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Abstract 
 

 
The goal of this research is to transform a text corpus into a database rich in 

linguistic information and robust with multifarious applications.  Computational 

natural language processing liberates the syntax and semantics of natural language 

to convert a plain text corpus into rich database that stores these implicit linguistic 

components.  Information retrieval techniques index into the otherwise implicit 

data that is encoded by the language and its syntax.  We use Lemur and the Indri 

query language to index this linguistic information.  The resulting index supports 

numerous applications that can utilize the additional linguistic information.  For 

one application, searching a document corpus with natural language queries, we 

show syntactic and semantic information that improve retrieval performance. 
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Chapter 1 

 

Introduction 
 

 

 

The complexities of human language make searching for information encoded in 

natural language far from simple.  The meaning, whether subtle or obvious to the 

reader, may be implicit in the language.  Keyword search limits users to locating 

information specified explicitly at the surface level.  Processing natural language 

text corpora helps to liberate the implicit syntax and semantics.  Liberating this 

linguistic information allows one to transform a plain text corpus into a database 

rich with linguistic information.  This database allows searchers to explicitly 

search for information that is encoded implicitly in the language.  NLP can be 

further used to process queries and use information implicit in natural language 

queries to locate relevant documents in a natural language database.  

Most contemporary search systems only support searching for words or 

phrases explicitly contained in a text (and possibly explicit metadata about the 

text such as subject headings), without respect to the syntax, semantics, or 

pragmatics of the terms in the original language.  Searchers may become aware of 

the limitations of keyword search when their original query fails and they begin to 

search for synonyms of their original search terms or look to their own intuitions 

about how linguistic characteristics manifest themselves in relevant documents 

(for example a profession researchers such as librarians might ask themselves, 

“would the author be writing this query term in present or past tense?”). 

The problem is that the user and computer have different representations 

of the information.  The user may have some notion of what the desired 

information will look like and project this notion into query terms that the user 

believes may be present in relevant documents.  However, the user may not be 
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able to estimate this correctly; the relevant documents may be written in a very 

different voice from that which the searcher uses.  The user’s search terms are 

estimated by the user and so are subjectively influenced by the user’s point-of-

view and experience. 

Another user searching for the same information (who perhaps has more 

knowledge about the field) may have a better idea of the context in which the 

information will appear and consequently be better able to choose search terms 

(for example field-specific terminology).  The two users may search be searching 

for semantically equivalent information but on the surface the two form very 

different queries neither of which may match the actual relevant documents. 

Techniques like latent semantic indexing (LSI) may be used to find 

relevant documents that do not explicitly use the query terms.  However, while 

this may improve retrieval performance in some cases by generalizing the query, 

at the same time it loses the ability to make very precise queries.  Ideally, we 

would like to model the semantics of the documents and queries so that we can 

generalize to other terms but not lose the original semantics of the query. 

Most information retrieval and search engines do not model the linguistic 

semantics of documents.  Most also do not model the syntax of the language.  On 

the other hand, if they do model the syntax it is limited to the simplest syntax: 

word order.   

The farthest extreme of modeling semantics would be to re-encode a 

corpus into a machine-interpretable form (such as logic) and store the corpus in a 

knowledge base (KB).  One difficulty with this solution is that the natural 

language sentences are often not easily translated to a logical form.  Another 

difficulty with this is that it almost necessitates a structured query language, 

because the user must be able to match predicates and relations in the KB. 

This research does not attempt to dig so deeply into the semantics, but 

attempts to use some of the linguistic syntax and semantics to aid with 

information retrieval.  Rather than construct an omniscient KB, we use existing 

statistical NLP tools to extract syntactic and semantic information from text.   
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 If the goal of information retrieval is to match the semantics of a user query to 

the semantics of a text documents, keyword search falls well short of the goal.  

Keyword search incorporates neither syntax nor semantics into the search 

heuristics.  This research attempts to make progress toward a more linguistically 

and semantically driven search engine.  This research combines syntactic and 

semantic analysis with information retrieval. 

This research incorporates systematic natural language processing (NLP) with 

information retrieval via existing inference network technologies.  This takes the 

information retrieval to the point where the semantics of the natural language 

corpus can be accessed by a query language as though it were a database.  The 

value of accessing information from a natural language corpus in this way is 

demonstrated by its generality, allowing multifarious applications.  However, it 

does not require an average user to learn and use a complex query language.  In 

fact, we show how effective structured queries can be automatically formulated 

from natural language queries and how these queries perform better than the same 

queries without linguistic annotations. 
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Chapter 2 

 

Information Retrieval and Natural 

Language Processing 
 
 
 

In this chapter, we introduce information retrieval and natural language 

processing to give the reader some background on these two subjects which are 

central to this research. 

 

2.1 Information Retrieval 

The information retrieval (IR) model we use is an example of ad hoc retrieval.  

This model is called ad hoc because users have information needs and to satisfy 

an information need they form a query ad hoc.  Once the information need is 

satisfied, they throw out the query and do not use it again.  The query is 

formulated ad hoc to help satisfy the information need.  This is opposed to text 

filtering IR techniques where the IR model retains a representation of the 

information need and over time select documents to present to a user.  However, 

the techniques presented in this research are sufficiently general that it could be 

applied to either ad hoc or text filtering IR. 

 In the standard IR model both the information need and the documents must 

first be translated into some alternate representation.  Figure #1 shows the first 

step of the basic IR process where documents and information needs are 

translated into a new representation according to Prof. Jamie Callan’s lecture 

notes from his Information Retrieval class taught at Carnegie Mellon University 

(Retrieval Models 2006). 

In most cases, the information need is translated by a user into a query.  

Queries are often keyword queries sometimes with Boolean or phrase operators.  
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The document is often represented as a “bag of words” or an “ordered bag of 

words” for IR with phrase operators.  Some more expressive document 

representations include support for structured documents that may have fields 

such as title, abstract, body, etc. 

 Some IR models extend the representation of the information need beyond the 

original keywords.  This can be done by augmenting the original query terms with 

additional terms added found in a variety of ways such as query expansion, 

relevance feedback, or machine-readable thesauri (see Baeza-Yates 1999 Ch. 5 

for more details).  The representation used in this research retains the original 

query terms but augments them with linguistic tags.  The text representation is 

augmented similarly. 

New methods of text representation often change the way documents and terms 

are weighted and how to map document terms into new vector spaces.  For 

example, latent semantic indexing performs a change of basis in the vector space 

where the original dimensions correspond to documents and the terms in them.  In 

this research, we treat the text representation as the original text (with some 

stopping and stemming) augmented with linguistic tags. 

This research differs from other approaches to IR in how we represent 

documents and queries.  The information need is represented as a natural 

language query.  It is often a one-sentence description of the information need.  

Information need Document 

Representation Representation 

……………. 

Figure 1 - The first steps of the Basic IR process (Callan 2006) 
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We leverage the fact that the information need is described in natural language so 

that the order and structure of the description can be used to aid retrieval.  What is 

different about our representation is that we explicitly represent the linguistic data 

that is automatically extracted from the natural language query.  So, our 

information need is expressed as a natural language sentence with explicit 

linguistic information (such as parts-of-speech, named-entity types, etc.)  

 Similar to the query representation, the document representation explicitly 

includes automatically extracted linguistic information.  Transforming a plain text 

document into our representation means passing it through automatic natural 

language processing components and annotating the documents with the linguistic 

information.  The resulting representation is far more than an ordered bag of 

words.  The result includes linguistic tags on individual words as well as small 

windows of linguistic spans such as sentence, phrase, named-entity that can be 

used in the retrieval model.  An example of what this representation buys us is the 

ability to search for the terms cheap and jewelry in the same NP (noun phrase).  

This will allow us to search for sentences where cheap modifies jewelry but not 

other parts of the sentence.  This query would match both “cheap jewelry” and 

“cheap sterling silver jewelry” but not “…expensive jewelry given to a cheap 

person…”  The distinction between these two cannot be represented by proximity 

operators alone since proximity operators can easily cross phrase boundaries. 

