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Recap

O

O

Thus far, we have looked at dynamic programming for string
matching,

And derived DTW from DP for isolated word recognition

We identified the search trellis, time-synchronous search as
efficient mechanisms for decoding

We looked at ways to improve search efficiency using pruning

B In particular, we identified beam pruning as a nearly universal
pruning mechanism in speech recognition

We looked at the limitations of DTW and template matching:
B Ok for limited, small vocabulary applications
B Brittle; breaks down if speakers change
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Today’s Topics

Generalize DTW based recognition
Extend to multiple templates
Move on to Hidden Markov Models

Look ahead: The fundamental problems of HMMs

B Introduce the three fundamental problems of HMMs

[0 Two of the problems deal with decoding using HMMs, solved using
the forward and Viterbi algorithms

[0 The third dealing with estimating HMM parameters (seen later)
B Incorporating prior knowledge into the HMM framework
B Different types of probabilistic models for HMMs

[0 Discrete probability distributions

[0 Continuous, mixture Gaussian distributions

O 00O
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DTW Using A Single Template

TEMPLATE
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We’ve seen the DTW alignment of data to model

(model axis inverted from earlier discussion)
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Limitations of A Single Template

O

As noted in the previous topic, a single template cannot
capture all the variations in speech

One alternative already suggested: use multiple templates for
each word, and match the input against each one
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DTW with multiple templates
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DTW with multiple templates
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Each template warps differently to best match the input; the
best matching template is selected
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Problem With Multiple Templates

O

Finding the best match requires the evaluation of many more
templates (depending on the number)

B This can be computationally expensive

O Important for handheld devices, even for small-vocabulary
applications

O Think battery life!
B Need a method for reducing multiple templates into a single one

Even multiple templates do not cover the space of possible
variations

B Need mechanism of generalizing from the templates to include
data not seen before

We can achieve both objectives by averaging all the
templates for a given word
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Generalizing from Templates

[0 Generalization implies going from the given templates to one
that also represents others that we have not seen

[0 Taking the average of all available templates may represent
the recorded templates less accurately, but will represent
other unseen templates more robustly

[0 A general template (for a word) should capture all salient
characteristics of the word, and no more

B Goal: Improving accuracy

[0 We will consider several steps to accomplish this
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Improving the Templates

[0 Generalization by averaging the templates

O

O
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Template Averaging

O

How can we average the templates when they’re of different
lengths?
B Somehow need to normalize them to each other

Solution: Apply DTW (of course!)
B Pick one template as a “master”

B Align all other templates to it

[0 Note: This requires not just finding the best cost, but the actual
alignment between the template and input frame sequences, using
the back-pointers described earlier

B Use the alignments so generated to compute their average

Note: Choosing a different master template will lead to a
different average template
B Which template to choose as the master?

[0 No definitive answer exists
[0 Only trial and error solutions exist

11
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DTW with multiple templates
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DTW with multiple templates

TEMPLATES ~0:0:0:0:0:0:0:0;0:0:0:0~ T4

‘-.—'.-n- “Jé- — T3

J

Average all feature vectors
aligned against each other
-0-0-000-00-0 --0-0
Average Template

-0-0-0-0 - --0- - - -0
-0-0- 00O -0- - - -~

T

=
—
N
—
W
—
EAN

Align T4/T2 and T4/T1, similarly; then average all of them
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Improving the Templates

[0 Generalization by averaging the templates

[0 Generalization by reducing template length

O
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Benefits of Template Averaging

O

Obviously, we have eliminated the computational cost of
having multiple templates for each word

Using the averages of the aligned feature vectors generalizes
from the samples
B The average is representative of the templates, and more

generally, assumed to be representative of future utterances of
the word

The more the number of templates, the better the
generalization

15
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Template Size Reduction

[0 Can we do better? Consider the template for “something’:

template S 0 me | th i ng

[0 Here, the template has been manually segmented into 6
segments, where each segment is a single phoneme

[0 Hence, the frames of speech that make up any single
segment ought to be fairly alike

0 If so, why not replace each segment by a single
representative feature vector?

® How? Again by averaging the frames within the segment

[0 This gives a reduction in the template size (memory size)

16
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Example: Single Templates With Three Segments

A

- Three segments

TEMPLATE
-
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DATA

The feature vectors within each segment are assumed to
be similar to each other
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Averaging Each Template Segment

