by

linguists to search for individual sentences rather than entire documents. The

Linguist’s Search Engine parses sentences in real time while crawling a given

subdomain of the Web.

3.2 Dekang Lin’s Research

Dekang Lin’s research achieves some of the same functionality as described here.

Lin’s demos (Lin 2005) are not intended to search for documents, but rather to

mine corpora for linguistic dependencies and relations. Lin’s software will find

other words that a given word is used with in many different grammatical

contexts (e.g. adjectives used with a given noun).

 16

 In one demo, entering the term water shows that the most frequent noun

occurring immediately after water in the corpus is district (as in water district),

the second most frequent noun is use (as in water use) and so on. We also see

that the most frequent noun that comes before water is _SPEC. When water is

used as the first conjunct of two nouns the most frequent second conjunct is food

(as in water and food). When used as the second conjunct of two nouns the most

frequent first conjunct is electricity (as in water and electricity). Lin’s research is

similar to the research described in this paper in that we a querying a corpus for

linguistic phenomena, it differs in that we extract as the results (co-occurring

words vs. relevant documents).

3.3 The Sketch Engine

The Sketch Engine (Kilgarriff), developed by Adam Kilgarriff and Pavel Rychly

at Lexical Computing Ltd., is a “new Corpus Query System incorporating word

sketches, grammatical relations, and a distributional thesaurus. A word sketch is

a one-page, automatic, corpus-derived summary of a word's grammatical and

collocational behaviour.” (Kilgarriff) For example, entering the noun food into

the Sketch Engine we are given a “sketch” of the noun which tells us among other

things: verbs it occurs as the object of (the most common being eat), verbs it

occurs as the subject of (contain), nouns that modify it (junk), nouns it modifies

(poisoning), and many others. The Sketch engine is very similar to the Dekang

Lin’s demos, except that it identifies different word relations (such as subject of)

than Lin and uses a more interesting statistical metric to rank the words it finds.

3.4 PhraseNet

PhraseNet, developed by Yuancheng Tu, Xin Li, and Dan Roth at University of

Illinois, is an example of a “context-sensitive lexical semantic knowledge system”

(Tu 2006). PhraseNet disambiguates WordNet word senses based on the context

in which they are found. The context in this case could consist of both the

syntactic structure of the sentence (e.g. Subject-Verb as in “he ran” or Subject-

Verb-Object-PrepPhr as in “he gave it to me”) and words in the sentence. This

 17

can be used to disambiguate the word sense for fork in “they ate a cake with a

fork” since in that context the object of the preposition is usually either a utensil

(e.g. spoon or fork) or a food (as in “cake with strawberries”). Thus, we know

that the word sense for fork is utensil not as in fork in the road. In this example,

disambiguating the word sense also tells you what the PP attaches to (if it is a

utensil it attaches to the verb, if it is food is attaches to the object cake).

PhraseNet is different from previous approaches in its novel use of WordNet to do

word sense disambiguation.

3.5 Metadata-based Search

There is much research that shares the goal of this research of improving

information retrieval. Some approaches attempt to improve retrieval performance

algorithmically or with techniques like automatic query expansion. Some more

recent approaches attempt to use external metadata about the documents. This is

the case for the “semantic web”. These systems operate by searching within the

metadata associated with the documents. For these systems the documents

generally must be manually annotated with metadata. The metadata is a often a

concise and precise description of the content in the document. The metadata

description of a document may use words that are not present in the document.

Thus, a searcher who knows the correct topic but not words present in a document

will be better able to find the right sources.

 This research does not utilize externally provided metadata, rather it uses

implicit semantic data in the language. This research could be extended to also

search for metadata. Some work done by Marti Hearst shows how this metadata

could be used to aide users in navigating an “information space” (e.g. a corpus).

They show how users can find information more quickly and are less likely to get

lost of overloaded by navigating a very large information space (English 2002;

Hearst 2002; Hearst 2000).

 18

Chapter 4

Software Architecture and

Applications

4.1 Software Architecture

This software derives from the retrieval architecture of Lemur’s Indri (successor

of the popular Lemur IR engine) (Indri 2006). Indri is a powerful new extension

to the Lemur information retrieval engine which incorporates a structured query

language and inference network into the Lemur framework. Indri provides

support for indexing a number of documents types including plain text, HTML,

PDF, and XML. When indexing XML documents, the query language allows a

user to specify in which sections of an XML document query terms should occur.

The research implementation described in this paper builds upon the

components of Indri which allow tag-based searching of XML documents. While

the XML format is convenient for some purposes, especially for annotating text,

there is much redundant information. This redundancy is especially pronounced

when XML is used for the numerous and short-spanning tags generated by NLP

annotators. Instead of XML, we use a very compact column format. This format

allows us to store very large corpora in nearly the minimum space required

without recoding terms and tags. Many natural language processed corpora are

represented in this column format as well so data is readily available.

A typical column format corpus has one word or token per line.

Accompanying each word on the line are a number of “tags” for that word

separated by tab characters and forming columns. For example, one column may

contain the part-of-speech of the word in that row; another column may have the

grammatical role of the word (examples are shown in chapter five).