Some members of the IR community would argue that this is a wasteful 

text representation.  For one thing, it requires significant additional storage to 

store the linguistic information.  Another drawback to this text representation is 

that it is time-consuming to process a corpus and extract all that linguistic 

information.  It is true that the NLP is time-consuming because every sentence in 

every document must be processed by several annotators.  Some annotators, such 

as syntactic parsers, could take approximately one second per sentence.  If the 

indexer only indexes the raw terms, it may be able to process up to 40 gigabytes 

per hour.  Annotating every sentence requires much more time.  On the other 

hand, data only needs to be processed once, so the time to index may not be an 

important factor if the corpus is relatively static.  The argument in favor of 
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spending the time to annotate each sentence is that we get better retrieval 

performance and can generate queries that are more expressive. 

One could argue whether as to whether we are justified in indexing all this 

additional linguistic data.  The argument could be made that most of the necessary 

information is on the surface.  However, the field of linguistics studies the 

intricacies involved in translating from some mental representation to a surface 

representation.  Humans when reading written language need time to read and 

understand the text, so it may be necessary for the computer to slow down to 

“read” the text to gain a better “understanding” of what the text really says. 

  

2.2 Natural Language Processing 

Much of the work that has been done in natural language processing (NLP) has 

not been applied to IR.  The extent that most search engines use NLP is to match 

morphological variants of query terms.  In this section, we discuss some of the 

NLP techniques we apply to IR.  These include syntactic parsing, part-of-speech 

(POS) tagging, named entity recognition, and others. 

NLP algorithms automatically extract information contained implicitly in 

the text.  Before discussing the application of these NLP techniques to 

information retrieval, it is important to understand the state-of-the-art NLP 

research and how much information we can hope to extract automatically from 

language in text format. 

Much NLP research has been to identify syntactic features in language.  

Parsing, chunking, POS tagging, lexical cohesion are all examples of syntactic 

analysis.  Semantic analysis, such as semantic role labeling, has generally not 

achieved the same degree of success as syntactic analysis.  Since it seems that 

humans need background knowledge to comprehend the meaning of a sentence, it 

should not be surprising.  Some researchers in the field see syntactic NLP as “low 

hanging fruit” which has been the primary focus of NLP researchers at the 

expense of research in semantic NLP. 

This section provides an overview of the NLP techniques that have been 

used in this research.  These include both syntactic NLP such as parsing, shallow 
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parsing, part-of-speech tagging, as well as semantic NLP such as named-entity 

tagging and semantic role labeling. 

 

2.2.1 Syntactic NLP 

Part-of-Speech Tagging 

Part-of-speech may be one of the most basic forms of syntax.  All languages have 

parts-of-speech, although the word classes vary from language to language 

(Shopen 1985).  The reader is likely familiar with broadest part-of-speech word 

classes such as verb, adjective, noun, etc.  These word classes can be further 

broken down many times over (such as into plural nouns, infinitive verbs, etc.).  

In English, there is no canonical set of word classes.  Linguistic typologists 

generally formulate tests to judge what part-of-speech a particular word is.  

However, even these linguistic tests can discover conflicting evidence for several 

parts-of-speech.  For example, the English word many shows the behavior of 

determiner, predeterminer, and adjective. 

 A rather large set of word classes is used by the Penn Treebank project (shown 

in Figure #2).  These include non-alphabetic classes to encompass all tokens 

including punctuation.  The Penn Treebank project provides an extensive manual 

of these parts-of-speech and how manual annotators are to determine a POS in 

context (Treebank 2002). 

 In this research, a POS classifier is used to tag the corpus with POS tags.  This 

POS tagger is based on the SNoW learning architecture (Roth 1998). 
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Figure 2 - Penn Treebank parts-of-speech 

 
Syntactic parsing 

Whereas parts-of-speech may be the most basic level of syntax, a full syntactic 

parse contains the most syntactic information.  The high information content in a 

syntactic parse tree may be overwhelming for many computer applications, 

including information retrieval.  In a full-parse, each word is a member of 

numerous constituent structures which are not readily collapsible into a single 

compact description of that constituent structure.  Figure #3 shows one way of 

describing syntax and grammatical roles in a compact form.  These are syntactic 

parse tags used in PhraseNet (Tu 2003). 

# Pound sign NNP Proper singular noun 

$ Dollar sign NNPS Proper plural noun 

'' Close double quote PDT Predeterminer 

`` Open double quote POS Possessive ending 

' Close single quote PRP Personal pronoun 

` Open single quote PP$ Possessive pronoun 

, Comma RB Adverb 

. Final punctuation RBR Comparative adverb 

: Colon, semi-colon RBS Superlative Adverb 

LBR Left bracket RP Particle 

RBR Right bracket SYM Symbol 

CC Coordinating conjunction TO to 

CD Cardinal number UH Interjection 

DT Determiner VB Verb, base form 

EX Existential there VBD Verb, past tense 

FW Foreign word VBG Verb, gerund/present participle 

IN Preposition VBN Verb, past participle 

JJ Adjective VBP Verb, non 3rd ps. sing. present 

JJR Comparative adjective VBZ Verb, 3rd ps. sing. present 

JJS Superlative adjective WDT wh-determiner 

LS List Item Marker WP wh-pronoun 

MD Modal WP$ Possessive wh-pronoun 

NN Singular noun WRB wh-adverb 

NNS Plural noun  
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 A word in a parse tree can be described by the depth, the words in the same 

constituent structure, the head word of that structure, the type of constituent 

structure, and other information about the structure that it modifies or attaches to.  

Thus, for information retrieval it is important that we choose only features that 

can be used effectively. 

 One way of using all the information in a parse tree for information retrieval 

would be to treat each constituent structure as a section of the document.  This 

would allow the user to search for terms that occur in any specified type of 

constituent (e.g. nouns phrase or s-bar) and search for terms that co-occur in the 

same constituent structures.  One could imagine a document scoring function that 

weights more highly query terms that co-occur in smaller constituent structures 

(this would be similar to a scoring function based on term proximity but would be 

proximity within the parse tree).  For example, given the parse: 

 ((Jack and Jill)NP (went (up (the hill)NP)PP)VP)S. 

We could treat each phrase as a section of the document.  Picture the sentence as a 

structured document with section and subsection.  Then section S is the entire 

document, the first NP is section 1, VP section 2, PP section 2.1 and so on.  In 

this way, we can directly apply methods for structured retrieval to linguistic 

retrieval. 

 

NOFUNC NP NPSBJ VPS PP 

ADVP VP ADJPPRD NPPRD VPSSBAR 

NPTMP ADVPTMP VPSTPC VPSNOM NPLGS 

SBARADV ADJP NPADV VPSADV VPSINV 

VPSPRP ADVPMNR SBARTMP PPPRP  

PPLOCCLR SBARPRP  PPPRD ADVPCLR 

VPSPRN VPSCLR NPLOC ADVPLOC ADVPDIR 

PPDTV ADVPPRD WHNP  CONJP 

NPHLN VPSQ VPSNOMSBJ SBARPRD VPSPRD 

NPCLR PPPUT NPTTL ADJPPRDS NPTMPCLR 

 INTJ  PPTMPCLR PPCLR 

Figure 3 - Syntactic parse tags 
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Shallow parsing 

We do not attempt to index an entire syntactic parse of each sentence as discussed 

in the previous section.  Rather, as a simplification of the syntactic parse, we only 

consider the main constituent structures of a sentence as “chunks” of the sentence.  

This is in effect a “shallow” parse.  Thus, a sentence may be partitioned off into a 

noun phrase (NP) subject, followed by a verb phrase (VP), and perhaps ending 

with a prepositional phrase (PP).  This type of NLP may be particularly useful for 

IR since it breaks a sentence down into a few manageable chunks without greatly 

increasing the amount of data.  One use of a shallow parse in IR would be to use a 

document scoring function to give a higher score to documents that use some of 

the query terms in the same phrase both in the query and in the document.  The 

shallow parser used in this research was developed by the Cognitive Computation 

Group (Munoz et al. 1999). 