> Model Vector :% > vector (i)
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1 . M;is the model vector for the Jth segment
m; = N Z x(1) N; is the number of vectors in the j® segment
j 1esegment(}) X(i) is the ith feature vector
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Template With One Model Vector Per Segment
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TEMPLATE
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DATA
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DTW with one model
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The averaged template is matched against the data string to be recognized
Select the word whose averaed template has the lowest cost of match
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DTW with multiple models
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Segment all templates
Average each region into a single point
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DTW with multiple models
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Segment all templates

Average each region into a single point
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DTW with multiple models

MODELS
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* segment, (J) is the J* segment of the
}%\:;ﬂ% kth training sequence

® o . |

® é t ¢ M; is the model vector for the J™ segment
® ¢

m * Ny;is the number of training vectors in the

Jth segment of the Kt training sequence

X, (1) is the 1" vector of the Kkt training

sequence
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DTW with multiple models
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Segment all templates, average each region into a single point
To get a simple average model, which is used for recognition
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Improving the Templates

[0 Generalization by averaging the templates
[0 Generalization by reducing template length

[0 Accounting for variation within templates represented by the
reduced model

25
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DTW with multiple models

e The Inherent variation between vectors IS
different for the different segments

— E.g. the variation in the colors of the beads
In the top segment is greater than that in the
bottom segment

 |deally we should account for the
differences In variation in the segments

— E.g, a vector in a test sequence may actually
be more matched to the central segment,
which permits greater variation, although it
IS closer, In a Euclidean sense, to the mean
of the lower segment, which permits lesser

variation
26
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DTW with multiple models

MODELS

We can define the covariance for each
segment using the standard formula
for covariance
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DTW with multiple models

The distance function must be modified to account for the
covariance

Mahalanobis distance:
— Normalizes contribution of all dimensions of the data

T ~-1
d(x,m;)=(x-m;) C;7(x—m;,)
— Xlsadata vector, m; Is the mean of a segment, C; Is the
covariance matrix for the segment

Negative Gaussian log likelihood:

— Assumes a Gaussian distribution for the segment and computes
the probability of the vector on this distribution

1 e—0.5(x—mj)T Cit(x-m;)

\/(2”)[)‘(31‘

d(x,m,) =—log(Gaussian(x;m,,C;)

Gaussian(x;m;,C;) =

= 0.5|0g((27z)D ‘CjD+O.5(x—mj)TCj_l(x—m,-)
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The Covariance

The variance that we have computed is a full covariance matrix
— And the distance measure requires a matrix inversion

C, = ZNZ > (x@-m) (6 0)-m;)

iesegment, (j)

_ TH~-1
d(x,m;)=(x—m;) C;"(x—m;)
In practice we assume that all off-diagonal terms in the matrix are 0
This reduces our distance metric t0'

d(x,m,)= Z -

Where the individual variance terms 02 are

o > (%, )-my)?

il
Z Nk k iesegment, (j)

If we use a negative log Gaussian instead, the modified score (with the
diagonal covariance) is

d(x,m)= OSZIog(ZMHHO 52( '
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m, m. )’
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Segmental K-means

Simple uniform segmentation of training instances is not
the most effective method of grouping vectors in the
training sequences

A better segmentation strategy Is to segment the training
sequences such that the vectors within any segment are
most alike

— The total distance of vectors within each segment from the model
vector for that segment is minimum

— For a global optimum, the total distance of all vectors from the
model for their respective segments must be minimum

This segmentation must be estimated

The segmental K-means procedure is an iterative

procedure to estimate the optimal segmentation »



Alignment for training a model from multiple vector

sequences
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Initialize by uniform segmentation
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Alignment for training a model from multiple vector

sequences

T4

Initialize by uniform segmentation
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Alignment for training a model from multiple vector

sequences
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Initialize by uniform segmentation

Align each template to the averaged model to get new segmentations 2
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Alignment for training a model from multiple vector
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Alignment for training a model from multiple vector

sequences
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Alignment for training a model from multiple vector

gequences
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Alignment for training a model from multiple vector

sequences
[T
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Initialize by uniform segmentation
Align each template to the averaged model to get new segmentations
Recompute the average model from new segmentations
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Alignment for training a model from multiple vector

sequences
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Alignment for training a model from multiple vector
sequences
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The procedure can be continued until convergence

Convergence is achieved when the total best-alignment error for
all training sequences does not change significantly with further
refinement of the model
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Shifted terminology
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Improving the Templates

[0 Generalization by averaging the templates
[0 Generalization by reducing template length

[0 Accounting for variation within templates represented by the
reduced model

[0 Accounting for varying segment lengths
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Transition structures in models
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The converged models can be used to score / align data sequences