 19

Column-format files are often used as a standard file format. This could

be because of the ease in parsing and compact representation. The Brown corpus

which may be the first compiled machine-readable English corpus was altered to

incorporate part-of-speech tags in 1979. This new version called “form c”

represented the corpus in a column format with the words in the first column, the

part of speech in the seconds column, and the location in the corpus in the third

column (Francis 1979). This format continues to be used; the Conference on

Natural Language Learning (CoNLL) has used this format to supply the data to

teams in its yearly “shared task” (Conference 2006).

The software artifact resulting from this research, allows one to specify the

meaning of each column of a column-format corpus in a corpus schema then

index the corpus with the inclusion of the column information. The Indri

structured query language can be used without modification to search for terms

subject to any specified constraints on what the value of each column should be.

For example, if one column is the word’s part-of-speech, a simple Indri structured

query can be formulated to search for words when the part-of-speech is a noun or

a verb.

Details on the usage of this software are given in Appendix B. Further

details on the implementation are given in Appendix A.

 20

4.2 Applications

One of the values of this system is that it may be used as the underlying

technology for many other applications. Each of the applications described in this

chapter could be implemented in a straightforward manner with this system.

4.2.1 PhraseNet

PhraseNet, as described in Chapter 3, is currently implemented with a relational

database. The database backend is easy to use, but does not scale well to large

corpora. Indri’s inference network allows for much faster searching. Whereas

join operations in a relational database are very slow, the inference engine can

make complex queries quickly. PhraseNet data is stored in column-format, so it

would be simple to deploy. The only modifications necessary would be for the

Parser

IndriIndex
er

Indri Index

Corpus
Corpus

Schema

Query

Ranked list
of

documents

List of
tags…

Figure 5 - Software Architecture

 21

Web forms to generate the appropriate Indri queries instead of SQL queries and

some post-processing of the results to obtain the desired output.

4.2.2 iTrack

iTrack is another application that could be built on top of the research system

described in this paper. iTrack is a system developed by the Cognitive

Computation Group at University of Illinois (a.k.a. the MIRROR project). iTrack

is intended to track named entities and to which other names entities they are

associated. This can be used for entity resolution to determine whether the string

“Clinton” refers to Hillary or Bill. It does this by tracking with which other

named entities an entity is closely associated. We can find other person named-

entities that co-occur in the same sentences as Bill Clinton with the following

Indri query:

#combine[sentence](“Bill Clinton”.nePerson

#any:nePerson)

This query retrieves all documents that contain the string “Bill Clinton” that has

been NE tagged as a person in the same sentence as another string that has been

tagged as a person named-entity. These documents can be further processed to

retrieve which people co-occur with “Bill Clinton” most frequently.

 Presently, iTrack used other means to track these named entities. However, it

would be straightforward to achieve this functionality with the system described

in this paper.

4.2.3 Question Answering Systems

Many question answering (QA) systems may already employ some advanced

retrieval functionality. QA systems that use question classification to determine

the type of entity that the answer is especially benefit from being able to search

for named entities. For example, if the question is a who question, the retrieval

component of the QA system can search for documents that contain the query

terms as well as other terms that are tagged as entities of type person.

 22

4.2.4 Active machine learners

Active learning is a paradigm within machine learning in which the learning

algorithm is able to select training examples such that it can converge to a good

hypothesis more quickly. For many NLP tasks, text from reputable edited sources

such as newspapers is considered positive training examples since they are

“correct” sentences in the language. Such systems may benefit from an advanced

language query system, as they can quickly check hypothesis sentences or

sentence fragments. For example, a language generation system with low

confidence as to the preposition for a particular prepositional phrase can query for

all examples of that preposition used with the sentence’s verb. The results (or

lack thereof) may help to choose the preposition or reformulate the sentence. This

use case of this system is not currently deployed but could be easily.

4.2.5 Advanced linguistic search

This application is similar to the Linguist’s Search Engine (Resnick 2003),

allowing a user to specify query terms and linguistic properties about them. This

would allow a user to specify the POS, grammatical role, named-entity, or any

other indexed linguistic tags for each term. This application would utilize the

same types of queries as are used in chapter 5 except that the queries would not be

constructed automatically but the linguistic properties would be specified

explicitly by the user.

4.2.6 Toward a semantics-based search engine

Only a few semantic tags have been discussed thus far. The methods used in this

research can be extended to include potentially even more useful tags. For

example, we can label words in the corpus with their synonyms or with

unambiguous concept tags (after the word-sense or entity reference has been

disambiguated). It may also be possible to index relations among the concepts in

the corpus and search for concepts involved in those relations.

 23

Chapter 5

Experiments and Results

Up to this point, we have discussed the system, some NLP and IR used in the

system, and possible applications for this framework. Next, we will turn to a

specific application and some experimental results for this application.

 We apply the framework to natural language queries for the TREC QA task.

What makes this application different from other QA systems is that we use a

natural language query and automatically generated NLP tags to formulate a

structured query. After retrieving documents, we do not attempt to perform

answer extraction from the retrieved documents. The experimental results show

how retrieval performance is affected by augmenting queries with various

combinations of NLP tags. The results show that part-of-speech tags improve

performance more than named-entity tags.

5.1 Experimental Setup

The goal of these experiments is to determine whether transparently adding

automatic NLP to corpora and queries improves retrieval performance. We tag

both queries and the corpus with several types of linguistic data. The experiments

compare various combinations of linguistic features used in the experiments.