 

Lexical Cohesion 

Cohesive lexical units are multi-word terms that together function as a member of 

the lexicon.  An example of this is fire hydrant in which the meaning is not 

obviously inferred from the words in the phrase alone.  A certain amount of 

background knowledge is needed to understand the phrase.  For many of these 

phrases it can be assumed that speakers of the language have a lexical entry for 

that term. 

 This is an aspect of NLP where it is not known precisely how NLP can help 

IR.  Jamie Callan asks in his Information Retrieval course at Carnegie Mellon 

University “Does phrase indexing help?”  There is no definitive answer, “it works 

well in some situations … it ought to work in a wider range of situations” (Text 

Representation 2006). 

 In previous unpublished research this author showed that using a variety of 

information theoretical methods to identify cohesive multi-word lexical units 

improves retrieval performance on the same test suite described in chapter 8 

(Lambert 2004).  By automatically identifying multiword lexical units in both the 
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corpus and queries, we increase precision by ranking higher documents that 

contain the multiword search terms as a unit rather than just matching documents 

that contain both words.  The lexical units identified were not used in the 

experiments described in chapter 8. 

 

2.2.2 Semantic Language Processing 

Named Entity Recognition 

Many NLP tasks are semantic in nature.  Named-entity recognition (NER) is 

perhaps one of simplest methods of semantic NLP.  NER is semantic in the sense 

that the tagger must attempt to identify the type of the referent (e.g. person, 

organization, or location).  A NER may use syntactic clues to determine the entity 

type (e.g. nearby words such as “Mr.”), but ultimately is determining some 

semantic information about the words.  We can tell that this is semantic 

information because named-entities are generally nouns and any named-entity 

could be replaced by any other NE (that agrees in number and gender) and the 

sentence would remain syntactically correct.  However, the sentence would 

probably only make sense semantically if the named-entity were replaced by a NE 

of the same type. 

The NER used in this research was developed by the Cognitive Computation 

Group (NER 2006).  See figure #3 for the named-entity tags used in this research.   

Number Medical Food 

People NumberUnit Religion 

LocationCountry OrganizationPoliticalBody Journal 

Date LocationState LocationStructure 

ProfTitle Sport NumberZipCode 

OrganizationCorp OrganizationTeam Book 

Organization Animal Plant 

Location Event LocationMountain 

LangRace DayFestival OrgCGroup 

LocationCity OrganizationUniv LocationRiver 

Money Color Perform 

NumberPercent NumberTime Art 

Figure 4 - Named-entity tags 
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Semantic role labeling 

Another type of annotator that attempts to extract semantic information directly is 

a semantic role labeler.  Semantic role labelers identify how the various noun 

phrases relate to the verb in a sentence.  For example, in the sentence “John threw 

the ball to Mary,” John is the agent who did the throwing.  In this example, John 

is also the subject of the sentence.  Therefore, if we want to search for documents 

that talk about John throwing things, we could use our syntactic features to search 

for documents that contain a sentence with John as the subject and throw as the 

verb.  However, in the case of passive sentences such as “The ball was thrown to 

Mary by John” the subject is not the agent of the verb.  In this example sentence, 

the ball is the subject.  By labeling the semantic roles of each sentence, we can 

locate passive sentences that talk about John throwing by searching for sentences 

that contain John as agent with the verb throw. 

 Generating structured queries from a user’s input is discussed further in the 

chapter on results, but semantic role labels go hand-in-hand with interpreting 

natural language queries.  For example, for “when” questions we should search 

for sentences that have a temporal modifier (arg-tmp in semantic role labeling 

parlance).  Questions with the subject “who” (e.g. “who threw the ball?” should 

search for sentences with an agent (arg0) that have a person named-entity tag.  

Questions using the word “whom” (e.g. “to whom was the ball thrown?”) should 

search for sentences with a patient (arg1) role filled by a person named-entity. 

 Semantic role labels are not used in the experiments described in chapter 5 as 

the corpus had not been tagged with semantic role labels at the time of this 

writing.  The obstacle to such an evaluation is that SRL taggers are relatively slow 

compared to other NLP taggers and would take a long time to process an entire 

corpus.  Questions were SRL tagged with the Cognitive Computation Group’s 

2005 CoNLL semantic role labeling shared task submission (Punyakanok).  These 

question could be readily transformed into the appropriate queries were the corpus 

SRL tagged. 
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Chapter 3 
 

Related Research 
 
 
 
Some research with the goal improving information retrieval performance has 

focused on exploiting information gathered that is meta to the text itself.  For 

example, citations or links to a document (Page 1998) are data gathered from 

external sources.  Latent semantic indexing and query expansion also fall into this 

category because they rely on other documents in the computation. 

A deeper linguistic analysis is often only performed for specialized 

implementations of information retrieval.  Question answering systems generally 

rely on language processing heavily for question classification, named entity 

tagging, and answer extraction.  Some systems such as the linguist’s search 

engine (Resnick 2003) are specifically designed to search for linguistic 

phenomena.  It seems that there has been limited research on using deep linguistic 

analysis for general information retrieval.  Many researchers prefer to develop 

more sophisticated algorithms to work with the same surface-level data. 

See chapters 2 and 3 for a discussion more broad research related IR and 

NLP respectively.  This chapter describes research aimed at using NLP in close 

coordination with IR. 

 

3.1 Linguist’s search engine 

The Linguist’s Search Engine (Resnick 2003) developed at University of 

Maryland is a powerful search engine specifically designed to search for syntactic 

structures.  Users enter English sentences that are parsed into syntactic parse trees 

and displayed graphically and textually.  The textual parse representation is 

shown as the original words annotated with parts-of-speech and constituent 
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structures designated by embedded parentheses.  This text can then be edited to 

form a query. 

 The parse of the sentence “Jack and Jill went up the hill” is:  

 

(S1 (S (NP (NNP jack) (CC and) (NNP jill)) 

(VP (VBD went) (PRT (RP up)) (NP (DT the) 

(NN hill))))) 

 

If we want to search for other sentences that contain the verb went followed by 

the particle up.  We remove the entire parse except the part designating the 

phrasal verb: 

(VP (VBD went) (PRT (RP up))) 

Similarly, we can search for the verb look followed by the particle up with the 

following query: 

(VP (VBD look) (PRT (RP up))) 

The Linguist’s Search Engine is designed to search for linguistic patterns 

in a corpus and provides support for processing and searching portions of the 

Web.  The Linguist’s Search Engine is similar in its implementational goal to this 

research (to search for linguistic structures in corpora). 

 The Linguist’s Search Engine differs from this research in that it searches only 

for structures in a full syntactic parse.  It is also designed primarily to be used by 

linguists to search for individual sentences rather than entire documents.  The 

Linguist’s Search Engine parses sentences in real time while crawling a given 

subdomain of the Web. 

 

3.2 Dekang Lin’s Research 

Dekang Lin’s research achieves some of the same functionality as described here.  

Lin’s demos (Lin 2005) are not intended to search for documents, but rather to 

mine corpora for linguistic dependencies and relations.  Lin’s software will find 

other words that a given word is used with in many different grammatical 

contexts (e.g. adjectives used with a given noun). 
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 In one demo, entering the term water shows that the most frequent noun 

occurring immediately after water in the corpus is district (as in water district), 

the second most frequent noun is use (as in water use) and so on.  We also see 

that the most frequent noun that comes before water is _SPEC.  When water is 

used as the first conjunct of two nouns the most frequent second conjunct is food 

(as in water and food).  When used as the second conjunct of two nouns the most 

frequent first conjunct is electricity (as in water and electricity).  Lin’s research is 

similar to the research described in this paper in that we a querying a corpus for 

linguistic phenomena, it differs in that we extract as the results (co-occurring 

words vs. relevant documents). 