Model structure in incomplete.
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DTW with multiple models

Some segments are naturally longer than others

— E.g., in the example the initial (yellow) segments are
usually longer than the second (pink) segments

This difference in segment lengths is different
from the variation within a segment

— Segments with small variance could still persist very
long for a particular sound or word

The DTW algorithm must account for these
natural differences in typical segment length

This can be done by having a state specific
Insertion penalty

— States that have lower insertion penalties persist

longer and result in longer segments
44
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Transition structures in models

T34
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DATA

State specific insertion penalties are represented as

self transition arcs for model vectors. Horizontal edges within the
trellis will incur a penalty associated with the corresponding arc,_
Every transition within the model can have its own penalty.
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Transition structures in models

State specific insertion penalties are represented as

self transition arcs for model vectors. Horizontal edges within the
trellis will incur a penalty associated with the corresponding arc,
Every transition within the model can have its own penalty or score
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Transition structures in models

0— —0—8 — —0—0— — — — — —@
DATA

This structure also allows the inclusion of arcs that permit the
central state to be skipped (deleted)
Other transitions such as returning to the first state from the

. ) : 47
last state can be permitted by inclusion of appropriate arcs
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What should the transition scores be

 Transition behavior can be expressed with probabilities

— For segments that are typically long, if a data vector is within that segment,
the probability that the next vector will also be within it is high

— If the it" segment is typically followed by the jt segment, but also rarely
by the ki segment, then, if a data vector is within the it segment, the
probability that the next data vector lies in the jt segment is greater than
the probability that it lies in the k' segment

* A good choice for transition scores are the negative logarithm of
the probabilities of the appropriate transitions

— T;; Is the negative of the log of the probability that if the current data vector
belongs to the it" state, the next data vector will also belong to the it state

— T Is the negative of the log of the probability that if the current data vector
belongs to the i™" state, the next data vector belongs to the jt" state

— More probable transitions are less penalized. Impossible transitions aress
Infinitely penalized
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Modified segmental K-means AKA Viterbi training

» Transition scores can be easily computed by a
simple extension of the segmental K-means
algorithm

TlNEW
T2NEW
! ! * Probabilities can be counted by simple counting
¢
»
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(stéte) of the k™" training sequence
* Ny, is the number of vectors in the i segment

(state) of the k™ training sequence that were

followed by vectors from the j" segment (state)

— E.g., No. of vectors in the 1 (yellow) state = 20
No of vectors from the 1t state that were

followed by vectors from the 1%t state = 16
P,, =16/20=0.8; T, =-l0og(0.8) 49
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Modified segmental K-means AKA Viterbi training

» Aspecial score is the penalty associated with

Ty T4, starting at a particular state
T2yew * In our examples we always begin at the first state
! Ty T  Enforcing this is equivalent to setting Ty, =0,
n To; = Infinity for j =1
' o Itis sometimes useful to permit entry directly into
) ¢ E ¢ ¢ later states
‘ ! — l.e. permit deletion of initial states
® ¢ O § » The score for direct entry into any state can be
t . t computed as
?ete p, =2 T,; =—log(P,)
N=4 N
No; = * N is the total number of training sequences
Noz = * Ny Is the number of training sequences for which
Nog = the first data vector was in the ji state 50




Modified segmental K-means AKA Viterbi training

Initializing state parameters
—  Segment all training instances uniformly, learn means and variances

Initializing T; scores
—  Count the number of permitted initial states
e Let this number be M,
—  Setall permitted initial states to be equiprobable: P; =1/M,
- Tg=-log(P;) = log(M,)

Initializing T;; scores
—  For every state i, count the number of states that are permitted to follow

* i.e.the number of arcs out of the state, in the specification
*  Let this number be Mi

—  Setall permitted transitions to be equiprobable: P; = 1/M;
— Initialize T;; = -log(P;) = log(M;)

This is only one technique for initialization

— You may choose to initialize parameters differently, e.g. by random values

CarnegieMellon
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Modified segmental K-means AKA Viterbi training

The entire segmental K-means algorithm:

1. Initialize all parameters
e State means and covariances
e Transition scores
« Entry transition scores

2. Segment all training sequences

3. Reestimate parameters from segmented
training sequences

4. If not converged, return to 2

52



e - - - -

— o

. . . ] CarnegieMellon
Alignment for training a model from multiple vector

sequences
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The procedure can be continued until convergence
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Convergence is achieved when the total best-alignment error for
all training sequences does not change significantly with further53
refinement of the model