 For the indexing and retrieval, we use Indri 2.2 (Indri 2005). The Indri

retrieval engine includes support for searching within specific fields in a

document. The fields could be arbitrary spans of a document. Perhaps originally

intended to describe larger sections of a document such as title, abstract, body,

sections, etc., they may be used to specify arbitrary regions of the document. For

this research, the fields indexed are linguistic tags.

 24

 Let us begin with a simple example of how linguistic tags may be used as the

fields of a document. We could take the process of shallow parsing to break

sentences into smaller chunks (clauses and phrases). Chunking the sentences in a

document sections it off into many small sections (several per sentence). This is

useful for retrieval because the same Indri function that retrieves documents that

contain certain words only in the abstract could be used to retrieve documents

that contain certain words but only in prepositional phrases.

 The primary linguistic tags used in these experiments are part-of-speech tags

(POS) and named-entity (NE) tags. The POS tags are used to generate indexed

sections of the document that are a single word long. NE tags are used to

generate document sections that are one or more words long.

 Indexing these linguistic fields allows us to generate queries that match certain

linguistic properties of the documents in the corpus. For example, one could

search for the term “state” but only when it is POS tagged as verb. If we know

we want the verb state but we do not specify it, many documents that contain the

noun state will be retrieved as well.

 While the user could write structured queries constraining each term to a

particular POS, this creates work for the user and the human-computer interaction

becomes less seamless. However, if the user generates a query in written natural

language we may be able to automatically tag the same linguistic features and use

those to generate a better query. We leave manual query construction to domain

experts such as linguists who want to have very precise control over the query.

 Before describing the specific configurations for each experiment. Let us see

an example of how the queries and corpora are represented and how those are

used by Indri.

5.1.1 Document and query representation

Since we would like to do document retrieval over very large corpora and we

need to annotate the corpus with additional linguistic tags, it is important that we

keep the corpus representation compact. To achieve this we store the corpus in a

column format. Additionally a corpus schema is used to denote what the value in

 25

each column of the corpus corresponds to (e.g. part-of-speech tags, etc.) (see

figure #6). This avoids storing redundant information and using any more syntax

than necessary (e.g. as opposed to XML tags which are duplicated and surrounded

by additional syntax).

Figure 6 - Example sentence from the AQUAINT corpus

Figure #6 shows a sample of a document from the corpus in column format. Here

we see the document terms in the column three, POS in column four, shallow

parse in column five, and NE tag in column six. Columns with all zeros may be

utilized for other purposes but are not used in this corpus.

 We must specify how each of these columns is to be indexed. To do this, we

write a schema that describes each column. We also include all of the parameters

that Indri needs so that we can automatically generate the build parameter files for

Indri. This schema provides the parser with all the information it needs to parse

the columns and the provides Indri with all the information it needs to begin

indexing. See figure #6 for an example schema file; the first six lines are

parameters for Indri and the last four lines are parameter for the column parser.

 0 0 07/04/1998 NN O B-NP B-Num

 0 1 07 CD O I-NP B-Num

 0 2 : : O O I-Num

 0 3 50 CD O B-NP I-Num

 0 4 : : O O O

 0 5 00 CD O B-NP B-Num

 0 6 UBS NNP O I-NP B-OrgCorp

 0 7 chairman NN O I-NP O

 0 8 : : O O O

 0 9 pressured JJ O B-NP O

 0 10 banks NNS O I-NP O

 0 11 must MD O B-VP O

 0 12 carefully RB O I-VP O

 0 13 consider VB O I-VP O
 0 14 options NNS O B-NP O

 26

Figure 7 - Example corpus schema file

 This schema shown in figure #7 shows the type of information in each of

columns 3, 4, 6, and 7. It also shows that columns 6 and 7 are in BIO (beginning-

inside-outside) format. We use BIO tags to specify that the label spans more than

one word. Since values in BIO columns are prefixed with a ‘B-‘ or an ‘I-‘ we

must tell the parser that the prefix is not part of the value of the tag. The schema

also specifies parameters to Indri such as the location of the corpus, the location

to build the index, the maximum amount of memory to use when indexing, the

stemmer, etc.

Queries are represented in a similar format to documents in the corpus.

This example query (see figure #8) uses a different schema than the documents.

This query also contains more linguistic information than the documents in the

corpus (e.g., the query has dependency parse tags and semantic role labels).

Figure 8 - Sample column-format query from the 2002 TREC QA task

5.1.2 Indri’s Structured Query Language

Indri’s structured query language supports querying for terms and putting

constraints on what portions of the document terms occur within as well as

 index /home/belamber/indicies/aquaint_index

 corpus.path /home/DATA/TREC02/Column

 corpus.class column

 memory 500m

 collection.field docno

 stemmer.name krovetz

 column Word 3

 column POS 4

 column chunk 6 BIO

 column NE 7 BIO

LEAF/1 B-PER 0 B-NP/MOD_SP/1 NNP Tom - MOD_A1/1

NP/2 I-PER 1 I-NP/HEAD_SP NNP Cruise - ARG1/3

VP/2 O 2 B-VP/MOD_SP/3 VBZ is - 0

VP/2 O 3 I-VP/HEAD_SP VBN married marry 0

PP/3 O 4 B-PP/HEAD_SP TO to - 0

NP/4 O 5 O NNP X - ARG2/3

 27

“wildcard” terms that match any term with a given tag. The full query language is

described at the Lemur project website

(http://www.lemurproject.org/lemur/IndriQueryLanguage.html). The queries

generated here only use some of the features of Indri structured query language.