 

3.3 The Sketch Engine 

The Sketch Engine (Kilgarriff), developed by Adam Kilgarriff and Pavel Rychly 

at Lexical Computing Ltd., is a “new Corpus Query System incorporating word 

sketches, grammatical relations, and a distributional thesaurus.  A word sketch is 

a one-page, automatic, corpus-derived summary of a word's grammatical and 

collocational behaviour.”  (Kilgarriff)  For example, entering the noun food into 

the Sketch Engine we are given a “sketch” of the noun which tells us among other 

things: verbs it occurs as the object of (the most common being eat), verbs it 

occurs as the subject of (contain), nouns that modify it (junk), nouns it modifies 

(poisoning), and many others.  The Sketch engine is very similar to the Dekang 

Lin’s demos, except that it identifies different word relations (such as subject of) 

than Lin and uses a more interesting statistical metric to rank the words it finds.  

 

3.4 PhraseNet 

PhraseNet, developed by Yuancheng Tu, Xin Li, and Dan Roth at University of 

Illinois, is an example of a “context-sensitive lexical semantic knowledge system” 

(Tu 2006).  PhraseNet disambiguates WordNet word senses based on the context 

in which they are found.  The context in this case could consist of both the 

syntactic structure of the sentence (e.g. Subject-Verb as in “he ran” or Subject-

Verb-Object-PrepPhr as in “he gave it to me”) and words in the sentence.  This 
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can be used to disambiguate the word sense for fork in “they ate a cake with a 

fork” since in that context the object of the preposition is usually either a utensil 

(e.g. spoon or fork) or a food (as in “cake with strawberries”).  Thus, we know 

that the word sense for fork is utensil not as in fork in the road.  In this example, 

disambiguating the word sense also tells you what the PP attaches to (if it is a 

utensil it attaches to the verb, if it is food is attaches to the object cake).  

PhraseNet is different from previous approaches in its novel use of WordNet to do 

word sense disambiguation. 

 

3.5 Metadata-based Search 

There is much research that shares the goal of this research of improving 

information retrieval.  Some approaches attempt to improve retrieval performance 

algorithmically or with techniques like automatic query expansion.  Some more 

recent approaches attempt to use external metadata about the documents.  This is 

the case for the “semantic web”.  These systems operate by searching within the 

metadata associated with the documents.  For these systems the documents 

generally must be manually annotated with metadata.  The metadata is a often a 

concise and precise description of the content in the document.  The metadata 

description of a document may use words that are not present in the document.  

Thus, a searcher who knows the correct topic but not words present in a document 

will be better able to find the right sources. 

 This research does not utilize externally provided metadata, rather it uses 

implicit semantic data in the language.  This research could be extended to also 

search for metadata.  Some work done by Marti Hearst shows how this metadata 

could be used to aide users in navigating an “information space” (e.g. a corpus).  

They show how users can find information more quickly and are less likely to get 

lost of overloaded by navigating a very large information space (English 2002; 

Hearst 2002; Hearst 2000). 
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Chapter 4 
 

Software Architecture and 

Applications 
 
 
 

4.1 Software Architecture 

This software derives from the retrieval architecture of Lemur’s Indri (successor 

of the popular Lemur IR engine) (Indri 2006).  Indri is a powerful new extension 

to the Lemur information retrieval engine which incorporates a structured query 

language and inference network into the Lemur framework.  Indri provides 

support for indexing a number of documents types including plain text, HTML, 

PDF, and XML.  When indexing XML documents, the query language allows a 

user to specify in which sections of an XML document query terms should occur. 

The research implementation described in this paper builds upon the 

components of Indri which allow tag-based searching of XML documents.  While 

the XML format is convenient for some purposes, especially for annotating text, 

there is much redundant information.  This redundancy is especially pronounced 

when XML is used for the numerous and short-spanning tags generated by NLP 

annotators.  Instead of XML, we use a very compact column format.  This format 

allows us to store very large corpora in nearly the minimum space required 

without recoding terms and tags.  Many natural language processed corpora are 

represented in this column format as well so data is readily available. 

A typical column format corpus has one word or token per line.  

Accompanying each word on the line are a number of “tags” for that word 

separated by tab characters and forming columns.  For example, one column may 

contain the part-of-speech of the word in that row; another column may have the 

grammatical role of the word (examples are shown in chapter five). 
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Column-format files are often used as a standard file format.  This could 

be because of the ease in parsing and compact representation.  The Brown corpus 

which may be the first compiled machine-readable English corpus was altered to 

incorporate part-of-speech tags in 1979.  This new version called “form c” 

represented the corpus in a column format with the words in the first column, the 

part of speech in the seconds column, and the location in the corpus in the third 

column (Francis 1979).  This format continues to be used; the Conference on 

Natural Language Learning (CoNLL) has used this format to supply the data to 

teams in its yearly “shared task” (Conference 2006). 

The software artifact resulting from this research, allows one to specify the 

meaning of each column of a column-format corpus in a corpus schema then 

index the corpus with the inclusion of the column information.  The Indri 

structured query language can be used without modification to search for terms 

subject to any specified constraints on what the value of each column should be.  

For example, if one column is the word’s part-of-speech, a simple Indri structured 

query can be formulated to search for words when the part-of-speech is a noun or 

a verb. 

Details on the usage of this software are given in Appendix B.  Further 

details on the implementation are given in Appendix A. 
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4.2 Applications 

One of the values of this system is that it may be used as the underlying 

technology for many other applications.  Each of the applications described in this 

chapter could be implemented in a straightforward manner with this system. 

 

4.2.1 PhraseNet 

PhraseNet, as described in Chapter 3, is currently implemented with a relational 

database.  The database backend is easy to use, but does not scale well to large 

corpora.  Indri’s inference network allows for much faster searching.  Whereas 

join operations in a relational database are very slow, the inference engine can 

make complex queries quickly.  PhraseNet data is stored in column-format, so it 

would be simple to deploy.  The only modifications necessary would be for the 

Parser 

IndriIndex
er 

Indri Index 

Corpus 
Corpus 

Schema 

Query 

Ranked list 
of 

documents 

List of 
tags… 

Figure 5 - Software Architecture 
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Web forms to generate the appropriate Indri queries instead of SQL queries and 

some post-processing of the results to obtain the desired output. 

 

4.2.2 iTrack  

iTrack is another application that could be built on top of the research system 

described in this paper.  iTrack is a system developed by the Cognitive 

Computation Group at University of Illinois (a.k.a. the MIRROR project).  iTrack 

is intended to track named entities and to which other names entities they are 

associated.  This can be used for entity resolution to determine whether the string 

“Clinton” refers to Hillary or Bill.  It does this by tracking with which other 

named entities an entity is closely associated.  We can find other person named-

entities that co-occur in the same sentences as Bill Clinton with the following 

Indri query: 

 

#combine[sentence](“Bill Clinton”.nePerson 

#any:nePerson) 

 

This query retrieves all documents that contain the string “Bill Clinton” that has 

been NE tagged as a person in the same sentence as another string that has been 

tagged as a person named-entity.  These documents can be further processed to 

retrieve which people co-occur with “Bill Clinton” most frequently. 

 Presently, iTrack used other means to track these named entities.  However, it 

would be straightforward to achieve this functionality with the system described 

in this paper. 

  

4.2.3 Question Answering Systems 

Many question answering (QA) systems may already employ some advanced 

retrieval functionality.  QA systems that use question classification to determine 

the type of entity that the answer is especially benefit from being able to search 

for named entities.  For example, if the question is a who question, the retrieval 

component of the QA system can search for documents that contain the query 

terms as well as other terms that are tagged as entities of type person. 
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4.2.4 Active machine learners 

Active learning is a paradigm within machine learning in which the learning 

algorithm is able to select training examples such that it can converge to a good 

hypothesis more quickly.  For many NLP tasks, text from reputable edited sources 

such as newspapers is considered positive training examples since they are 

“correct” sentences in the language.  Such systems may benefit from an advanced 

language query system, as they can quickly check hypothesis sentences or 

sentence fragments.  For example, a language generation system with low 

confidence as to the preposition for a particular prepositional phrase can query for 

all examples of that preposition used with the sentence’s verb.  The results (or 

lack thereof) may help to choose the preposition or reformulate the sentence.  This 

use case of this system is not currently deployed but could be easily. 

 

4.2.5 Advanced linguistic search 

This application is similar to the Linguist’s Search Engine (Resnick 2003), 

allowing a user to specify query terms and linguistic properties about them.  This 

would allow a user to specify the POS, grammatical role, named-entity, or any 

other indexed linguistic tags for each term.  This application would utilize the 

same types of queries as are used in chapter 5 except that the queries would not be 

constructed automatically but the linguistic properties would be specified 

explicitly by the user. 

 

4.2.6 Toward a semantics-based search engine 

Only a few semantic tags have been discussed thus far.  The methods used in this 

research can be extended to include potentially even more useful tags.  For 

example, we can label words in the corpus with their synonyms or with 

unambiguous concept tags (after the word-sense or entity reference has been 

disambiguated).  It may also be possible to index relations among the concepts in 

the corpus and search for concepts involved in those relations. 
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Chapter 5 
 

Experiments and Results 
 
 
 

Up to this point, we have discussed the system, some NLP and IR used in the 

system, and possible applications for this framework.  Next, we will turn to a 

specific application and some experimental results for this application. 

 We apply the framework to natural language queries for the TREC QA task.  

What makes this application different from other QA systems is that we use a 

natural language query and automatically generated NLP tags to formulate a 

structured query.  After retrieving documents, we do not attempt to perform 

answer extraction from the retrieved documents.  The experimental results show 

how retrieval performance is affected by augmenting queries with various 

combinations of NLP tags.  The results show that part-of-speech tags improve 

performance more than named-entity tags. 

 

5.1 Experimental Setup 

The goal of these experiments is to determine whether transparently adding 

automatic NLP to corpora and queries improves retrieval performance.  We tag 

both queries and the corpus with several types of linguistic data.  The experiments 

compare various combinations of linguistic features used in the experiments. 

 For the indexing and retrieval, we use Indri 2.2 (Indri 2005).  The Indri 

retrieval engine includes support for searching within specific fields in a 

document.  The fields could be arbitrary spans of a document.  Perhaps originally 

intended to describe larger sections of a document such as title, abstract, body, 

sections, etc., they may be used to specify arbitrary regions of the document.  For 

this research, the fields indexed are linguistic tags. 
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 Let us begin with a simple example of how linguistic tags may be used as the 

fields of a document.  We could take the process of shallow parsing to break 

sentences into smaller chunks (clauses and phrases).  Chunking the sentences in a 

document sections it off into many small sections (several per sentence).  This is 

useful for retrieval because the same Indri function that retrieves documents that 

contain certain words only in the abstract could be used to retrieve documents 

that contain certain words but only in prepositional phrases. 

 The primary linguistic tags used in these experiments are part-of-speech tags 

(POS) and named-entity (NE) tags.  The POS tags are used to generate indexed 

sections of the document that are a single word long.  NE tags are used to 

generate document sections that are one or more words long. 

 Indexing these linguistic fields allows us to generate queries that match certain 

linguistic properties of the documents in the corpus.  For example, one could 

search for the term “state” but only when it is POS tagged as verb.  If we know 

we want the verb state but we do not specify it, many documents that contain the 

noun state will be retrieved as well. 

 While the user could write structured queries constraining each term to a 

particular POS, this creates work for the user and the human-computer interaction 

becomes less seamless.  However, if the user generates a query in written natural 

language we may be able to automatically tag the same linguistic features and use 

those to generate a better query.  We leave manual query construction to domain 

experts such as linguists who want to have very precise control over the query. 

 Before describing the specific configurations for each experiment.  Let us see 

an example of how the queries and corpora are represented and how those are 

used by Indri. 

 

5.1.1 Document and query representation 

Since we would like to do document retrieval over very large corpora and we 

need to annotate the corpus with additional linguistic tags, it is important that we 

keep the corpus representation compact.  To achieve this we store the corpus in a 

column format.  Additionally a corpus schema is used to denote what the value in  



 25 

each column of the corpus corresponds to (e.g. part-of-speech tags, etc.) (see 

figure #6).  This avoids storing redundant information and using any more syntax 

than necessary (e.g. as opposed to XML tags which are duplicated and surrounded 

by additional syntax). 

 

 

Figure 6 - Example sentence from the AQUAINT corpus 

 
Figure #6 shows a sample of a document from the corpus in column format.  Here 

we see the document terms in the column three, POS in column four, shallow 

parse in column five, and NE tag in column six.  Columns with all zeros may be 

utilized for other purposes but are not used in this corpus.   

 We must specify how each of these columns is to be indexed.  To do this, we 

write a schema that describes each column.  We also include all of the parameters 

that Indri needs so that we can automatically generate the build parameter files for 

Indri.  This schema provides the parser with all the information it needs to parse 

the columns and the provides Indri with all the information it needs to begin 

indexing.  See figure #6 for an example schema file; the first six lines are 

parameters for Indri and the last four lines are parameter for the column parser. 

  0    0       07/04/1998 NN      O       B-NP    B-Num 

  0    1       07         CD      O       I-NP    B-Num 

  0    2       :          :       O       O       I-Num 

  0    3       50         CD      O       B-NP    I-Num 

  0    4       :          :       O       O       O 

  0    5       00         CD      O       B-NP    B-Num 

  0    6       UBS        NNP     O       I-NP    B-OrgCorp 

  0    7       chairman   NN      O       I-NP    O 

  0    8       :          :       O       O       O 

  0    9       pressured  JJ      O       B-NP    O 

  0    10      banks      NNS     O       I-NP    O 

  0    11      must       MD      O       B-VP    O 

  0    12      carefully  RB      O       I-VP    O 

  0    13      consider   VB      O       I-VP    O 
  0    14      options    NNS     O       B-NP    O 
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Figure 7 - Example corpus schema file 

 

 This schema shown in figure #7 shows the type of information in each of 

columns 3, 4, 6, and 7.  It also shows that columns 6 and 7 are in BIO (beginning-

inside-outside) format.  We use BIO tags to specify that the label spans more than 

one word.  Since values in BIO columns are prefixed with a ‘B-‘ or an ‘I-‘ we 

must tell the parser that the prefix is not part of the value of the tag.  The schema 

also specifies parameters to Indri such as the location of the corpus, the location 

to build the index, the maximum amount of memory to use when indexing, the 

stemmer, etc. 

Queries are represented in a similar format to documents in the corpus.  

This example query (see figure #8) uses a different schema than the documents.  

This query also contains more linguistic information than the documents in the 

corpus (e.g., the query has dependency parse tags and semantic role labels). 

 

 

Figure 8 - Sample column-format query from the 2002 TREC QA task 

 

 

5.1.2 Indri’s Structured Query Language 

Indri’s structured query language supports querying for terms and putting 

constraints on what portions of the document terms occur within as well as 

  index                /home/belamber/indicies/aquaint_index 

  corpus.path          /home/DATA/TREC02/Column 

  corpus.class         column 

  memory               500m 

  collection.field     docno 

  stemmer.name         krovetz 

  column  Word         3 

  column  POS          4 

  column  chunk        6       BIO 

  column  NE           7       BIO 

 

LEAF/1  B-PER   0   B-NP/MOD_SP/1   NNP Tom     -     MOD_A1/1        

NP/2    I-PER   1   I-NP/HEAD_SP    NNP Cruise  -     ARG1/3   

VP/2    O       2   B-VP/MOD_SP/3   VBZ is      -     0        

VP/2    O       3   I-VP/HEAD_SP    VBN married marry 0        

PP/3    O       4   B-PP/HEAD_SP    TO  to      -     0        

NP/4    O       5   O              NNP X       -     ARG2/3   
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“wildcard” terms that match any term with a given tag.  The full query language is 

described at the Lemur project website 

(http://www.lemurproject.org/lemur/IndriQueryLanguage.html).  The queries 

generated here only use some of the features of Indri structured query language. 