 To specify that a query term must be tagged with a particular tag, the query

term is appended with a period and the tag name. Part-of-speech tags for this

research are of the form “posdt” where the “pos” prefix specifies that the tag is a

POS tag and the “dt” suffix specifies that the POS is determiner. Thus, the query

“state.posnn” will search for the term state when it is tagged with “NN” signifying

a singular noun.

 We can also combine multiple field restrictions for a single term. For example,

to search for term “cruise” when it is tagged as both proper noun and as a person

named-entity, we separate the two terms with a comma, as in

“cruise.posnnp,nepeop”.

 The Indri structured query language can also search for particular fields

without specifying what term is tagged with that field. To search for any named-

entity of type location we use “#any:neloc”.

 Indri supports a number of ways to combine search terms (based on the

InQuery query language), which include taking the maximum, taking a weighted

sum, and several others. All queries generated for this research use the query

operator “#combine”

5.1.3 Generating Indri queries from natural language

Each natural language query is transformed automatically into a structured Indri

query. Each query is automatically tagged with the same annotations that the

corpus documents have been tagged with. Each query term tag may be used as a

restriction on the field value for that query term. Therefore, if a query term is

tagged as a noun, a location, and part of a verb phrase we can search for that term

with any combination of those tags in the corpus.

 The experiments in the following section investigate which combination of

these tags is most effective for retrieval performance. First, we will provide one

 28

complete example of the transformation from natural language to Indri query

language. For this example, we will use the first question from the TREC 2002

QA task, “In what country did the game of croquet originate?”

 First, the question is rephrased as an answer and becomes “the game of croquet

originated in XXX” where the “XXX” is a placeholder for a location named

entity. With the question in answer form, we can run all of our NLP annotators

on it. Running annotators for POS, shallow parse, NE, SRL, and dependency

parse, we get the result shown in figure #9.

Figure 9 - TREC annotated natural language query

We cannot use all of these annotations on the corpus since the corpus was not

tagged with all of these annotators, but we can use the POS tagger and the named

entity tagger.

 The baseline query which does not use any of the NLP annotations is:

 #combine(the game of croquet originated in)

If we wish to include the POS tags in the query, we can restrict each of the query

terms to only match corpus terms that have the same POS with the query:

#combine(the.posdt game.posnn of.posin

croquet.posnn originated.posvbn in.posin)

If we wish to include the NE tags in the query we can restrict each of the query

terms to only match corpus terms that have the same NE tag with the query:

 #combine(the game of croquet.nesport originated in)

In this case, only one of the query terms has a NE tag so only one term is different

from the original baseline query. To restrict each query to match in both POS and

NE tag we generate the query:

LEAF/1 O 0 B-NP/MOD_SP/1 DT the - MOD_A1/1

NP/4 O 1 I-NP/HEAD_SP NN game - ARG1/4

PP/1 O 2 B-PP/HEAD_SP IN of - MOD_A1/1

NP/2 B-Sport 3 B-NP/HEAD_SP NN croquet - MOD_A1/1

VP/4 O 4 B-VP/HEAD_SP VBN originated originate 0

PP/4 O 5 B-PP/HEAD_SP IN in - 0

NP/5 B-Loc 6 B-NP/HEAD_SP NNP XXX - ARG0/4

 29

 #combine(the.posdt game.posnn of.posin

 croquet.nesport,posnn originated.posvbn in.posin)

This query could be too restrictive. Perhaps some of the search terms never occur

in the corpus with exactly the same tags as in the query. If that’s the case we can

add other less restrictive terms to ensure that possibly relevant documents are not

ignored entirely just because the they are tagged with the wrong tags. One way to

do this is to generate two query terms for each of the terms in the original query

where one has the tag restrictions and the other is just a plain search term without

any tags specified. This technique is shown for this example below:

 #combine(the the.posdt game game.posnn of of.posin

croquet croquet.posnn originated originated.posvbn

in in.posin)

Finally, we can use a placeholder in the rephrased question where the answer

would normally appear if we know the named-entity tag. For this example we

know the answer is a location so we can add “#any:neloc” to the query. With all

of these features, we end up the query:

 #combine(the the.posdt game game.posnn of of.posin

 croquet croquet.nesport,posnn originated

 originated.posvbn in in.posin #any:neloc)

5.2 Results

In this section, we begin by describing each of the retrieval parameters, and then

look at the results for all combinations of these retrieval options. With an overall

perspective on how some retrieval options affect retrieval performance we will

further compare some of the combinations of retrieval options.

5.2.1 Retrieval options

Part-of-Speech (POS)

This option specifies that the tagged POS of the search term must match the

tagged POS of documents containing that term. This POS is one of the 50 part-

of-speech tags as shown in. For example, the search term “crowd” in the query

 30

“the largest crowd to ever come see Michael Jordan” is tagged with the POS

“NN.” This query term will only match occurrences in the corpus of “crowd” that

have been tagged “NN” and will not, for example, match the verb “crowd.”