 To specify that a query term must be tagged with a particular tag, the query 

term is appended with a period and the tag name.  Part-of-speech tags for this 

research are of the form “posdt” where the “pos” prefix specifies that the tag is a 

POS tag and the “dt” suffix specifies that the POS is determiner.  Thus, the query 

“state.posnn” will search for the term state when it is tagged with “NN” signifying 

a singular noun. 

 We can also combine multiple field restrictions for a single term.  For example, 

to search for term “cruise” when it is tagged as both proper noun and as a person 

named-entity, we separate the two terms with a comma, as in 

“cruise.posnnp,nepeop”. 

 The Indri structured query language can also search for particular fields 

without specifying what term is tagged with that field.  To search for any named-

entity of type location we use “#any:neloc”. 

 Indri supports a number of ways to combine search terms (based on the 

InQuery query language), which include taking the maximum, taking a weighted 

sum, and several others.  All queries generated for this research use the query 

operator “#combine” 

  

5.1.3 Generating Indri queries from natural language 

Each natural language query is transformed automatically into a structured Indri 

query.  Each query is automatically tagged with the same annotations that the 

corpus documents have been tagged with.  Each query term tag may be used as a 

restriction on the field value for that query term.  Therefore, if a query term is 

tagged as a noun, a location, and part of a verb phrase we can search for that term 

with any combination of those tags in the corpus. 

 The experiments in the following section investigate which combination of 

these tags is most effective for retrieval performance.  First, we will provide one 
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complete example of the transformation from natural language to Indri query 

language.  For this example, we will use the first question from the TREC 2002 

QA task, “In what country did the game of croquet originate?” 

 First, the question is rephrased as an answer and becomes “the game of croquet 

originated in XXX” where the “XXX” is a placeholder for a location named 

entity.  With the question in answer form, we can run all of our NLP annotators 

on it.  Running annotators for POS, shallow parse, NE, SRL, and dependency 

parse, we get the result shown in figure #9. 

 

Figure 9 - TREC annotated natural language query 

We cannot use all of these annotations on the corpus since the corpus was not 

tagged with all of these annotators, but we can use the POS tagger and the named 

entity tagger. 

 The baseline query which does not use any of the NLP annotations is: 

  #combine( the game of croquet originated in ) 

 

If we wish to include the POS tags in the query, we can restrict each of the query 

terms to only match corpus terms that have the same POS with the query: 

#combine( the.posdt game.posnn of.posin 

croquet.posnn originated.posvbn in.posin ) 

 

If we wish to include the NE tags in the query we can restrict each of the query 

terms to only match corpus terms that have the same NE tag with the query: 

  #combine( the game of croquet.nesport originated in) 

In this case, only one of the query terms has a NE tag so only one term is different 

from the original baseline query.  To restrict each query to match in both POS and 

NE tag we generate the query: 

LEAF/1 O       0   B-NP/MOD_SP/1 DT   the     -   MOD_A1/1     

NP/4   O       1   I-NP/HEAD_SP  NN   game    -   ARG1/4   

PP/1   O       2   B-PP/HEAD_SP  IN   of      -   MOD_A1/1  

NP/2   B-Sport 3   B-NP/HEAD_SP  NN   croquet -   MOD_A1/1                

VP/4   O       4   B-VP/HEAD_SP  VBN  originated  originate  0       

PP/4   O       5   B-PP/HEAD_SP  IN   in      -   0        

NP/5   B-Loc   6   B-NP/HEAD_SP  NNP  XXX     -   ARG0/4   
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  #combine( the.posdt game.posnn of.posin          

  croquet.nesport,posnn originated.posvbn in.posin ) 

 

This query could be too restrictive.  Perhaps some of the search terms never occur 

in the corpus with exactly the same tags as in the query.  If that’s the case we can 

add other less restrictive terms to ensure that possibly relevant documents are not 

ignored entirely just because the they are tagged with the wrong tags.  One way to 

do this is to generate two query terms for each of the terms in the original query 

where one has the tag restrictions and the other is just a plain search term without 

any tags specified.  This technique is shown for this example below: 

  #combine(the the.posdt game game.posnn of of.posin 

croquet croquet.posnn originated originated.posvbn 

in in.posin) 

 

Finally, we can use a placeholder in the rephrased question where the answer 

would normally appear if we know the named-entity tag.  For this example we 

know the answer is a location so we can add “#any:neloc” to the query.  With all 

of these features, we end up the query: 

  #combine( the the.posdt game game.posnn of of.posin   

  croquet croquet.nesport,posnn originated  

  originated.posvbn in in.posin #any:neloc ) 

 

 

5.2 Results 

In this section, we begin by describing each of the retrieval parameters, and then 

look at the results for all combinations of these retrieval options.  With an overall 

perspective on how some retrieval options affect retrieval performance we will 

further compare some of the combinations of retrieval options. 

 

5.2.1 Retrieval options 

Part-of-Speech (POS) 

This option specifies that the tagged POS of the search term must match the 

tagged POS of documents containing that term.  This POS is one of the 50 part-

of-speech tags as shown in.  For example, the search term “crowd” in the query 
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“the largest crowd to ever come see Michael Jordan” is tagged with the POS 

“NN.”  This query term will only match occurrences in the corpus of “crowd” that 

have been tagged “NN” and will not, for example, match the verb “crowd.” 

 

Simplified-POS (SPOS) 

Since the 50 POS classes may be too restrictive in some cases, we also have a 

simplified POS feature.  For example, in some queries we may not want to 

distinguish between noun and plural noun.  Perhaps in these cases we would just 

like to differentiate among nouns, verbs, adjectives, and adverbs.  The simplified 

part-of-speech retrieval option does exactly this.  These simplified POS tags do 

not take into account the other POS tags that do not fall under noun, adjective, 

verb, and adverb (such as determiners, etc.). 

 

Named Entity Tag (NE) 

This retrieval option specifies that if the query term is tagged with a named entity 

tag that the corpus term must also be tagged with the same named entity tag.  For 

example, in the query “tom cruise is married to,” the query terms “tom” and 

“cruise” are tagged as named entity “person.”  Each of these query terms will only 

match corpus terms that have also been tagged as “person.”  Thus, corpus 

occurrences of “cruise” used as a verb or a noun in the “cruise missile” sense will 

not match this query term. 

 

Raw search term (RAW-TERM) 

Each of the three retrieval options above requires that the search term occur in the 

corpus with the exact same tags.  This retrieval option allows us to add back the 

raw query term to the query.  This will allow query terms to match corpus terms 

that do not contain the same tags as the query term.  However, by using this in 

conjunction with tagged terms, the tagged term’s weight will cause documents 

containing appropriately tagged terms to be ranked higher. 
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Empty named entity slot (NE-SLOT) 

For queries where the answer type has already been determined, we can add a 

wildcard that matches any term that has the same named entity tag.  For example, 

the query “the game of croquet originated in X” and X has been tagged as a 

location we add the Indri wildcard operator “#any:neLOC” which will match any 

term that has been tagged as the named entity of a location. 

 

5.2.2 Results 

There are 32 combinations of these five features.  Each set of retrieval options is 

compared with four metrics: average precision, precision at 10 documents, 

precision at 20 documents, and precision at 30 documents. 

 Table 1 shows the set average (non-interpolated) precision over all 500 topics 

in the query set.  Entries in bold show where the average precision has increased. 

 

 

 - with raw 
term 

with NE slot with both 

no fields 0.1991 - 0.1973 0.1984 

POS 0.1883 0.2063 0.1892 0.2066 

SPOS 0.1867 0.2053 0.1876 0.2070 

NE 0.1370 0.1656 0.1361 0.1660 

POS, SPOS 0.1716 0.2013 0.1717 0.2014 

POS, NE 0.1256 0.1675 0.1247 0.1694 

SPOS, NE 0.1255 0.1670 0.1237 0.1670 

POS, SPOS, NE 0.1071 0.1578 
 

0.1039 0.1580 

Table 1 - Average precision for each combination 

 

Table 2 shows the precision at 10, 20, and 30 documents.  (The three numbers in 

each table entry are precision at 10 documents, precision at 20 documents, and 

precision at 30 documents).  Again increases in precision from the baseline are 

shown in bold. 
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 - with raw term with NE slot with both 

no fields 0.1310, 0.0912, 0.0706 - 0.1284, 0.0892, 0.0699 0.1310, 0.0900, 0.0701 

POS 0.1199, 0.0823, 0.0645 0.1317, 0.0909, 0.0709 0.1205, 0.0816, 0.0651 0.1313, 0.0910, 0.0704 

SPOS 0.1223, 0.0840, 0.0646 0.1319, 0.0895, 0.0689 0.1217, 0.0828, 0.0640 0.1319, 0.0900, 0.0689 

NE 0.0935, 0.0600, 0.0458 0.1062, 0.0751, 0.0587 0.0928, 0.0597, 0.0455 0.1069, 0.0749, 0.0593 

POS, 
SPOS 

0.1111, 0.0762, 0.0598 0.1302, 0.0882, 0.0695 0.1096, 0.0748, 0.0604 0.1308, 0.0888, 0.0689 

POS, NE 0.0823, 0.0552, 0.0433 0.1054, 0.0756, 0.0597 0.0832, 0.0548, 0.0431 0.1053, 0.0752, 0.0598 

SPOS, NE 0.0794, 0.0536, 0.0413 0.1053, 0.0723, 0.0574 0.0800, 0.0540, 0.0408 0.1053, 0.0723, 0.0574 

POS, 
SPOS, NE 

0.0702, 0.0472, 0.0368 0.1022, 0.0721, 0.0571 0.0702, 0.0469, 0.0372 0.1004, 0.0721, 0.0575 

Table 2 - Precision at 10, 20, and 30 documents 

 

Four of the combinations showed an increase in average precision.  The relative 

precision increase for each of the four combinations is shown in Table 3 below. 

 

 AvgPrec Prec@10 Prec@20 Prec@30 

POS w/ term +3.62 +0.53 -0.33 +0.42 

SPOS w/term +3.11 +0.69 -1.86 -2.41 

POS w/ both +3.77 +0.23 -0.22 -0.28 

SPOS w/both +3.97 +0.69 -0.13 -2.41 

POS&SPOS w/ 
term 

+1.10 -0.61 -3.29 -1.56 

POS&SPOS w/ 
both 

+1.16 -0.15 -2.63 -2.41 

Table 3 - Percentage increase for POS augmented queries 

 
 
5.2.3 Discussion of Results 

These results may be somewhat surprising.  Perhaps one might think that 

semantic information like the named entities tags would make a greater 

difference, but in fact, it is the syntactic POS tags that give us an improvement.  

There may be many reasons that the results are such including inaccuracies of 

automatic taggers and typical distributions of some of the search terms with 

various tags. 
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5.2.3.1 Raw term and NE placeholder 

Using the raw term 

One consistent pattern in the average precisions over all topics is that the more 

specific and restrictive the queries are, the worse the average precision is.  This 

means that any gains we get from the more precise query are offset by the 

relevant documents that do not match the more precise query.  Some of this 

decrease in performance can be attributed to imperfect annotators. 

 This results means that is necessary to include the original term without 

restricting it to certain NLP taggings.  By including search terms for both the raw 

original term and the term in the context with the specified tags, we get the 

advantages of specifying the NLP tags in that matching documents will be higher 

ranked but we do not get the disadvantage that relevant documents without the 

exact tags as the query are not matched.  Thus by specifying both the raw original 

term and a term with NLP tags specified (combining with the Indri #combine 

operator) we are essentially re-ranking the results.  Documents that match the 

terms and their respective NLP tags will be ranked higher. 

 

Using a NE placeholder 

The next observation is that adding a named-entity slot when the answer type is 

known sometimes helps but very little.  Perhaps the first question to ask is why 

adding this feature does not decrease performance.  If the NE tagger is correct, 

then any relevant document will have the correct tags somewhere in it.  However, 

even if the NE tagger is imperfect it is likely that most documents contain one of 

the more broad NE tags (such as person, organization, and location).  This may 

also be the reason that this feature does not help very much, because very many 

documents contain named entities of that type.  This type of feature may have a 

greater impact if used with a proximity operator. 

 

5.2.3.2 Field restriction features 

Having discussed using the raw term and an NE placeholder, we see that it is 

necessary to include the raw term and that the NE placeholder does not have a 
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large effect.  The remaining discussion will assume that we are using the raw term 

with each query and that results are not greatly impacted by whether or not we use 

the NE placeholder. 

 

 

Why do POS features work better than NE features? 

POS and SPOS features improve the precision, but NE features do not.  It is not 

immediately clear why this is. 

 One reason may be that in many cases NE tags do not buy very much.  For 

example, the first query in the set asks where the sport croquet originated.  Since 

the word “croquet” should always be tagged as a sport we gain nothing.  If the NE 

tagger does not consistently tag “croquet” as a sport, then this can only harm us.  

Many other NE types may demonstrate the same behavior, such as proper nouns 

that are not also common nouns (e.g. most last names). 

 The other question about NE features is: when can they help?  The answer 

seems to be that they help if the named entity is also a common noun (e.g. Cruise 

as in Tom Cruise vs. cruise as in cruise ship) or if there are two named-entities 

with similar names but different types (e.g. Washington the person vs. 

Washington the location).  However, both of these cases are likely to harder for 

the NE tagger to correctly tag automatically. 

 So, if NE tags are not helping us right now, why do POS tags help?  One 

reason may be that searching for terms with respect to their part-of-speech does a 

kind of “poor man’s” word sense disambiguation.  For example, the two parts-of-

speech that the word state can be, noun or verb, also correspond to the two 

broadest word senses for that word. 

 A curious result that we see in the POS results is that POS does not do very 

much differently than SPOS.  One might have hypothesized that with 50 parts-of-

speech, matching them exactly is over-fitting.  On the other hand, one could also 

reason that the more specific parts-of-speech are more precise.  For example, if 

the query used a verb in past tense then it could be good to only match that verb in 

the past tense (e.g. state vs. stated which might otherwise get stemmed to the 
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same term).  Therefore, it is not clear why the difference in not more pronounced, 

a more detailed analysis of the individual queries and results would be needed. 

 One final question may be, why do POS tags help the amount they do for these 

experiments (~3% increase in average precision)?  One reason could be that many 

of the query terms in this set of queries have a much-skewed POS distribution (i.e. 

they overwhelmingly occur in one POS).  Alternatively, it is possible that for 

some queries we do not want restrict the document terms to a particular POS 

(perhaps “cruise” is used as both a noun and a verb in relevant documents). 
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Chapter 6 
 

Conclusions 
 
 
 
In this research, we have discussed some methods of natural language processing 

and information retrieval and how they may be used together.  We have shown an 

efficient way of augmenting corpora with NLP tags, some applications in which it 

makes sense to do this, and a specific application where this method improves 

retrieval performance. 

 This framework can be used for a variety of applications, from linguistic 

analysis tools to general text search tools.  Although indexing the additional 

linguistic data is more time and space hungry, the resulting data structures are 

robust with many applications and provide additional power over similar 

applications that do not use linguistic information in this way. 

 In the specific application, natural language queries for documents in a corpus, 

we saw that POS tags improve retrieval performance but that NE tags did not 

make a large difference.  We also saw that it is necessary to temper the results by 

searching for both the original query terms and the query terms with linguistic 

annotations. 