Simplified-POS (SPOS)

Since the 50 POS classes may be too restrictive in some cases, we also have a

simplified POS feature. For example, in some queries we may not want to

distinguish between noun and plural noun. Perhaps in these cases we would just

like to differentiate among nouns, verbs, adjectives, and adverbs. The simplified

part-of-speech retrieval option does exactly this. These simplified POS tags do

not take into account the other POS tags that do not fall under noun, adjective,

verb, and adverb (such as determiners, etc.).

Named Entity Tag (NE)

This retrieval option specifies that if the query term is tagged with a named entity

tag that the corpus term must also be tagged with the same named entity tag. For

example, in the query “tom cruise is married to,” the query terms “tom” and

“cruise” are tagged as named entity “person.” Each of these query terms will only

match corpus terms that have also been tagged as “person.” Thus, corpus

occurrences of “cruise” used as a verb or a noun in the “cruise missile” sense will

not match this query term.

Raw search term (RAW-TERM)

Each of the three retrieval options above requires that the search term occur in the

corpus with the exact same tags. This retrieval option allows us to add back the

raw query term to the query. This will allow query terms to match corpus terms

that do not contain the same tags as the query term. However, by using this in

conjunction with tagged terms, the tagged term’s weight will cause documents

containing appropriately tagged terms to be ranked higher.

 31

Empty named entity slot (NE-SLOT)

For queries where the answer type has already been determined, we can add a

wildcard that matches any term that has the same named entity tag. For example,

the query “the game of croquet originated in X” and X has been tagged as a

location we add the Indri wildcard operator “#any:neLOC” which will match any

term that has been tagged as the named entity of a location.

5.2.2 Results

There are 32 combinations of these five features. Each set of retrieval options is

compared with four metrics: average precision, precision at 10 documents,

precision at 20 documents, and precision at 30 documents.

 Table 1 shows the set average (non-interpolated) precision over all 500 topics

in the query set. Entries in bold show where the average precision has increased.

 - with raw
term

with NE slot with both

no fields 0.1991 - 0.1973 0.1984

POS 0.1883 0.2063 0.1892 0.2066

SPOS 0.1867 0.2053 0.1876 0.2070

NE 0.1370 0.1656 0.1361 0.1660

POS, SPOS 0.1716 0.2013 0.1717 0.2014

POS, NE 0.1256 0.1675 0.1247 0.1694

SPOS, NE 0.1255 0.1670 0.1237 0.1670

POS, SPOS, NE 0.1071 0.1578

0.1039 0.1580

Table 1 - Average precision for each combination

Table 2 shows the precision at 10, 20, and 30 documents. (The three numbers in

each table entry are precision at 10 documents, precision at 20 documents, and

precision at 30 documents). Again increases in precision from the baseline are

shown in bold.

 32

 - with raw term with NE slot with both

no fields 0.1310, 0.0912, 0.0706 - 0.1284, 0.0892, 0.0699 0.1310, 0.0900, 0.0701

POS 0.1199, 0.0823, 0.0645 0.1317, 0.0909, 0.0709 0.1205, 0.0816, 0.0651 0.1313, 0.0910, 0.0704

SPOS 0.1223, 0.0840, 0.0646 0.1319, 0.0895, 0.0689 0.1217, 0.0828, 0.0640 0.1319, 0.0900, 0.0689

NE 0.0935, 0.0600, 0.0458 0.1062, 0.0751, 0.0587 0.0928, 0.0597, 0.0455 0.1069, 0.0749, 0.0593

POS,
SPOS

0.1111, 0.0762, 0.0598 0.1302, 0.0882, 0.0695 0.1096, 0.0748, 0.0604 0.1308, 0.0888, 0.0689

POS, NE 0.0823, 0.0552, 0.0433 0.1054, 0.0756, 0.0597 0.0832, 0.0548, 0.0431 0.1053, 0.0752, 0.0598

SPOS, NE 0.0794, 0.0536, 0.0413 0.1053, 0.0723, 0.0574 0.0800, 0.0540, 0.0408 0.1053, 0.0723, 0.0574

POS,
SPOS, NE

0.0702, 0.0472, 0.0368 0.1022, 0.0721, 0.0571 0.0702, 0.0469, 0.0372 0.1004, 0.0721, 0.0575

Table 2 - Precision at 10, 20, and 30 documents

Four of the combinations showed an increase in average precision. The relative

precision increase for each of the four combinations is shown in Table 3 below.

 AvgPrec Prec@10 Prec@20 Prec@30

POS w/ term +3.62 +0.53 -0.33 +0.42

SPOS w/term +3.11 +0.69 -1.86 -2.41

POS w/ both +3.77 +0.23 -0.22 -0.28

SPOS w/both +3.97 +0.69 -0.13 -2.41

POS&SPOS w/
term

+1.10 -0.61 -3.29 -1.56

POS&SPOS w/
both

+1.16 -0.15 -2.63 -2.41

Table 3 - Percentage increase for POS augmented queries

5.2.3 Discussion of Results

These results may be somewhat surprising. Perhaps one might think that

semantic information like the named entities tags would make a greater

difference, but in fact, it is the syntactic POS tags that give us an improvement.

There may be many reasons that the results are such including inaccuracies of

automatic taggers and typical distributions of some of the search terms with

various tags.

 33

5.2.3.1 Raw term and NE placeholder

Using the raw term

One consistent pattern in the average precisions over all topics is that the more

specific and restrictive the queries are, the worse the average precision is. This

means that any gains we get from the more precise query are offset by the

relevant documents that do not match the more precise query. Some of this

decrease in performance can be attributed to imperfect annotators.

 This results means that is necessary to include the original term without

restricting it to certain NLP taggings. By including search terms for both the raw

original term and the term in the context with the specified tags, we get the

advantages of specifying the NLP tags in that matching documents will be higher

ranked but we do not get the disadvantage that relevant documents without the

exact tags as the query are not matched. Thus by specifying both the raw original

term and a term with NLP tags specified (combining with the Indri #combine

operator) we are essentially re-ranking the results. Documents that match the

terms and their respective NLP tags will be ranked higher.

Using a NE placeholder

The next observation is that adding a named-entity slot when the answer type is

known sometimes helps but very little. Perhaps the first question to ask is why

adding this feature does not decrease performance. If the NE tagger is correct,

then any relevant document will have the correct tags somewhere in it. However,

even if the NE tagger is imperfect it is likely that most documents contain one of

the more broad NE tags (such as person, organization, and location). This may

also be the reason that this feature does not help very much, because very many

documents contain named entities of that type. This type of feature may have a

greater impact if used with a proximity operator.

5.2.3.2 Field restriction features

Having discussed using the raw term and an NE placeholder, we see that it is

necessary to include the raw term and that the NE placeholder does not have a

 34

large effect. The remaining discussion will assume that we are using the raw term

with each query and that results are not greatly impacted by whether or not we use

the NE placeholder.

Why do POS features work better than NE features?

POS and SPOS features improve the precision, but NE features do not. It is not

immediately clear why this is.

 One reason may be that in many cases NE tags do not buy very much. For

example, the first query in the set asks where the sport croquet originated. Since

the word “croquet” should always be tagged as a sport we gain nothing. If the NE

tagger does not consistently tag “croquet” as a sport, then this can only harm us.

Many other NE types may demonstrate the same behavior, such as proper nouns

that are not also common nouns (e.g. most last names).

 The other question about NE features is: when can they help? The answer

seems to be that they help if the named entity is also a common noun (e.g. Cruise

as in Tom Cruise vs. cruise as in cruise ship) or if there are two named-entities

with similar names but different types (e.g. Washington the person vs.

Washington the location). However, both of these cases are likely to harder for

the NE tagger to correctly tag automatically.

 So, if NE tags are not helping us right now, why do POS tags help? One

reason may be that searching for terms with respect to their part-of-speech does a

kind of “poor man’s” word sense disambiguation. For example, the two parts-of-

speech that the word state can be, noun or verb, also correspond to the two

broadest word senses for that word.

 A curious result that we see in the POS results is that POS does not do very

much differently than SPOS. One might have hypothesized that with 50 parts-of-

speech, matching them exactly is over-fitting. On the other hand, one could also

reason that the more specific parts-of-speech are more precise. For example, if

the query used a verb in past tense then it could be good to only match that verb in

the past tense (e.g. state vs. stated which might otherwise get stemmed to the

 35

same term). Therefore, it is not clear why the difference in not more pronounced,

a more detailed analysis of the individual queries and results would be needed.

 One final question may be, why do POS tags help the amount they do for these

experiments (~3% increase in average precision)? One reason could be that many

of the query terms in this set of queries have a much-skewed POS distribution (i.e.

they overwhelmingly occur in one POS). Alternatively, it is possible that for

some queries we do not want restrict the document terms to a particular POS

(perhaps “cruise” is used as both a noun and a verb in relevant documents).

 36

Chapter 6

Conclusions

In this research, we have discussed some methods of natural language processing

and information retrieval and how they may be used together. We have shown an

efficient way of augmenting corpora with NLP tags, some applications in which it

makes sense to do this, and a specific application where this method improves

retrieval performance.

 This framework can be used for a variety of applications, from linguistic

analysis tools to general text search tools. Although indexing the additional

linguistic data is more time and space hungry, the resulting data structures are

robust with many applications and provide additional power over similar

applications that do not use linguistic information in this way.

 In the specific application, natural language queries for documents in a corpus,

we saw that POS tags improve retrieval performance but that NE tags did not

make a large difference. We also saw that it is necessary to temper the results by

searching for both the original query terms and the query terms with linguistic

annotations.

 The increase in retrieval performance is modest but shows that there are gains

to be made by using more linguistic information for information retrieval. The

results open some new questions about how named-entity tags can best be used to

improve retrieval performance and how much tagging accuracy affects retrieval

performance.

 In conclusion, indexing additional linguistic tags makes sense because it

enables a large number of applications to reside on top of a general retrieval

engine. As we have seen, the performance increases depend on the quality of the

linguistic annotations but there is room for improvement.

 37

References

Baeza-Yates, Ricardo, and Berthier Ribeiro-Neto, Modern Information Retrieval,
New York: ACM Press, 1999. Chapter 5—pp117-140.

Callan, Jamie. “Text Representation.” Carnegie Mellon University. Pittsburgh,
PA. 2 February 2006.