 The increase in retrieval performance is modest but shows that there are gains 

to be made by using more linguistic information for information retrieval.  The 

results open some new questions about how named-entity tags can best be used to 

improve retrieval performance and how much tagging accuracy affects retrieval 

performance. 

 In conclusion, indexing additional linguistic tags makes sense because it 

enables a large number of applications to reside on top of a general retrieval 

engine.  As we have seen, the performance increases depend on the quality of the 

linguistic annotations but there is room for improvement. 
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Appendix A 
 

User Manual 
 

 

 

1. BUILDING A INDEX 

A. The Corpus Schema File 

The first step in using this system is to describe the corpus by creating a schema 

file.  A schema file is a text file.  Following this example is a description of each 

parameter. 

 

 

 

Index        Indri will compile the Indri index in this location. 

Corpus.path This is the location of the corpus.  Indri will do a recursive 

decent in to the folder and index all files in the folder and 

recursive subfolders. 

Corpus.class This is the class of the file to be indexed.  This should be 

set to ‘column’.  Setting an alternative value will cause 

Indri not to use the column indexing system. 

Index   apw_index 

corpus.path  data/apw 

corpus.class  column 

memory   500m 

collection.field docno 

stemmer.name  krovetz 

usewn   false 

column   Word   3 

column   POS   4 

column   chunk  6  BIO 

column   NE   7  BIO 
 copy_index_to  /usr/www/cgi-bin/belamber 
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Memory The maximum amount of main memory that Indri will use 

while indexing the corpus. 

Collection.field This should be set to ‘docno’.  Refer to the Indri 

documentation for more information about this parameter. 

Stemmer.name The name of the stemmer used by Indri while indexing.  

‘krovetz’ is the recommended stemmer.  Refer to the Indri 

documentation for alternatives 

Usewn Set to ‘true’ or ‘false’.  This controls whether WordNet will 

be used during indexing such that hypernyms and 

hyponyms can be searched for.  This option is not available 

in the most recent release. 

Column Column_Name Column_Number [BIO] 

To specify the role of each column the line should start 

with the keyword ‘column’ followed by the column name 

followed by the column number.  After the number, the 

user may optionally specify if the column is in BIO-style.  

See below for more information about column names and 

BIO-styled columns. 

Copy_index_to Optionally, the index can be copied to another directory 

upon completion. 

 

B. Building the supporting parameter files 

Once the schema file is set up, run the Perl script 

generate_build_files.pl to generate all the supporting files.  This script 

creates three files with names based on the file name of the schema file.  For 

example, if the schema file is names schema_file then the following three 

files are created: 

 1. schema_file.values 

 2. schema_file.build 

 3. schema_file.retr 
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The script generate_build_files.pl may take a long time to run the first 

time.  It is necessary for Indri to have all column names and all possible values for 

each column.  This list of columns and values is used to create parameter files for 

Indri and create another list that can be later used to assist with querying. 

The first time this script runs, it reads the entire corpus to obtain the 

possible values for each column.  It then creates the three files: 

 1. schema_file.values contains the possible values for each column.  Each line 

of the file corresponds to one column.  The first value in each line is the name of 

the column as specified in the schema file.  The remainder of the line is all of the 

possible values for that column, space-separated, in order of deceasing frequency. 

 

2. schema_file.build is the parameter file used by Indri directly to build the index.  

This file contains information indri uses to construct the corpus.  This includes 

crucial information such as the location of the corpus and the location to put the 

index. 

POS   NNP     NN      IN      DT      JJ      CD … 

chunk NP      VP      PP       
NE    Num     Peop    LocCoun Date    ProfTitle … 
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3. schema_file.retr contains basic information necessary to query the Indri 

index.  The Indri runquery command needs two files: this retrieval parameter 

file and a file containing the queries. 

 

 

<parameters> 

   <index>apw_index</index> 

   <corpus> 

      <path>data/apw</path> 

      <class>column</class> 

   </corpus> 

   <memory>500m</memory> 

   <collection> 

       <field>docno</field> 

   </collection> 

   <stemmer> 

      <name>krovetz</name> 

   </stemmer> 

   <columns>                

<column><name>Word</name><number>3</number></column> 

<column><name>POS</name><number>4</number></column> 

<column><name>chunk</name><number>6</number> 

<bio>true</bio></column>                

<column><name>NE</name><number>7</number> 

<bio>true</bio></column> 

   <usewn>false</usewn> 

   </columns> 

   <field><name>POSA</name></field> 

   <field><name>POSN</name></field> 

   <field><name>POSR</name></field> 

   <field><name>POSV</name></field> 
   ... 

<parameters> 

   <index>apw_index</index> 

   <count>1000</count> 

   <rule>method:dirichlet,mu:2500</rule> 

   <trecFormat>true</trecFormat> 

   <runID>Exp</runID> 
</parameters> 
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2. USING AN INDEX 

Using the resulting index is no different than using any index constructed by 

Indri: 

./IndriRunQuery index.lemur.retr query_file_name 

Where index.lemur.retr is the retrieval parameter file and query_file_name is a 

file containing one or more queries. 
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Appendix B 
 

Maintenance Guide 
 

 

 

1. Files 

This modified version of Lemur-Indri has the following additional files: 

columnbuildindex/ColumnEnvironment.cpp 
columnbuildindex/include/ColumnEnvironment.hpp 
src/ColumnParser.cpp 
include/column/ColumnParser.hpp 
columnbuildindex/examples/generate_build_files.pl 
 

Additionally, this file has been modified: 

 src/ParserFactory.cpp 

 

Also included with this version are: 

columnbuildindex/columnbuildindex.cpp 
columnbuildindex/Makefile 
column_query/column_query.cpp 
column_query/Makefile 

 

Two files must be modified to compile: 

 MakeDefns (Which must be modified by adding "wn" to the line beginning 
"DEPENDENCIES".) 
 Makefile (which must be modified by adding the line "$(MAKE) -C 
columnbuildindex) 
 

2. Classes 

The column-format corpus support is contained within the following classes: 

columnbuildindex/columnbuildindex.cpp 
columnbuildindex/ColumnEnvironment.cpp 
src/ColumnParser.cpp 
src/ParserFactory.cpp 
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A. columnbuildindex.cpp This class largely sets up all the data structures and 

classes before indexing begins.  This class is very similar to the class 

buildindex.cpp that comes with Indri. 

B. ColumnEnvironment.cpp This class is also mainly a supporting class and 

defines the “environment” while indexing.  This class is very similar to the 

IndexEnvironment.cpp class. 

C. ColumnParser.cpp Most of the work regarding the processing of columns is 

defined in this class.  This class parses the column-format documents and uses the 

data to construct a ParsedDocument object. 

D. ParserFactory.cpp This class native to Indri is slightly modified to instantiate 

ColumnParser when that format is specified in the configuration.  The “name” of 

the ColumnParser is “column”.  Aliases for this can be hard-coded into this class. 

E. Other classes Are used within the main classes.  TermExtent, 

ParsedDocument, etc.  Refer to the Indri documentation for more details about 

those classes. 

 

3. The ColumnParser class 

Since the ColumnParser class is the workhorse of this IR implementation, 

pseudocode for the algorithm is provided here: 

For each line 

Split the line into tokens, separated by a space or a tab  

 For each column specified in the build parameters: 

  If column name is “Word” 

   Add term to the term vector 

      Add the position to the positions vector 

  If column name is “POS” 

   Add raw POS to the tags vector 

   Simplify the raw POS to (Adj, Noun, Verb, and Adv) 

   Add simplifies POS to the tags vector 

  Otherwise: 

   Remove all punctuation from the tag name 

   If “BIO” column, remove the leading “B-“ or “I-“ 

   Add string “column_name”+”column value” to the tags vector

    

 If Use_WordNet is true 

  Query WordNet for Synonyms, hypernyms, and hyponyms 

  For each hypernym, add to term vector "HYPERNYMOF" + word   

  For each hyponym, add to term "HYPONYMOF" + word 

  For each synonym, add to term "SYNONYMOF" + word  
 