Callan, Jamie. “Retrieval models: Boolean, vector space.” Carnegie Mellon
University. Pittsburgh, PA. 19 January 2006.

Cognitive Computation Group. “Named Entity Recognizer” 17 March 2006.
University of Illinois Urbana-Champaign.
http://l2r.cs.uiuc.edu/~cogcomp/demo.php?dkey=NER

Conference on Natural Language Learning. 15 April 2006.
http://ilps.science.uva.nl/~erikt/signll/conll/

English, Jennifer, Marti Hearst, Rashmi Sinha, Kirsten Swearingen, and Ping Yee.
Hierarchical Faceted Metadata in Site Search Interfaces. CHI 2002 Conference
Companion.

Francis, W. N., H. Kucera, Brown Corpus Manual. Providence, Rhode Island,
Department of Linguistics, Brown University. 1979.

Hearst, Marti, Jennifer English, Rashmi Sinha, Kirsten Swearingen, and Ping Yee.
Finding the Flow in Web Site Search. Communications of the ACM, 45 (9),
September 2002, pp.42-49.

Hearst, Marti. Next Generation Web Search: Setting Our Sites, IEEE Data
Engineering Bulletin, Special issue on Next Generation Web Search, Luis
Gravano (Ed.), September 2000.

Indri. lemurproject.org 2006

iTrack. 2005 http://l2r.cs.uiuc.edu/~cogcomp/demo.php?dkey=MIRROR

Kilgarriff, Adam, http://www.sketchengine.co.uk/

 38

Lambert, Benjamin. Statistical Identification of Collocations in Large Corpora
for Information Retrieval. University of Illinois Urbana-Champaign. 24 May
2004.

Lin, Dekang, 2005 <http://www.cs.ualberta.ca/~lindek/>

Munoz, Marcia, Vasin Punyakanok, Dan Roth, and Dav Zimak. A Learning
Approach to Shallow Parsing. Proc. of Joint SIGDAT Conference on Empirical
Methods in Natural Language Processing and Very Large Corpora. 1999.

Page, Larry, Sergey Brin, R. Motwani, and T. Winograd, The PageRank Citation
Ranking: Bringing Order to the Web. Stanford Digital Library Technologies
Project. 1998.

Punyakanok, Vasin, Dan Roth, and Wen-tau Yih. Generalized Inference with
Multiple Semantic Role Labeling Systems Shared Task Paper. Proc. of the
Annual Conference on Computational Natural Language Learning 2005.

Resnik, Philip, and Aaron Elkiss. The Linguist's Search Engine: Getting Started
Guide. Technical Report: LAMP-TR-108/CS-TR-4541/UMIACS-TR-2003-109,
University of Maryland, College Park, November 2003.

Roth, Dan, and Dmitry Zelenko, Part of Speech Tagging Using a Network of
Linear Separators. Proc. of Conference on Computational Linguistics (1998) pp.
1136--114

Shopen, Timothy, ed. Language Typology and Syntactic Description Volume I,
Cambridge University Press, 1985. Chapter 1 -- Parts-of-speech systems.

Treebank Part-of-Speech Tag Guide, 2002,
<ftp://ftp.cis.upenn.edu/pub/treebank/doc/tagguide.ps.gz>

Tu, Yuancheng, Xin Li, Dan Roth, PhraseNet: towards context sensitive lexical
semantics. Proc. of the Annual Conference on Computational Natural Language
Learning, 2003.

Tu, Yuancheng. <http://www.linguistics.uiuc.edu/ytu/pn/ >. 2006

 39

Appendix A

User Manual

1. BUILDING A INDEX

A. The Corpus Schema File

The first step in using this system is to describe the corpus by creating a schema

file. A schema file is a text file. Following this example is a description of each

parameter.

Index Indri will compile the Indri index in this location.

Corpus.path This is the location of the corpus. Indri will do a recursive

decent in to the folder and index all files in the folder and

recursive subfolders.

Corpus.class This is the class of the file to be indexed. This should be

set to ‘column’. Setting an alternative value will cause

Indri not to use the column indexing system.

Index apw_index

corpus.path data/apw

corpus.class column

memory 500m

collection.field docno

stemmer.name krovetz

usewn false

column Word 3

column POS 4

column chunk 6 BIO

column NE 7 BIO
 copy_index_to /usr/www/cgi-bin/belamber

 40

Memory The maximum amount of main memory that Indri will use

while indexing the corpus.

Collection.field This should be set to ‘docno’. Refer to the Indri

documentation for more information about this parameter.

Stemmer.name The name of the stemmer used by Indri while indexing.

‘krovetz’ is the recommended stemmer. Refer to the Indri

documentation for alternatives

Usewn Set to ‘true’ or ‘false’. This controls whether WordNet will

be used during indexing such that hypernyms and

hyponyms can be searched for. This option is not available

in the most recent release.

Column Column_Name Column_Number [BIO]

To specify the role of each column the line should start

with the keyword ‘column’ followed by the column name

followed by the column number. After the number, the

user may optionally specify if the column is in BIO-style.

See below for more information about column names and

BIO-styled columns.

Copy_index_to Optionally, the index can be copied to another directory

upon completion.

B. Building the supporting parameter files

Once the schema file is set up, run the Perl script

generate_build_files.pl to generate all the supporting files. This script

creates three files with names based on the file name of the schema file. For

example, if the schema file is names schema_file then the following three

files are created:

 1. schema_file.values

 2. schema_file.build

 3. schema_file.retr

 41

The script generate_build_files.pl may take a long time to run the first

time. It is necessary for Indri to have all column names and all possible values for

each column. This list of columns and values is used to create parameter files for

Indri and create another list that can be later used to assist with querying.

The first time this script runs, it reads the entire corpus to obtain the

possible values for each column. It then creates the three files:

 1. schema_file.values contains the possible values for each column. Each line

of the file corresponds to one column. The first value in each line is the name of

the column as specified in the schema file. The remainder of the line is all of the

possible values for that column, space-separated, in order of deceasing frequency.

2. schema_file.build is the parameter file used by Indri directly to build the index.

This file contains information indri uses to construct the corpus. This includes

crucial information such as the location of the corpus and the location to put the

index.

POS NNP NN IN DT JJ CD …

chunk NP VP PP
NE Num Peop LocCoun Date ProfTitle …

 42

3. schema_file.retr contains basic information necessary to query the Indri

index. The Indri runquery command needs two files: this retrieval parameter

file and a file containing the queries.

<parameters>

 <index>apw_index</index>

 <corpus>

 <path>data/apw</path>

 <class>column</class>

 </corpus>

 <memory>500m</memory>

 <collection>

 <field>docno</field>

 </collection>

 <stemmer>

 <name>krovetz</name>

 </stemmer>

 <columns>

<column><name>Word</name><number>3</number></column>

<column><name>POS</name><number>4</number></column>

<column><name>chunk</name><number>6</number>

<bio>true</bio></column>

<column><name>NE</name><number>7</number>

<bio>true</bio></column>

 <usewn>false</usewn>

 </columns>

 <field><name>POSA</name></field>

 <field><name>POSN</name></field>

 <field><name>POSR</name></field>

 <field><name>POSV</name></field>
 ...

<parameters>

 <index>apw_index</index>

 <count>1000</count>

 <rule>method:dirichlet,mu:2500</rule>

 <trecFormat>true</trecFormat>

 <runID>Exp</runID>
</parameters>

 43

2. USING AN INDEX

Using the resulting index is no different than using any index constructed by

Indri:

./IndriRunQuery index.lemur.retr query_file_name

Where index.lemur.retr is the retrieval parameter file and query_file_name is a

file containing one or more queries.

 44

Appendix B

Maintenance Guide

1. Files

This modified version of Lemur-Indri has the following additional files:

columnbuildindex/ColumnEnvironment.cpp
columnbuildindex/include/ColumnEnvironment.hpp
src/ColumnParser.cpp
include/column/ColumnParser.hpp
columnbuildindex/examples/generate_build_files.pl

Additionally, this file has been modified:

 src/ParserFactory.cpp

Also included with this version are:

columnbuildindex/columnbuildindex.cpp
columnbuildindex/Makefile
column_query/column_query.cpp
column_query/Makefile

Two files must be modified to compile:

 MakeDefns (Which must be modified by adding "wn" to the line beginning
"DEPENDENCIES".)
 Makefile (which must be modified by adding the line "$(MAKE) -C
columnbuildindex)

2. Classes

The column-format corpus support is contained within the following classes:

columnbuildindex/columnbuildindex.cpp
columnbuildindex/ColumnEnvironment.cpp
src/ColumnParser.cpp
src/ParserFactory.cpp

 45

A. columnbuildindex.cpp This class largely sets up all the data structures and

classes before indexing begins. This class is very similar to the class

buildindex.cpp that comes with Indri.

B. ColumnEnvironment.cpp This class is also mainly a supporting class and

defines the “environment” while indexing. This class is very similar to the

IndexEnvironment.cpp class.

C. ColumnParser.cpp Most of the work regarding the processing of columns is

defined in this class. This class parses the column-format documents and uses the

data to construct a ParsedDocument object.

D. ParserFactory.cpp This class native to Indri is slightly modified to instantiate

ColumnParser when that format is specified in the configuration. The “name” of

the ColumnParser is “column”. Aliases for this can be hard-coded into this class.

E. Other classes Are used within the main classes. TermExtent,

ParsedDocument, etc. Refer to the Indri documentation for more details about

those classes.

3. The ColumnParser class

Since the ColumnParser class is the workhorse of this IR implementation,

pseudocode for the algorithm is provided here:

For each line

Split the line into tokens, separated by a space or a tab

 For each column specified in the build parameters:

 If column name is “Word”

 Add term to the term vector

 Add the position to the positions vector

 If column name is “POS”

 Add raw POS to the tags vector

 Simplify the raw POS to (Adj, Noun, Verb, and Adv)

 Add simplifies POS to the tags vector

 Otherwise:

 Remove all punctuation from the tag name

 If “BIO” column, remove the leading “B-“ or “I-“

 Add string “column_name”+”column value” to the tags vector

 If Use_WordNet is true

 Query WordNet for Synonyms, hypernyms, and hyponyms

 For each hypernym, add to term vector "HYPERNYMOF" + word

 For each hyponym, add to term "HYPONYMOF" + word

 For each synonym, add to term "SYNONYMOF" + word

